Secure Computations on Shared Polynomials and Application to Private Set Operations

Lucas Ottow

Pascal Giorgi¹, Fabien Laguillaumie¹, Lucas Ottow^{1,2}, Damien Vergnaud²

¹ LIRMM, UM, Montpellier, France ² LIP6, Sorbonne Université, Paris, France

Multiparty Computation

Multiparty Computation

• General result by Yao ('82)

• Sol: share secret input + compute jointly : Beaver89, BGW88.

- Sol: share secret input + compute jointly : Beaver89, BGW88.
- Costly operation: product of two shared elements

- Sol: share secret input + compute jointly : Beaver89, BGW88.
- Costly operation: product of two shared elements
- Our goal: less secure multiplications (sec. mult.) + constant round

• Linear sharing over \mathbb{F}_q : $[x] \implies [x]_1 + ... + [x]_m = x$

- Linear sharing over \mathbb{F}_q : $[x] \implies [x]_1 + ... + [x]_m = x$
- Base operations:

- Linear sharing over \mathbb{F}_q : $[x] \implies [x]_1 + ... + [x]_m = x$
- Base operations:
 - Compute [a + b] given [a] and [b]: $[a + b]_j = [a]_j + [b]_j$.
 - Compute [ca] given [a] and c public: $[ca]_j = c \times [a]_j$.

- Linear sharing over \mathbb{F}_q : $[x] \implies [x]_1 + ... + [x]_m = x$
- Base operations:
 - Compute [a + b] given [a] and [b]: $[a + b]_j = [a]_j + [b]_j$.
 - Compute [ca] given [a] and c public: $[ca]_j = c \times [a]_j$.
 - Compute [ab] given [a], [b]: requires communications.

- Linear sharing over \mathbb{F}_q : $[x] \implies [x]_1 + ... + [x]_m = x$
- Base operations:
 - Compute [a + b] given [a] and [b]: $[a + b]_j = [a]_j + [b]_j$.
 - Compute [ca] given [a] and c public: $[ca]_j = c \times [a]_j$.
 - Compute [ab] given [a], [b]: requires communications.
- Sharing over $\mathbb{F}_q[X]$: $f = \sum f_i X^i$: $([f_0], ..., [f_{d-1}])$

- Linear sharing over \mathbb{F}_q : $[x] \implies [x]_1 + ... + [x]_m = x$
- Base operations:
 - Compute [a + b] given [a] and [b]: $[a + b]_j = [a]_j + [b]_j$.
 - Compute [ca] given [a] and c public: $[ca]_j = c \times [a]_j$.
 - Compute [ab] given [a], [b]: requires communications.
- Sharing over $\mathbb{F}_q[X]$: $f = \sum f_i X^i$: $([f_0], ..., [f_{d-1}])$
 - shared product?

- Linear sharing over \mathbb{F}_q : $[x] \implies [x]_1 + ... + [x]_m = x$
- Base operations:
 - Compute [a + b] given [a] and [b]: $[a + b]_j = [a]_j + [b]_j$.
 - Compute [ca] given [a] and c public: $[ca]_j = c \times [a]_j$.
 - Compute [ab] given [a], [b]: requires communications.
- Sharing over $\mathbb{F}_q[X]$: $f = \sum f_i X^i$: $([f_0], ..., [f_{d-1}])$
 - shared product? Naive method: $[fg] = ([f_0], ..., [f_{d-1}]) * ([g_0], ..., [g_{d-1}]).$ $\mathcal{O}(d^2)$ secure multiplication total.

- Linear sharing over \mathbb{F}_q : $[x] \implies [x]_1 + ... + [x]_m = x$
- Base operations:
 - Compute [a + b] given [a] and [b]: $[a + b]_j = [a]_j + [b]_j$.
 - Compute [ca] given [a] and c public: $[ca]_j = c \times [a]_j$.
 - Compute [ab] given [a], [b]: requires communications.
- Sharing over $\mathbb{F}_q[X]$: $f = \sum f_i X^i$: $([f_0], ..., [f_{d-1}])$
 - shared product? Naive method: $[fg] = ([f_0], ..., [f_{d-1}]) * ([g_0], ..., [g_{d-1}]).$ $\mathcal{O}(d^2)$ secure multiplication total.
 - Mohassel, Franklin (PKC'06) do it better: $\mathcal{O}(d)$ sec. mult.

• Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)

- Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)
- Our results: (τ is a constant)

- Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)
- Our results: (τ is a constant)
 - Multiplication of n polynomials of degree < d:

 $\mathcal{O}(n^2 d) \rightarrow \mathcal{O}(\tau n^{1+1/\tau} d)$

- Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)
- Our results: (τ is a constant)
 - Multiplication of n polynomials of degree < d:

$$\mathcal{O}(n^2 d) \rightarrow \mathcal{O}(\tau n^{1+1/\tau} d)$$

• Interpolation and multipoint evaluation of polynomials of degree < d:

$$\mathcal{O}(d^2) \rightarrow \mathcal{O}(\tau d^{1+1/\tau})$$

- Mohassel, Franklin (PKC'06): operations on shared polynomial (multiplication, division, interpolation...)
- Our results: (τ is a constant)
 - Multiplication of n polynomials of degree < d:

$$\mathcal{O}(n^2 d) \rightarrow \mathcal{O}(\tau n^{1+1/\tau} d)$$

• Interpolation and multipoint evaluation of polynomials of degree < d:

$$\mathcal{O}(d^2) o \mathcal{O}(\tau d^{1+1/\tau})$$

• Application to privacy preserving set operations.

$\underline{\operatorname{Op:}} \ [f_1], ..., [f_n] \ (\deg < d) \ \longrightarrow \ [f_1 ... f_n]$

$$\underline{\text{Op:}} [f_1], ..., [f_n] (\deg < d) \longrightarrow [f_1...f_n]$$

Mohassel, Franklin (PKC'06)

$$\begin{bmatrix} f_1 \end{bmatrix} \begin{bmatrix} f_2 \end{bmatrix} \cdots \begin{bmatrix} f_n \end{bmatrix}$$

$$\begin{bmatrix} f_1 \dots f_n \end{bmatrix}$$

n poly at a time $1 imes \mathcal{O}(n^2 d)$ sec. mult

$$\underline{\operatorname{Op:}} \ [f_1], ..., [f_n] \ (\deg < d) \ \longrightarrow \ [f_1...f_n]$$

Binary tree Mohassel, Franklin (PKC'06) $[f_1] [f_2]$ $[f_{n-1}]$ $[f_n]$ $[f_1 f_2]$ $[f_{n-1}f_n]$ $[f_1] [f_2] \dots [f_n]$ $[f_1...f_n]$ $[f_1...f_n]$ n poly at a time 2 poly at a time $1 \times \mathcal{O}(n^2 d)$ sec. mult $\log n \times \mathcal{O}(nd)$ sec. mult

JC2 2023

$$\underline{\operatorname{Op:}} \ [f_1], ..., [f_n] \ (\deg < d) \ \longrightarrow \ [f_1...f_n]$$

Binary tree Mohassel, Franklin (PKC'06) $[f_1]$ $[f_2]$ $[f_{n-1}]$ $[f_n]$ $[f_1 f_2]$ $[f_{n-1}f_n]$ $[f_1]$ $[f_2]$... $[f_n]$ $[f_1...f_n]$ $[f_1...f_n]$ n poly at a time 2 poly at a time $1 \times \mathcal{O}(n^2 d)$ sec. mult $\log n \times \mathcal{O}(nd)$ sec. mult $\mathcal{O}(1)$ rounds $\mathcal{O}(\log n)$ rounds

Lucas Ottow

Shared polynomials in MPC

JC2 2023

"Squished" tree

 $\sqrt{n} \times \mathcal{O}((\sqrt{n})^2 d)$ sec. mult.

JC2 2023

• Generalization: $\mathcal{O}(\tau)$ rounds and $\mathcal{O}(\tau n^{1+1/\tau}d)$ sec. mult.

Lucas Ottow

JC2 2023

Privacy Preserving operations

Privacy Preserving operations

Privacy Preserving operations

• Example: social network, investigations, ...

• Main idea: A_j represented as shared polynomials: $P_j = \prod_{\alpha \in A_j} (X - \alpha)$.

- Main idea: A_j represented as shared polynomials: $P_j = \prod_{\alpha \in A_i} (X \alpha)$.
- Use our evaluation techniques.

- Main idea: A_j represented as shared polynomials: $P_j = \prod_{\alpha \in A_i} (X \alpha)$.
- Use our evaluation techniques.
- 1st protocol: probabilistic Private Disjointess Test/PSI-emptiness, $\mathcal{O}(mn + \tau n^{1+1/\tau})$

- Main idea: A_j represented as shared polynomials: $P_j = \prod_{\alpha \in A_i} (X \alpha)$.
- Use our evaluation techniques.
- 1st protocol: probabilistic Private Disjointess Test/PSI-emptiness, $\mathcal{O}(mn + au n^{1+1/ au})$
- 2nd protocol: Many other problems without error in O(mn log log q + τmn^{1+1/τ}) (using techniques from Damgård et al. (TCC'06))

• Other operations on polynomials: gcd is currently costly and many applications.

- Other operations on polynomials: gcd is currently costly and many applications.
- Other applications to cryptographic problems

- Other operations on polynomials: gcd is currently costly and many applications.
- Other applications to cryptographic problems
- Operations on polynomial matrices.

- Other operations on polynomials: gcd is currently costly and many applications.
- Other applications to cryptographic problems
- Operations on polynomial matrices.

Thank you for your attention!