
Secure Computations on Shared Polynomials and Application to Private
Set Operations

Lucas Ottow

Pascal Giorgi1, Fabien Laguillaumie1, Lucas Ottow1,2, Damien Vergnaud2

1 LIRMM, UM, Montpellier, France
2 LIP6, Sorbonne Université, Paris, France

Lucas Ottow Shared polynomials in MPC JC2 2023 1 / 10

Multiparty Computation

1
x1

2
x2

3
x3

4
x4

F (x1, .., x4) =?

General result by Yao (’82)

Lucas Ottow Shared polynomials in MPC JC2 2023 2 / 10

Multiparty Computation

1
x1

2
x2

3
x3

4
x4

F (x1, .., x4) =?

General result by Yao (’82)

Lucas Ottow Shared polynomials in MPC JC2 2023 2 / 10

Secret Sharing in MPC

1
[xi]1

2
[xi]2

3
[xi]3

4
[xi]4

F (x1, .., x4) =?

Sol: share secret input + compute jointly : Beaver89, BGW88.
Costly operation: product of two shared elements
Our goal: less secure multiplications (sec. mult.) + constant round

Lucas Ottow Shared polynomials in MPC JC2 2023 3 / 10

Secret Sharing in MPC

1
[xi]1

2
[xi]2

3
[xi]3

4
[xi]4

F (x1, .., x4) =?

Sol: share secret input + compute jointly : Beaver89, BGW88.

Costly operation: product of two shared elements
Our goal: less secure multiplications (sec. mult.) + constant round

Lucas Ottow Shared polynomials in MPC JC2 2023 3 / 10

Secret Sharing in MPC

1
[xi]1

2
[xi]2

3
[xi]3

4
[xi]4

F (x1, .., x4) =?

Sol: share secret input + compute jointly : Beaver89, BGW88.
Costly operation: product of two shared elements

Our goal: less secure multiplications (sec. mult.) + constant round

Lucas Ottow Shared polynomials in MPC JC2 2023 3 / 10

Secret Sharing in MPC

1
[xi]1

2
[xi]2

3
[xi]3

4
[xi]4

F (x1, .., x4) =?

Sol: share secret input + compute jointly : Beaver89, BGW88.
Costly operation: product of two shared elements
Our goal: less secure multiplications (sec. mult.) + constant round

Lucas Ottow Shared polynomials in MPC JC2 2023 3 / 10

How to compute on shares

Linear sharing over Fq : [x] =⇒ [x]1 + ...+ [x]m = x

Base operations:

Compute [a+ b] given [a] and [b]: [a+ b]j = [a]j + [b]j .
Compute [ca] given [a] and c public: [ca]j = c × [a]j .
Compute [ab] given [a], [b]: requires communications.

Sharing over Fq[X]: f =
∑

fiX
i : ([f0], ..., [fd−1])

shared product?
Naive method: [fg] = ([f0], ..., [fd−1]) ∗ ([g0], ..., [gd−1]).
O(d2) secure multiplication total.
Mohassel, Franklin (PKC’06) do it better: O(d) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 4 / 10

How to compute on shares

Linear sharing over Fq : [x] =⇒ [x]1 + ...+ [x]m = x

Base operations:

Compute [a+ b] given [a] and [b]: [a+ b]j = [a]j + [b]j .
Compute [ca] given [a] and c public: [ca]j = c × [a]j .
Compute [ab] given [a], [b]: requires communications.

Sharing over Fq[X]: f =
∑

fiX
i : ([f0], ..., [fd−1])

shared product?
Naive method: [fg] = ([f0], ..., [fd−1]) ∗ ([g0], ..., [gd−1]).
O(d2) secure multiplication total.
Mohassel, Franklin (PKC’06) do it better: O(d) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 4 / 10

How to compute on shares

Linear sharing over Fq : [x] =⇒ [x]1 + ...+ [x]m = x

Base operations:

Compute [a+ b] given [a] and [b]: [a+ b]j = [a]j + [b]j .
Compute [ca] given [a] and c public: [ca]j = c × [a]j .

Compute [ab] given [a], [b]: requires communications.

Sharing over Fq[X]: f =
∑

fiX
i : ([f0], ..., [fd−1])

shared product?
Naive method: [fg] = ([f0], ..., [fd−1]) ∗ ([g0], ..., [gd−1]).
O(d2) secure multiplication total.
Mohassel, Franklin (PKC’06) do it better: O(d) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 4 / 10

How to compute on shares

Linear sharing over Fq : [x] =⇒ [x]1 + ...+ [x]m = x

Base operations:

Compute [a+ b] given [a] and [b]: [a+ b]j = [a]j + [b]j .
Compute [ca] given [a] and c public: [ca]j = c × [a]j .
Compute [ab] given [a], [b]: requires communications.

Sharing over Fq[X]: f =
∑

fiX
i : ([f0], ..., [fd−1])

shared product?
Naive method: [fg] = ([f0], ..., [fd−1]) ∗ ([g0], ..., [gd−1]).
O(d2) secure multiplication total.
Mohassel, Franklin (PKC’06) do it better: O(d) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 4 / 10

How to compute on shares

Linear sharing over Fq : [x] =⇒ [x]1 + ...+ [x]m = x

Base operations:

Compute [a+ b] given [a] and [b]: [a+ b]j = [a]j + [b]j .
Compute [ca] given [a] and c public: [ca]j = c × [a]j .
Compute [ab] given [a], [b]: requires communications.

Sharing over Fq[X]: f =
∑

fiX
i : ([f0], ..., [fd−1])

shared product?
Naive method: [fg] = ([f0], ..., [fd−1]) ∗ ([g0], ..., [gd−1]).
O(d2) secure multiplication total.
Mohassel, Franklin (PKC’06) do it better: O(d) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 4 / 10

How to compute on shares

Linear sharing over Fq : [x] =⇒ [x]1 + ...+ [x]m = x

Base operations:

Compute [a+ b] given [a] and [b]: [a+ b]j = [a]j + [b]j .
Compute [ca] given [a] and c public: [ca]j = c × [a]j .
Compute [ab] given [a], [b]: requires communications.

Sharing over Fq[X]: f =
∑

fiX
i : ([f0], ..., [fd−1])

shared product?

Naive method: [fg] = ([f0], ..., [fd−1]) ∗ ([g0], ..., [gd−1]).
O(d2) secure multiplication total.
Mohassel, Franklin (PKC’06) do it better: O(d) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 4 / 10

How to compute on shares

Linear sharing over Fq : [x] =⇒ [x]1 + ...+ [x]m = x

Base operations:

Compute [a+ b] given [a] and [b]: [a+ b]j = [a]j + [b]j .
Compute [ca] given [a] and c public: [ca]j = c × [a]j .
Compute [ab] given [a], [b]: requires communications.

Sharing over Fq[X]: f =
∑

fiX
i : ([f0], ..., [fd−1])

shared product?
Naive method: [fg] = ([f0], ..., [fd−1]) ∗ ([g0], ..., [gd−1]).
O(d2) secure multiplication total.

Mohassel, Franklin (PKC’06) do it better: O(d) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 4 / 10

How to compute on shares

Linear sharing over Fq : [x] =⇒ [x]1 + ...+ [x]m = x

Base operations:

Compute [a+ b] given [a] and [b]: [a+ b]j = [a]j + [b]j .
Compute [ca] given [a] and c public: [ca]j = c × [a]j .
Compute [ab] given [a], [b]: requires communications.

Sharing over Fq[X]: f =
∑

fiX
i : ([f0], ..., [fd−1])

shared product?
Naive method: [fg] = ([f0], ..., [fd−1]) ∗ ([g0], ..., [gd−1]).
O(d2) secure multiplication total.
Mohassel, Franklin (PKC’06) do it better: O(d) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 4 / 10

Previous work and our contribution

Mohassel, Franklin (PKC’06): operations on shared polynomial (multiplication, division,
interpolation...)

Our results: (τ is a constant)
Multiplication of n polynomials of degree < d :

O(n2d) → O(τn1+1/τd)

Interpolation and multipoint evaluation of polynomials of degree < d :

O(d2) → O(τd1+1/τ)

Application to privacy preserving set operations.

Lucas Ottow Shared polynomials in MPC JC2 2023 5 / 10

Previous work and our contribution

Mohassel, Franklin (PKC’06): operations on shared polynomial (multiplication, division,
interpolation...)

Our results: (τ is a constant)

Multiplication of n polynomials of degree < d :

O(n2d) → O(τn1+1/τd)

Interpolation and multipoint evaluation of polynomials of degree < d :

O(d2) → O(τd1+1/τ)

Application to privacy preserving set operations.

Lucas Ottow Shared polynomials in MPC JC2 2023 5 / 10

Previous work and our contribution

Mohassel, Franklin (PKC’06): operations on shared polynomial (multiplication, division,
interpolation...)

Our results: (τ is a constant)
Multiplication of n polynomials of degree < d :

O(n2d) → O(τn1+1/τd)

Interpolation and multipoint evaluation of polynomials of degree < d :

O(d2) → O(τd1+1/τ)

Application to privacy preserving set operations.

Lucas Ottow Shared polynomials in MPC JC2 2023 5 / 10

Previous work and our contribution

Mohassel, Franklin (PKC’06): operations on shared polynomial (multiplication, division,
interpolation...)

Our results: (τ is a constant)
Multiplication of n polynomials of degree < d :

O(n2d) → O(τn1+1/τd)

Interpolation and multipoint evaluation of polynomials of degree < d :

O(d2) → O(τd1+1/τ)

Application to privacy preserving set operations.

Lucas Ottow Shared polynomials in MPC JC2 2023 5 / 10

Previous work and our contribution

Mohassel, Franklin (PKC’06): operations on shared polynomial (multiplication, division,
interpolation...)

Our results: (τ is a constant)
Multiplication of n polynomials of degree < d :

O(n2d) → O(τn1+1/τd)

Interpolation and multipoint evaluation of polynomials of degree < d :

O(d2) → O(τd1+1/τ)

Application to privacy preserving set operations.

Lucas Ottow Shared polynomials in MPC JC2 2023 5 / 10

Our method: an example
Op: [f1], ..., [fn] (deg < d) −→ [f1...fn]

Mohassel, Franklin (PKC’06) Binary tree

[f1...fn]

[fn]. . .[f2][f1]

[f1...fn]

...

[fn−1fn]

[fn][fn−1]

...

......

...

...

......

[f1f2]

[f2][f1]

n poly at a time 2 poly at a time
1 ×O(n2d) sec. mult log n ×O(nd) sec. mult

O(1) rounds O(log n) rounds

Lucas Ottow Shared polynomials in MPC JC2 2023 6 / 10

Our method: an example
Op: [f1], ..., [fn] (deg < d) −→ [f1...fn]

Mohassel, Franklin (PKC’06)

Binary tree

[f1...fn]

[fn]. . .[f2][f1]

[f1...fn]

...

[fn−1fn]

[fn][fn−1]

...

......

...

...

......

[f1f2]

[f2][f1]

n poly at a time

2 poly at a time

1 ×O(n2d) sec. mult

log n ×O(nd) sec. mult
O(1) rounds O(log n) rounds

Lucas Ottow Shared polynomials in MPC JC2 2023 6 / 10

Our method: an example
Op: [f1], ..., [fn] (deg < d) −→ [f1...fn]

Mohassel, Franklin (PKC’06) Binary tree

[f1...fn]

[fn]. . .[f2][f1]

[f1...fn]

...

[fn−1fn]

[fn][fn−1]

...

......

...

...

......

[f1f2]

[f2][f1]

n poly at a time 2 poly at a time
1 ×O(n2d) sec. mult log n ×O(nd) sec. mult

O(1) rounds O(log n) rounds

Lucas Ottow Shared polynomials in MPC JC2 2023 6 / 10

Our method: an example
Op: [f1], ..., [fn] (deg < d) −→ [f1...fn]

Mohassel, Franklin (PKC’06) Binary tree

[f1...fn]

[fn]. . .[f2][f1]

[f1...fn]

...

[fn−1fn]

[fn][fn−1]

...

......

...

...

......

[f1f2]

[f2][f1]

n poly at a time 2 poly at a time
1 ×O(n2d) sec. mult log n ×O(nd) sec. mult

O(1) rounds O(log n) rounds
Lucas Ottow Shared polynomials in MPC JC2 2023 6 / 10

Our method: an example

"Squished" tree

[f1...fn]

[fn−
√
n+1...fn]

[fn]...[fn−
√
n+1]

...

.........

[f1...f√n]

[f√n]...[f1]

√
n poly at a time

√
n ×O((

√
n)2d) sec. mult.

O(1) rounds (2 steps)

Generalization: O(τ) rounds and O(τn1+1/τd) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 7 / 10

Our method: an example

"Squished" tree

[f1...fn]

[fn−
√
n+1...fn]

[fn]...[fn−
√
n+1]

...

.........

[f1...f√n]

[f√n]...[f1]

√
n poly at a time

√
n ×O((

√
n)2d) sec. mult.

O(1) rounds (2 steps)

Generalization: O(τ) rounds and O(τn1+1/τd) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 7 / 10

Our method: an example

"Squished" tree

[f1...fn]

[fn−
√
n+1...fn]

[fn]...[fn−
√
n+1]

...

.........

[f1...f√n]

[f√n]...[f1]

√
n poly at a time

√
n ×O((

√
n)2d) sec. mult.

O(1) rounds (2 steps)

Generalization: O(τ) rounds and O(τn1+1/τd) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 7 / 10

Our method: an example

"Squished" tree

[f1...fn]

[fn−
√
n+1...fn]

[fn]...[fn−
√
n+1]

...

.........

[f1...f√n]

[f√n]...[f1]

√
n poly at a time

√
n ×O((

√
n)2d) sec. mult.

O(1) rounds (2 steps)

Generalization: O(τ) rounds and O(τn1+1/τd) sec. mult.

Lucas Ottow Shared polynomials in MPC JC2 2023 7 / 10

Our method: an example

"Squished" tree

[f1...fn]

[fn−
√
n+1...fn]

[fn]...[fn−
√
n+1]

...

.........

[f1...f√n]

[f√n]...[f1]

√
n poly at a time

√
n ×O((

√
n)2d) sec. mult.

O(1) rounds (2 steps)

Generalization: O(τ) rounds and O(τn1+1/τd) sec. mult.
Lucas Ottow Shared polynomials in MPC JC2 2023 7 / 10

Privacy Preserving operations

1
A1

2
A2

3
A3

4
A4

F (A1
⋂

A2
⋂
A3

⋂
A4)?

Example: social network, investigations, ...

Lucas Ottow Shared polynomials in MPC JC2 2023 8 / 10

Privacy Preserving operations

1
A1

2
A2

3
A3

4
A4

F (A1
⋂
A2

⋂
A3

⋂
A4)?

Example: social network, investigations, ...

Lucas Ottow Shared polynomials in MPC JC2 2023 8 / 10

Privacy Preserving operations

1
A1

2
A2

3
A3

4
A4

F (A1
⋂
A2

⋂
A3

⋂
A4)?

Example: social network, investigations, ...

Lucas Ottow Shared polynomials in MPC JC2 2023 8 / 10

Privacy Preserving operations

Main idea: Aj represented as shared polynomials: Pj =
∏

α∈Aj
(X − α).

Use our evaluation techniques.

1st protocol: probabilistic Private Disjointess Test/PSI-emptiness, O(mn + τn1+1/τ)

2nd protocol: Many other problems without error in O(mn log log q + τmn1+1/τ) (using
techniques from Damgård et al. (TCC’06))

Lucas Ottow Shared polynomials in MPC JC2 2023 9 / 10

Privacy Preserving operations

Main idea: Aj represented as shared polynomials: Pj =
∏

α∈Aj
(X − α).

Use our evaluation techniques.

1st protocol: probabilistic Private Disjointess Test/PSI-emptiness, O(mn + τn1+1/τ)

2nd protocol: Many other problems without error in O(mn log log q + τmn1+1/τ) (using
techniques from Damgård et al. (TCC’06))

Lucas Ottow Shared polynomials in MPC JC2 2023 9 / 10

Privacy Preserving operations

Main idea: Aj represented as shared polynomials: Pj =
∏

α∈Aj
(X − α).

Use our evaluation techniques.

1st protocol: probabilistic Private Disjointess Test/PSI-emptiness, O(mn + τn1+1/τ)

2nd protocol: Many other problems without error in O(mn log log q + τmn1+1/τ) (using
techniques from Damgård et al. (TCC’06))

Lucas Ottow Shared polynomials in MPC JC2 2023 9 / 10

Privacy Preserving operations

Main idea: Aj represented as shared polynomials: Pj =
∏

α∈Aj
(X − α).

Use our evaluation techniques.

1st protocol: probabilistic Private Disjointess Test/PSI-emptiness, O(mn + τn1+1/τ)

2nd protocol: Many other problems without error in O(mn log log q + τmn1+1/τ) (using
techniques from Damgård et al. (TCC’06))

Lucas Ottow Shared polynomials in MPC JC2 2023 9 / 10

Future work

Other operations on polynomials: gcd is currently costly and many applications.

Other applications to cryptographic problems

Operations on polynomial matrices.

Thank you for your attention!

Lucas Ottow Shared polynomials in MPC JC2 2023 10 / 10

Future work

Other operations on polynomials: gcd is currently costly and many applications.

Other applications to cryptographic problems

Operations on polynomial matrices.

Thank you for your attention!

Lucas Ottow Shared polynomials in MPC JC2 2023 10 / 10

Future work

Other operations on polynomials: gcd is currently costly and many applications.

Other applications to cryptographic problems

Operations on polynomial matrices.

Thank you for your attention!

Lucas Ottow Shared polynomials in MPC JC2 2023 10 / 10

Future work

Other operations on polynomials: gcd is currently costly and many applications.

Other applications to cryptographic problems

Operations on polynomial matrices.

Thank you for your attention!

Lucas Ottow Shared polynomials in MPC JC2 2023 10 / 10

	Introduction
	Application to cryptographic problems

