Secure Computations on Shared Polynomials and Application to Private Set Operations

Lucas Ottow

Pascal Giorgi ${ }^{1}$, Fabien Laguillaumie ${ }^{1}$, Lucas Ottow ${ }^{1,2}$, Damien Vergnaud ${ }^{2}$
${ }^{1}$ LIRMM, UM, Montpellier, France
${ }^{2}$ LIP6, Sorbonne Université, Paris, France

Multiparty Computation

Multiparty Computation

- General result by Yao ('82)

Secret Sharing in MPC

Secret Sharing in MPC

- Sol: share secret input + compute jointly: Beaver89, BGW88.

Secret Sharing in MPC

- Sol: share secret input + compute jointly: Beaver89, BGW88.
- Costly operation: product of two shared elements

Secret Sharing in MPC

- Sol: share secret input + compute jointly: Beaver89, BGW88.
- Costly operation: product of two shared elements
- Our goal: less secure multiplications (sec. mult.) + constant round

How to compute on shares

- Linear sharing over $\mathbb{F}_{q}:[x] \Longrightarrow[x]_{1}+\ldots+[x]_{m}=x$

How to compute on shares

- Linear sharing over $\mathbb{F}_{q}:[x] \Longrightarrow[x]_{1}+\ldots+[x]_{m}=x$
- Base operations:

How to compute on shares

- Linear sharing over $\mathbb{F}_{q}:[x] \Longrightarrow[x]_{1}+\ldots+[x]_{m}=x$
- Base operations:
- Compute $[a+b]$ given [a] and $[b]:[a+b]_{j}=[a]_{j}+[b]_{j}$.
- Compute [ca] given [a] and c public: $[c a]_{j}=c \times[a]_{j}$.

How to compute on shares

- Linear sharing over $\mathbb{F}_{q}:[x] \Longrightarrow[x]_{1}+\ldots+[x]_{m}=x$
- Base operations:
- Compute $[a+b]$ given [a] and $[b]:[a+b]_{j}=[a]_{j}+[b]_{j}$.
- Compute [ca] given [a] and c public: $[c a]_{j}=c \times[a]_{j}$.
- Compute $[a b]$ given $[a],[b]$: requires communications.

How to compute on shares

- Linear sharing over $\mathbb{F}_{q}:[x] \Longrightarrow[x]_{1}+\ldots+[x]_{m}=x$
- Base operations:
- Compute $[a+b]$ given [a] and $[b]:[a+b]_{j}=[a]_{j}+[b]_{j}$.
- Compute [ca] given [a] and c public: $[c a]_{j}=c \times[a]_{j}$.
- Compute [ab] given [a], [b]: requires communications.
- Sharing over $\mathbb{F}_{q}[X]: f=\sum f_{i} X^{i}:\left(\left[f_{0}\right], \ldots,\left[f_{d-1}\right]\right)$

How to compute on shares

- Linear sharing over $\mathbb{F}_{q}:[x] \Longrightarrow[x]_{1}+\ldots+[x]_{m}=x$
- Base operations:
- Compute $[a+b]$ given [a] and $[b]:[a+b]_{j}=[a]_{j}+[b]_{j}$.
- Compute [ca] given [a] and c public: $[c a]_{j}=c \times[a]_{j}$.
- Compute [ab] given [a], [b]: requires communications.
- Sharing over $\mathbb{F}_{q}[X]: f=\sum f_{i} X^{i}:\left(\left[f_{0}\right], \ldots,\left[f_{d-1}\right]\right)$
- shared product?

How to compute on shares

- Linear sharing over $\mathbb{F}_{q}:[x] \Longrightarrow[x]_{1}+\ldots+[x]_{m}=x$
- Base operations:
- Compute $[a+b]$ given [a] and $[b]:[a+b]_{j}=[a]_{j}+[b]_{j}$.
- Compute [ca] given [a] and c public: $[c a]_{j}=c \times[a]_{j}$.
- Compute $[a b]$ given [a], [b]: requires communications.
- Sharing over $\mathbb{F}_{q}[X]: f=\sum f_{i} X^{i}:\left(\left[f_{0}\right], \ldots,\left[f_{d-1}\right]\right)$
- shared product?

Naive method: $[f g]=\left(\left[f_{0}\right], \ldots,\left[f_{d-1}\right]\right) *\left(\left[g_{0}\right], \ldots,\left[g_{d-1}\right]\right)$.
$\mathcal{O}\left(d^{2}\right)$ secure multiplication total.

How to compute on shares

- Linear sharing over $\mathbb{F}_{q}:[x] \Longrightarrow[x]_{1}+\ldots+[x]_{m}=x$
- Base operations:
- Compute $[a+b]$ given [a] and $[b]:[a+b]_{j}=[a]_{j}+[b]_{j}$.
- Compute [ca] given [a] and c public: $[c a]_{j}=c \times[a]_{j}$.
- Compute $[a b]$ given [a], $[b]$: requires communications.
- Sharing over $\mathbb{F}_{q}[X]: f=\sum f_{i} X^{i}:\left(\left[f_{0}\right], \ldots,\left[f_{d-1}\right]\right)$
- shared product?

Naive method: $[f g]=\left(\left[f_{0}\right], \ldots,\left[f_{d-1}\right]\right) *\left(\left[g_{0}\right], \ldots,\left[g_{d-1}\right]\right)$.
$\mathcal{O}\left(d^{2}\right)$ secure multiplication total.

- Mohassel, Franklin (PKC'06) do it better: $\mathcal{O}(d)$ sec. mult.

Previous work and our contribution

- Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)

Previous work and our contribution

- Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)
- Our results: (τ is a constant)

Previous work and our contribution

- Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)
- Our results: (τ is a constant)
- Multiplication of n polynomials of degree $<d$:

$$
\mathcal{O}\left(n^{2} d\right) \rightarrow \mathcal{O}\left(\tau n^{1+1 / \tau} d\right)
$$

Previous work and our contribution

- Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)
- Our results: (τ is a constant)
- Multiplication of n polynomials of degree $<d$:

$$
\mathcal{O}\left(n^{2} d\right) \rightarrow \mathcal{O}\left(\tau n^{1+1 / \tau} d\right)
$$

- Interpolation and multipoint evaluation of polynomials of degree $<d$:

$$
\mathcal{O}\left(d^{2}\right) \rightarrow \mathcal{O}\left(\tau d^{1+1 / \tau}\right)
$$

Previous work and our contribution

- Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)
- Our results: (τ is a constant)
- Multiplication of n polynomials of degree $<d$:

$$
\mathcal{O}\left(n^{2} d\right) \rightarrow \mathcal{O}\left(\tau n^{1+1 / \tau} d\right)
$$

- Interpolation and multipoint evaluation of polynomials of degree $<d$:

$$
\mathcal{O}\left(d^{2}\right) \rightarrow \mathcal{O}\left(\tau d^{1+1 / \tau}\right)
$$

- Application to privacy preserving set operations.

Our method: an example

$$
\text { Op: }\left[f_{1}\right], \ldots,\left[f_{n}\right](\operatorname{deg}<d) \longrightarrow\left[f_{1} \ldots f_{n}\right]
$$

Our method: an example

$$
\text { Op: }\left[f_{1}\right], \ldots,\left[f_{n}\right](\operatorname{deg}<d) \longrightarrow\left[f_{1} \ldots f_{n}\right]
$$

Mohassel, Franklin (PKC'06)

n poly at a time
$1 \times \mathcal{O}\left(n^{2} d\right)$ sec. mult

Our method: an example

$$
\text { Op: }\left[f_{1}\right], \ldots,\left[f_{n}\right](\operatorname{deg}<d) \longrightarrow\left[f_{1} \ldots f_{n}\right]
$$

Mohassel, Franklin (PKC'06)

n poly at a time
$1 \times \mathcal{O}\left(n^{2} d\right)$ sec. mult

Binary tree

Our method: an example

$$
\text { Op: }\left[f_{1}\right], \ldots,\left[f_{n}\right](\operatorname{deg}<d) \longrightarrow\left[f_{1} \ldots f_{n}\right]
$$

Mohassel, Franklin (PKC'06)

n poly at a time
$1 \times \mathcal{O}\left(n^{2} d\right)$ sec. mult
$\mathcal{O}(1)$ rounds

Binary tree

Our method: an example

"Squished" tree

Our method: an example

"Squished" tree

Our method: an example

"Squished" tree

$$
\begin{gathered}
\sqrt{n} \text { poly at a time } \\
\sqrt{n} \times \mathcal{O}\left((\sqrt{n})^{2} d\right) \text { sec. mult. }
\end{gathered}
$$

Our method: an example

"Squished" tree

$$
\begin{gathered}
\sqrt{n} \text { poly at a time } \\
\sqrt{n} \times \mathcal{O}\left((\sqrt{n})^{2} d\right) \text { sec. mult. } \\
\mathcal{O}(1) \text { rounds }(2 \text { steps })
\end{gathered}
$$

Our method: an example

"Squished" tree

$$
\begin{gathered}
\sqrt{n} \text { poly at a time } \\
\sqrt{n} \times \mathcal{O}\left((\sqrt{n})^{2} d\right) \text { sec. mult. } \\
\mathcal{O}(1) \text { rounds }(2 \text { steps })
\end{gathered}
$$

- Generalization: $\mathcal{O}(\tau)$ rounds and $\mathcal{O}\left(\tau n^{1+1 / \tau} d\right)$ sec. mult.

Privacy Preserving operations

Privacy Preserving operations

Privacy Preserving operations

- Example: social network, investigations, ...

Privacy Preserving operations

- Main idea: \mathcal{A}_{j} represented as shared polynomials: $P_{j}=\prod_{\alpha \in \mathcal{A}_{j}}(X-\alpha)$.

Privacy Preserving operations

- Main idea: \mathcal{A}_{j} represented as shared polynomials: $P_{j}=\prod_{\alpha \in \mathcal{A}_{j}}(X-\alpha)$.
- Use our evaluation techniques.

Privacy Preserving operations

- Main idea: \mathcal{A}_{j} represented as shared polynomials: $P_{j}=\prod_{\alpha \in \mathcal{A}_{j}}(X-\alpha)$.
- Use our evaluation techniques.
- 1st protocol: probabilistic Private Disjointess Test/PSI-emptiness, $\mathcal{O}\left(m n+\tau n^{1+1 / \tau}\right)$

Privacy Preserving operations

- Main idea: \mathcal{A}_{j} represented as shared polynomials: $P_{j}=\prod_{\alpha \in \mathcal{A}_{j}}(X-\alpha)$.
- Use our evaluation techniques.
- 1st protocol: probabilistic Private Disjointess Test/PSI-emptiness, $\mathcal{O}\left(m n+\tau n^{1+1 / \tau}\right)$
- 2nd protocol: Many other problems without error in $\mathcal{O}\left(m n \log \log q+\tau m n^{1+1 / \tau}\right)$ (using techniques from Damgård et al. (TCC'06))

Future work

- Other operations on polynomials: gcd is currently costly and many applications.

Future work

- Other operations on polynomials: gcd is currently costly and many applications.
- Other applications to cryptographic problems

Future work

- Other operations on polynomials: gcd is currently costly and many applications.
- Other applications to cryptographic problems
- Operations on polynomial matrices.

Future work

- Other operations on polynomials: gcd is currently costly and many applications.
- Other applications to cryptographic problems
- Operations on polynomial matrices.

Thank you for your attention!

