Commutative Cryptanalysis Made Practical

Jules Baudrin
jules.baudrin@inria.fr
Inria, Paris, France
Ǵría

Joint work with P. Felke, G. Leander, P. Neumann, L. Perrin \& L. Stennes.

Journées Codage et Cryptographie 2023

Overview of symmetric cryptanalysis

Overview of symmetric cryptanalysis

$$
E(x+\alpha)=E(x)+\beta
$$

Overview of symmetric cryptanalysis

$$
E(x+\alpha)=E(x)+\beta
$$

Overview of symmetric cryptanalysis

Overview of symmetric cryptanalysis

Overview of symmetric cryptanalysis

$$
E \circ T_{\alpha} \circ \rho_{i}(x)=T_{\beta} \circ \rho_{j} \circ E(x)
$$

Overview of symmetric cryptanalysis

$$
E \circ T_{C_{A}} \circ L_{A}(x)=T_{C_{b}} \circ L_{B} \circ E(x) .
$$

where $A(x)=L_{A}(x)+C_{A}, B(x)=L_{B}(x)+C_{B}$

Overview of symmetric cryptanalysis

$$
E \circ T_{C_{A}} \circ L_{A}(x)=T_{C_{b}} \circ L_{B} \circ E(x) .
$$

where $A(x)=L_{A}(x)+C_{A}, B(x)=L_{B}(x)+C_{B}$

A tempting desire of unification

- Mathematically elegant
- Better understanding \& new attacks

A 20-year-old idea [Wagner, FSE 2004]
Commutative diagram cryptanalysis: not so fruitfull ${ }^{1}$ since.

Commutative (diagram) cryptanalysis

Affine commutation with probability 1: theory + practice

A surprising differential interpretation

A few words about the probabilistic case

Commutative cryptanalysis principle

Goal

Find bijective affine A, B st. : $E \circ A=B \circ E$
(for many k, if $\left.E=\left(E_{k}\right)_{k}\right)$.

Commutative cryptanalysis principle

Goal
Find bijective affine A, B st. : $E \circ A=B \circ E$ (for many k, if $\left.E=\left(E_{k}\right)_{k}\right)$.

$$
E=R_{r-1} \circ \cdots \circ R_{1} \circ R_{0}
$$

Commutative cryptanalysis principle

Goal

Find bijective affine A, B st. : $E \circ A=B \circ E$ (for many k, if $\left.E=\left(E_{k}\right)_{k}\right)$.

$$
\begin{aligned}
& E=R_{r-1} \circ \cdots \circ R_{1} \circ R_{0} \\
& x_{0} \xrightarrow{R_{0}} x_{1} \cdots x_{r-1} \xrightarrow{R_{r-1}} E\left(x_{0}\right) \quad(*) \quad y_{0}=A_{0}\left(x_{0}\right) \\
& (*) \downarrow A_{0} \quad \downarrow_{1} \circlearrowleft \quad \downarrow^{A_{r-1}} \quad(*) \downarrow A_{r} \quad(*) \quad E\left(y_{0}\right)=A_{r} \circ E\left(x_{0}\right) \\
& y_{0} \xrightarrow[R_{0}]{\longrightarrow} y_{1} \cdots y_{r-1} \xrightarrow[R_{r-1}]{ } E\left(y_{0}\right) \\
& \Longrightarrow E \circ A_{0}\left(x_{0}\right)=A_{r} \circ E\left(x_{0}\right)
\end{aligned}
$$

Sufficient condition for iterated constructions
There exist A_{0}, \cdots, A_{r} st. for all i, we have $A_{i+1} \circ F_{i}=F_{i} \circ A_{i}$.
\Longrightarrow round-by-round and layer-by-layer studies.

Layer-by-layer probability-1 trail

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A}=\mathcal{A} \circ E \quad$ (case $\mathcal{A}=\mathcal{B}$)
- Parallel mappings: $\mathcal{A}:=A \times A \times \cdots \times A$, where $A: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$.

Layer-by-layer probability-1 trail

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A}=\mathcal{A} \circ E \quad$ (case $\mathcal{A}=\mathcal{B}$)
- Parallel mappings: $\mathcal{A}:=A \times A \times \cdots \times A$, where $A: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$.

S-box layer
$\mathcal{A} \circ S=S \circ \mathcal{A} \Longleftrightarrow A \circ S=S \circ A \Longrightarrow$ self-affine equivalent S-box.
Effective search for small m (4,8 bits).

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A}=\mathcal{A} \circ E \quad$ (case $\mathcal{A}=\mathcal{B}$)
- Parallel mappings: $\mathcal{A}:=A \times A \times \cdots \times A$, where $A: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$.

S-box layer

$\mathcal{A} \circ \mathcal{S}=\mathcal{S} \circ \mathcal{A} \Longleftrightarrow A \circ S=S \circ A \Longrightarrow$ self-affine equivalent S-box.
Effective search for small m (4,8 bits).
Constant addition
$T_{C}(x):=x+c, \quad A(x):=L_{A}(x)+c_{A}$.

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A}=\mathcal{A} \circ E \quad$ (case $\mathcal{A}=\mathcal{B}$)
- Parallel mappings: $\mathcal{A}:=A \times A \times \cdots \times A$, where $A: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$.

S-box layer

$\mathcal{A} \circ \mathcal{S}=\mathcal{S} \circ \mathcal{A} \Longleftrightarrow A \circ S=S \circ A \Longrightarrow$ self-affine equivalent S-box.
Effective search for small m (4,8 bits).
Constant addition
$T_{C}(x):=x+c, \quad A(x):=L_{A}(x)+c_{A}$.

$$
A \circ T_{C}(x)=L_{A}(x)+L_{A}(c)+C_{A} \quad \text { and } \quad T_{C} \circ A(x)=L_{A}(x)+c+c_{A}
$$

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A}=\mathcal{A} \circ E \quad$ (case $\mathcal{A}=\mathcal{B}$)
- Parallel mappings: $\mathcal{A}:=A \times A \times \cdots \times A$, where $A: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$.

S-box layer

$\mathcal{A} \circ \mathcal{S}=\mathcal{S} \circ \mathcal{A} \Longleftrightarrow A \circ S=S \circ A \Longrightarrow$ self-affine equivalent S-box.
Effective search for small m (4,8 bits).
Constant addition
$T_{c}(x):=x+c, \quad A(x):=L_{A}(x)+c_{A}$.
$A \circ T_{C}(x)=L_{A}(x)+L_{A}(c)+C_{A} \quad$ and $\quad T_{C} \circ A(x)=L_{A}(x)+C+C_{A}$
$A \circ T_{c}=T_{c} \circ A \Longleftrightarrow c \in \operatorname{Fix}\left(L_{A}\right)$.

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A}=\mathcal{A} \circ E \quad$ (case $\mathcal{A}=\mathcal{B}$)
- Parallel mappings: $\mathcal{A}:=A \times A \times \cdots \times A$, where $A: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$.

S-box layer

$\mathcal{A} \circ \mathcal{S}=\mathcal{S} \circ \mathcal{A} \Longleftrightarrow A \circ S=S \circ A \Longrightarrow$ self-affine equivalent S-box.
Effective search for small m (4,8 bits).

Constant addition

$T_{C}(x):=x+c, \quad A(x):=L_{A}(x)+c_{A}$.

$$
A \circ T_{C}(x)=L_{A}(x)+L_{A}(c)+C_{A} \quad \text { and } \quad T_{C} \circ A(x)=L_{A}(x)+c+C_{A}
$$

$$
A \circ T_{C}=T_{c} \circ A \Longleftrightarrow c \in \operatorname{Fix}\left(L_{A}\right) .
$$

Linear layer

Let $\mathcal{L}=\left(\mathcal{L}_{i j}\right)$ be an invertible block matrix with m-size blocks $\mathcal{L}_{i j}$.
$\mathcal{L} \circ \mathcal{A}=\mathcal{A} \circ \mathcal{L} \Longleftrightarrow \mathcal{L}_{i j} \circ L_{A}=L_{A} \circ \mathcal{L}_{i j}$ for all i, j and $c_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L})$.

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ...yet weak-key probability-1 (non)-linear approximations [TLS19, Bey 18]
- due to (excessive) lightweightness and sparsity.

The round function

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ...yet weak-key probability-1 (non)-linear approximations [TLS19, Bey 18]
- due to (excessive) lightweightness and sparsity.

The round function

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

S	S	S	S
S	S	S	S
S	S	S	S
S	S	S	S

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ...yet weak-key probability-1 (non)-linear approximations [TLS19, Bey 18]
- due to (excessive) lightweightness and sparsity.

The round function

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ...yet weak-key probability-1 (non)-linear approximations [TLS19, Bey 18]
- due to (excessive) lightweightness and sparsity.

The round function

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ...yet weak-key probability-1 (non)-linear approximations [TLS19, Bey 18]
- due to (excessive) lightweightness and sparsity.

The round function

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

θ	θ	θ	θ
θ	θ	θ	θ
θ	θ	θ	θ
θ	θ	θ	θ
θ	θ	θ	θ
θ	θ	θ	θ
2			

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ...yet weak-key probability-1 (non)-linear approximations [TLS19, Bey 18]
- due to (excessive) lightweightness and sparsity.

The round function

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

Sbox layer

There exists a single non-trivial A^{*} st. $A^{*} \circ S=S \circ A^{*}$.

S	S	S	S
S	S	S	S
S	S	S	S
S	S	S	S

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

Sbox layer

There exists a single non-trivial A^{*} st. $A^{*} \circ S=S \circ A^{*}$.

S	S	S	S
S	S	S	S
S	S	S	S
S	S	S	S

Cells permutation
Parallel mapping \mathcal{A} : free commutation.

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

Sbox layer

There exists a single non-trivial A^{*} st. $A^{*} \circ S=S \circ A^{*}$.

S	S	S	S
S	S	S	S
S	S	S	S
S	S	S	S

Cells permutation

Parallel mapping \mathcal{A} : free commutation.

Linear layer

- $M_{i j} \circ L_{A}=L_{A} \circ M_{i j} \forall i, j$. But $M_{i j} \in\left\{O_{4}, \mathrm{Id}_{4}\right\}$.
- $C_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L})$. But $M(c, c, c, c)=(c, c, c, c)$.

Any \mathcal{A} would work.

$$
p=A K \circ A C \circ M C \circ P C \circ S
$$

Sbox layer

There exists a single non-trivial A^{*} st. $A^{*} \circ S=S \circ A^{*}$.

s	s	s	s
s	s	s	s
s	s	s	s
s	s	s	s

Cells permutation

Parallel mapping \mathcal{A} : free commutation.

Linear layer

- $M_{i j} \circ L_{A}=L_{A} \circ M_{i j} \forall i, j$. But $M_{i j} \in\left\{\mathrm{O}_{4}, \mathrm{Id}_{4}\right\}$.
- $C_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L})$. But $M(c, c, c, c)=(c, c, c, c)$.

Any \mathcal{A} would work.

Constants

$\operatorname{Fix}\left(L_{A^{*}}\right)=\langle 0 \times 2,0 \times 5,0 \times 8\rangle$.
\rightsquigarrow Consider variants with modified constants.

Weak-keys 1-bit condition/nibble $\rightsquigarrow 2^{96}$ out of 2^{128}

The Midori case, part 2

Recap
$\mathcal{A}^{\star} \circ P=P \circ \mathcal{A}^{\star} \quad$ for every layer P (given weak constants/keys).

$$
\mathbb{P}_{x}(\underbrace{\mathcal{A}^{\star} \rightarrow \mathcal{A}^{*} \rightarrow \cdots \rightarrow \mathcal{A}^{*}}_{r \text { times }})=1 \text {, for any } r .
$$

$\mathcal{A}^{\star} \circ E_{k}=E_{k} \circ \mathcal{A}^{\star}$ for 1 out of 2^{32} keys k.

The Midori case, part 2

Recap

$\mathcal{A}^{\star} \circ P=P \circ \mathcal{A}^{\star} \quad$ for every layer P (given weak constants/keys).

$$
\mathbb{P}_{\boldsymbol{x}}(\underbrace{\mathcal{A}^{\star} \rightarrow \mathcal{A}^{\star} \rightarrow \cdots \rightarrow \mathcal{A}^{\star}}_{r \text { times }})=1, \quad \text { for any } r .
$$

$\mathcal{A}^{\star} \circ E_{k}=E_{k} \circ \mathcal{A}^{\star}$ for 1 out of 2^{32} keys k.

$$
\begin{aligned}
& x_{0} \xrightarrow{R_{0}} x_{1} \longrightarrow-\cdots x_{r-1} \xrightarrow{R_{r-1}} E\left(x_{0}\right) \\
& \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}} \\
& \Delta_{i}:=x_{i} \oplus y_{i}=x_{i} \oplus \mathcal{A}^{\star}\left(x_{i}\right) \\
& y_{0} \xrightarrow[R_{0}]{ } y_{1} \longrightarrow-->y_{r-1} \xrightarrow[R_{r-1}]{ } E\left(y_{0}\right)
\end{aligned}
$$

The Midori case, part 2

Recap

$\mathcal{A}^{\star} \circ P=P \circ \mathcal{A}^{\star} \quad$ for every layer P (given weak constants/keys).

$$
\mathbb{P}_{\boldsymbol{x}}(\underbrace{\mathcal{A}^{\star} \rightarrow \mathcal{A}^{\star} \rightarrow \cdots \rightarrow \mathcal{A}^{\star}}_{r \text { times }})=1, \quad \text { for any } r .
$$

$\mathcal{A}^{*} \circ E_{k}=E_{k} \circ \mathcal{A}^{*}$ for 1 out of 2^{32} keys k.

$$
\begin{aligned}
& x_{0} \xrightarrow{R_{0}} x_{1} \longrightarrow-\cdots x_{r-1} \xrightarrow{R_{r-1}} E\left(x_{0}\right) \\
& \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \\
& \Delta_{i}:=x_{i} \oplus y_{i}=x_{i} \oplus \mathcal{A}^{\star}\left(x_{i}\right) \\
& y_{0} \xrightarrow[R_{0}]{ } y_{1} \longrightarrow--\rightarrow y_{r-1} \xrightarrow[R_{r-1}]{ } E\left(y_{0}\right)
\end{aligned}
$$

Surprising differential interpretation
$\delta=0 \mathrm{xf}, \quad \Delta=\delta^{\otimes 16}, \quad \delta^{\prime}=0 \mathrm{xa}, \quad \Delta^{\prime}=\delta^{\prime \otimes 16}$.

The Midori case, part 2

Recap

$\mathcal{A}^{\star} \circ P=P \circ \mathcal{A}^{\star} \quad$ for every layer P (given weak constants/keys).

$$
\mathbb{P}_{\boldsymbol{x}}(\underbrace{\mathcal{A}^{\star} \rightarrow \mathcal{A}^{\star} \rightarrow \cdots \rightarrow \mathcal{A}^{\star}}_{r \text { times }})=1, \quad \text { for any } r .
$$

$\mathcal{A}^{*} \circ E_{k}=E_{k} \circ \mathcal{A}^{*}$ for 1 out of 2^{32} keys k.

$$
\begin{aligned}
& x_{0} \xrightarrow{R_{0}} x_{1} \longrightarrow-\cdots x_{r-1} \xrightarrow{R_{r-1}} E\left(x_{0}\right) \\
& \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \\
& \Delta_{i}:=x_{i} \oplus y_{i}=x_{i} \oplus \mathcal{A}^{\star}\left(x_{i}\right) \\
& y_{0} \xrightarrow[R_{0}]{ } y_{1} \cdots y_{r-1} \xrightarrow[R_{r-1}]{ } E\left(y_{0}\right)
\end{aligned}
$$

Surprising differential interpretation
$\delta=0 \mathrm{xf}, \quad \Delta=\delta^{\otimes 16}, \quad \delta^{\prime}=0 \mathrm{xa}, \quad \Delta^{\prime}=\delta^{\prime \otimes 16}$.

- $A^{*}: \quad \mathbb{P}_{\boldsymbol{x}}\left(A^{*}(x)=x+0 \times \mathrm{xf}\right)=\frac{1}{2} \quad \mathbb{P}_{\boldsymbol{x}}\left(A^{*}(x)=x+0 \mathrm{xa}\right)=\frac{1}{2}$.
- $\mathcal{A}^{*}: \quad \forall x, \quad x+\mathcal{A}^{*}(x) \in\left\{\delta, \delta^{\prime}\right\}^{16}$

The Midori case, part 2

Recap

$\mathcal{A}^{\star} \circ P=P \circ \mathcal{A}^{\star} \quad$ for every layer P (given weak constants/keys).

$$
\mathbb{P}_{\boldsymbol{x}}(\underbrace{\mathcal{A}^{\star} \rightarrow \mathcal{A}^{\star} \rightarrow \cdots \rightarrow \mathcal{A}^{\star}}_{r \text { times }})=1, \quad \text { for any } r .
$$

$\mathcal{A}^{*} \circ E_{k}=E_{k} \circ \mathcal{A}^{*}$ for 1 out of 2^{32} keys k.

$$
\begin{aligned}
& x_{0} \xrightarrow{R_{0}} x_{1} \longrightarrow-\cdots x_{r-1} \xrightarrow{R_{r-1}} E\left(x_{0}\right) \\
& \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \quad \downarrow_{\mathcal{A}^{*}} \\
& \Delta_{i}:=x_{i} \oplus y_{i}=x_{i} \oplus \mathcal{A}^{\star}\left(x_{i}\right) \\
& y_{0} \xrightarrow[R_{0}]{ } y_{1} \longrightarrow--\rightarrow y_{r-1} \xrightarrow[R_{r-1}]{ } E\left(y_{0}\right)
\end{aligned}
$$

Surprising differential interpretation
$\delta=0 \mathrm{xf}, \quad \Delta=\delta^{\otimes 16}, \quad \delta^{\prime}=0 \mathrm{xa}, \quad \Delta^{\prime}=\delta^{\prime \otimes 16}$.

- $A^{*}: \quad \mathbb{P}_{\boldsymbol{x}}\left(A^{*}(x)=x+0 \times f\right)=\frac{1}{2} \quad \mathbb{P}_{\boldsymbol{x}}\left(A^{*}(x)=x+0 \mathrm{xa}\right)=\frac{1}{2}$.
- $\mathcal{A}^{*}: \quad \forall x, \quad x+\mathcal{A}^{*}(x) \in\left\{\delta, \delta^{\prime}\right\}^{16}$

$$
\Delta \xrightarrow{2^{-16}} \mathcal{A}^{\star} \rightarrow \cdots \xrightarrow{1} \mathcal{A}^{\star} \xrightarrow{2^{-16}} \Delta
$$

Fixed-key Differential interpretation

Recap

If k is weak (fixed-key setting):

- $\mathbb{P}_{\boldsymbol{x}}\left(\Delta \rightarrow \Delta^{\prime}\right)=2^{-32}$ for any $\Delta, \Delta^{\prime} \in\left\{\delta, \delta^{\prime}\right\}^{16}$.
- $\mathbb{P}_{\boldsymbol{x}}\left(\Delta \rightarrow\left\{\delta, \delta^{\prime}\right\}^{16}\right)=2^{-16}$ for any $\Delta \in\left\{\delta, \delta^{\prime}\right\}^{16}$.
- For any number of rounds, activate all S-boxes.

Fixed-key Differential interpretation

Recap

If k is weak (fixed-key setting):

- $\mathbb{P}_{\boldsymbol{x}}\left(\Delta \rightarrow \Delta^{\prime}\right)=2^{-32}$ for any $\Delta, \Delta^{\prime} \in\left\{\delta, \delta^{\prime}\right\}^{16}$.
- $\mathbb{P}_{\boldsymbol{x}}\left(\Delta \rightarrow\left\{\delta, \delta^{\prime}\right\}^{16}\right)=2^{-16}$ for any $\Delta \in\left\{\delta, \delta^{\prime}\right\}^{16}$.
- For any number of rounds, activate all S-boxes.

Standard case : quite low $\mathbb{P}_{\boldsymbol{k}, \boldsymbol{x}}$

Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Fixed-key Differential interpretation

Recap

If k is weak (fixed-key setting):

- $\mathbb{P}_{\boldsymbol{x}}\left(\Delta \rightarrow \Delta^{\prime}\right)=2^{-32}$ for any $\Delta, \Delta^{\prime} \in\left\{\delta, \delta^{\prime}\right\}^{16}$.
- $\mathbb{P}_{\boldsymbol{x}}\left(\Delta \rightarrow\left\{\delta, \delta^{\prime}\right\}^{16}\right)=2^{-16}$ for any $\Delta \in\left\{\delta, \delta^{\prime}\right\}^{16}$.
- For any number of rounds, activate all S-boxes.

Standard case : quite low $\mathbb{P}_{\boldsymbol{k}, \boldsymbol{x}}$

Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean 16].

This work: high $\mathbb{P}_{\boldsymbol{x}}$ for some k

$\square 0 x f$
\square Oxf or Oxa
\square No diff.

Probabilistic commutation with different layers
Let $p \in[0,1]$.

- $A \circ T_{k} \stackrel{P}{=} T_{k} \circ B: \quad$ well-understood.
- $A \circ L \stackrel{p}{=} L \circ B: \quad$ manageable for parallel mappings.
- $A \circ S \stackrel{P}{=} S \circ B:$ 4-bit mappings can be listed exhaustively.

Probabilistic commutation with different layers
Let $p \in[0,1]$.

- $A \circ T_{k} \stackrel{p}{=} T_{k} \circ B$: well-understood.
- $A \circ L \stackrel{P}{=} L \circ B$: manageable for parallel mappings.
- $A \circ S \stackrel{p}{=} S \circ B$: 4-bit mappings can be listed exhaustively.

In practice

- Trade-offs: number-of-weak-keys VS probability-of-success.
- Independence of rounds must be supposed...
- . . . but often too optimistic.

Conclusion

Further studies

- Algorithm for probabilistic affine-equivalence.
- Study the dependencies.
- Hybridization: e.g. commutative-differential?

Standard case : quite low $\mathbb{P}_{\boldsymbol{k}, \boldsymbol{x}}$

Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean 16].

This work: high $\mathbb{P}_{\boldsymbol{x}}$ for some k

$\square 0 x f$
\square No or $0 x a$
\square Niff.

