Commutative Cryptanalysis Made Practical

Jules Baudrin

jules.baudrin@inria.fr

Inria, Paris, France

nía-

Joint work with P. Felke, G. Leander, P. Neumann, L. Perrin & L. Stennes.

Journées Codage et Cryptographie 2023

$$E(x + \alpha) = E(x) + \beta$$

where $A(x) = L_A(x) + c_A$, $B(x) = L_B(x) + c_B$

where $A(x) = L_A(x) + c_A$, $B(x) = L_B(x) + c_B$

A tempting desire of unification

- Mathematically elegant
- Better understanding & new attacks

A 20-year-old idea [Wagner, FSE 2004] Commutative diagram cryptanalysis: not so fruitful¹ since.

¹to the best of our knowledge...

Commutative (diagram) cryptanalysis

In this talk

Affine commutation with probability 1: theory + practice

A surprising differential interpretation

A few words about the probabilistic case

Goal

Find **bijective affine** A, B st. : $E \circ A = B \circ E$ (for many k, if $E = (E_k)_k$).

Goal

Find **bijective affine** A, B st. : $E \circ A = B \circ E$ (for many k, if $E = (E_k)_k$).

 $E = R_{r-1} \circ \cdots \circ R_1 \circ R_0$

Goal

Find **bijective affine** A, B st. : $E \circ A = B \circ E$ (for many k, if $E = (E_k)_k$).

$$E = R_{r-1} \circ \cdots \circ R_1 \circ R_0$$

Sufficient condition for **iterated** constructions There exist A_0, \dots, A_r st. for all *i*, we have $A_{i+1} \circ F_i = F_i \circ A_i$.

 \implies round-by-round and layer-by-layer studies.

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $\mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \iff \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $\mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \iff \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Constant addition

 $T_c(x) := x + c, \quad A(x) := L_A(x) + c_A.$

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $\mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \iff \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \implies \text{self-affine equivalent S-box.}$ Effective search for small *m* (4, 8 bits).

Constant addition

$$T_c(x) := x + c, \quad A(x) := L_A(x) + c_A.$$

 $A \circ T_c(x) = L_A(x) + L_A(c) + c_A$ and $T_c \circ A(x) = L_A(x) + c + c_A$

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $\mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \iff \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \implies \text{self-affine equivalent S-box.}$ Effective search for small *m* (4, 8 bits).

Constant addition

$$T_c(x) := x + c, \quad A(x) := L_A(x) + c_A.$$

 $A \circ T_{c}(x) = L_{A}(x) + L_{A}(c) + c_{A} \quad \text{and} \quad T_{c} \circ A(x) = L_{A}(x) + c + c_{A}$ $A \circ T_{c} = T_{c} \circ A \iff \boxed{c \in \operatorname{Fix}(L_{A})}.$

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $\mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \iff \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \implies \text{self-affine equivalent S-box.}$ Effective search for small *m* (4, 8 bits).

Constant addition

$$T_c(x) := x + c, \quad A(x) := L_A(x) + c_A.$$

$$A \circ T_{c}(x) = L_{A}(x) + L_{A}(c) + c_{A} \quad \text{and} \quad T_{c} \circ A(x) = L_{A}(x) + c + c_{A}$$
$$A \circ T_{c} = T_{c} \circ A \iff \boxed{c \in \operatorname{Fix}(L_{A})}.$$

Linear layer

Let $\mathcal{L} = (\mathcal{L}_{ij})$ be an invertible block matrix with *m*-size blocks \mathcal{L}_{ij} . $\mathcal{L} \circ \mathcal{A} = \mathcal{A} \circ \mathcal{L} \iff \mathcal{L}_{ij} \circ \mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} \circ \mathcal{L}_{ij}$ for all i, j and $c_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L})$.

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

A (not so) standard SPN

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

 $p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

S	S	s	s
S	S	S	S
S	S	S	S
S	S	S	S

 $p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

Cells permutation

Parallel mapping \mathcal{A} : free commutation.

S	S	S	s
S	S	S	S
S	S	S	S
S	S	S	s

			σ(i)
1			5
	-	σ	

 $p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

Cells permutation

Parallel mapping \mathcal{A} : free commutation.

Linear layer

- $M_{ij} \circ L_A = L_A \circ M_{ij} \forall i, j.$ But $M_{ij} \in \{0_4, \mathrm{Id}_4\}.$
- $C_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L})$. But M(c, c, c, c) = (c, c, c, c).

Any \mathcal{A} would work.

S	S	s	S
S	S	S	S
S	S	S	S
S	S	s	s

			σ(i)
1			5
	-	σ	

м	М	М	м
---	---	---	---

 $p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

Cells permutation

Parallel mapping \mathcal{A} : free commutation.

Linear layer

- $M_{ij} \circ L_A = L_A \circ M_{ij} \forall i, j.$ But $M_{ij} \in \{0_4, \mathrm{Id}_4\}.$
- $C_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L})$. But M(c, c, c, c) = (c, c, c, c).

Any \mathcal{A} would work.

Constants

Fix(L_{A^*}) = $\langle 0x2, 0x5, 0x8 \rangle$. \rightsquigarrow Consider variants with modified constants.

Weak-keys 1-bit condition/nibble $\rightarrow 2^{96}$ out of 2^{128}

S	S	s	S
S	S	S	S
S	S	S	S
S	S	S	S

Recap $\mathcal{A}^* \circ P = P \circ \mathcal{A}^*$ for every layer P (given weak constants/keys). $\mathbb{P}_{\mathbf{x}}(\underbrace{\mathcal{A}^* \to \mathcal{A}^* \to \dots \to \mathcal{A}^*}_{r \text{ times}}) = 1$, for any r. $\mathcal{A}^* \circ E_k = E_k \circ \mathcal{A}^*$ for 1 out of 2^{32} keys k.

9/12

Recap

 $\mathcal{A}^* \circ P = P \circ \mathcal{A}^*$ for every layer P (given weak constants/keys).

$$\mathbb{P}_{\mathbf{x}}(\underbrace{\mathcal{A}^{\star} \to \mathcal{A}^{\star} \to \cdots \to \mathcal{A}^{\star}}_{r \text{ times}}) = 1, \text{ for any } r.$$

 $\mathcal{A}^{\star} \circ E_k = E_k \circ \mathcal{A}^{\star}$ for 1 out of 2³² keys k.

 $\Delta_i := x_i \oplus y_i = x_i \oplus \mathcal{A}^*(x_i)$

Recap

 $\mathcal{A}^* \circ P = P \circ \mathcal{A}^*$ for every layer P (given weak constants/keys).

$$\mathbb{P}_{\mathbf{x}}(\underbrace{\mathcal{A}^{\star} \to \mathcal{A}^{\star} \to \cdots \to \mathcal{A}^{\star}}_{r \text{ times}}) = 1, \text{ for any } r.$$

 $\mathcal{A}^{\star} \circ E_k = E_k \circ \mathcal{A}^{\star}$ for 1 out of 2³² keys k.

$$\begin{array}{cccc} x_{0} & \xrightarrow{R_{0}} & x_{1} & \cdots \rightarrow & x_{r-1} & \xrightarrow{R_{r-1}} & E(x_{0}) \\ \downarrow^{\mathcal{A}^{*}} & \downarrow^{\mathcal{A}^{*}} & \downarrow^{\mathcal{A}^{*}} & \downarrow^{\mathcal{A}^{*}} \\ y_{0} & \xrightarrow{R_{0}} & y_{1} & \cdots \rightarrow & y_{r-1} & \xrightarrow{R_{r-1}} & E(y_{0}) \end{array} \qquad \qquad \Delta_{i} := \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=$$

$$\Delta_i := X_i \oplus Y_i = X_i \oplus \mathcal{A}^*(X_i)$$

Surprising differential interpretation

 $\delta = \texttt{Oxf}, \quad \Delta = \delta^{\otimes \texttt{16}}, \quad \delta' = \texttt{Oxa}, \quad \Delta' = \delta'^{\otimes \texttt{16}}.$

Recap

 $\mathcal{A}^* \circ P = P \circ \mathcal{A}^*$ for every layer P (given weak constants/keys).

$$\mathbb{P}_{\mathbf{x}}(\underbrace{\mathcal{A}^{\star} \to \mathcal{A}^{\star} \to \cdots \to \mathcal{A}^{\star}}_{r \text{ times}}) = 1, \text{ for any } r.$$

 $\mathcal{A}^{\star} \circ E_k = E_k \circ \mathcal{A}^{\star}$ for 1 out of 2^{32} keys k.

Surprising differential interpretation

 $\delta = \texttt{Oxf}, \quad \Delta = \delta^{\otimes \texttt{16}}, \quad \delta' = \texttt{Oxa}, \quad \Delta' = \delta'^{\otimes \texttt{16}}.$

- A^* : $\mathbb{P}_{\mathbf{X}}(A^*(x) = x + 0 \mathrm{xf}) = \frac{1}{2}$ $\mathbb{P}_{\mathbf{X}}(A^*(x) = x + 0 \mathrm{xa}) = \frac{1}{2}$.

-
$$\mathcal{A}^*$$
: $\forall x, x + \mathcal{A}^*(x) \in \{\delta, \delta'\}^{16}$

Recap

 $\mathcal{A}^* \circ P = P \circ \mathcal{A}^*$ for every layer P (given weak constants/keys).

$$\mathbb{P}_{\mathbf{x}}(\underbrace{\mathcal{A}^{\star} \to \mathcal{A}^{\star} \to \cdots \to \mathcal{A}^{\star}}_{r \text{ times}}) = 1, \text{ for any } r.$$

 $\mathcal{A}^{\star} \circ E_k = E_k \circ \mathcal{A}^{\star}$ for 1 out of 2^{32} keys k.

Surprising differential interpretation $\delta = 0xf, \quad \Delta = \delta^{\otimes 16}, \quad \delta' = 0xa, \quad \Delta' = \delta'^{\otimes 16}.$ $- A^*: \quad \mathbb{P}_{\mathbf{x}} \left(A^*(\mathbf{x}) = \mathbf{x} + 0xf \right) = \frac{1}{2} \quad \mathbb{P}_{\mathbf{x}} \left(A^*(\mathbf{x}) = \mathbf{x} + 0xa \right) = \frac{1}{2}.$ $- \mathcal{A}^*: \quad \forall \mathbf{x}, \quad \mathbf{x} + \mathcal{A}^*(\mathbf{x}) \in \{\delta, \delta'\}^{16}$ $\Delta \xrightarrow{2^{-16}} \mathcal{A}^* \xrightarrow{1} \cdots \xrightarrow{1} \mathcal{A}^* \xrightarrow{2^{-16}} \Delta$

Fixed-key Differential interpretation

Recap

If k is weak (fixed-key setting):

- $\mathbb{P}_{\mathbf{x}}(\Delta \to \Delta') = 2^{-32}$ for any $\Delta, \Delta' \in \{\delta, \delta'\}^{16}$.
- $\mathbb{P}_{\mathbf{x}}\left(\Delta \to \{\delta, \delta'\}^{16}\right) = 2^{-16}$ for any $\Delta \in \{\delta, \delta'\}^{16}$.
- For any number of rounds, activate all S-boxes.

Fixed-key Differential interpretation

Recap

If k is weak (fixed-key setting):

- $\mathbb{P}_{\mathbf{X}}(\Delta \to \Delta') = 2^{-32}$ for any $\Delta, \Delta' \in \{\delta, \delta'\}^{16}$.
- $\mathbb{P}_{\mathbf{x}}\left(\Delta \to \{\delta, \delta'\}^{16}\right) = 2^{-16} \text{ for any } \Delta \in \{\delta, \delta'\}^{16}.$
- For any number of rounds, activate all S-boxes.

Standard case : quite low $\mathbb{P}_{k,x}$

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Fixed-key Differential interpretation

Recap

If k is weak (fixed-key setting):

- $\mathbb{P}_{\mathbf{X}}(\Delta \to \Delta') = 2^{-32}$ for any $\Delta, \Delta' \in \{\delta, \delta'\}^{16}$.
- $\mathbb{P}_{\mathbf{x}}\left(\Delta \to \{\delta, \delta'\}^{16}\right) = 2^{-16} \text{ for any } \Delta \in \{\delta, \delta'\}^{16}.$
- For any number of rounds, activate all S-boxes.

Standard case : quite low $\mathbb{P}_{k,x}$

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16]. This work: high $\mathbb{P}_{\mathbf{X}}$ for some k

What about probabilistic commutative trails?

Probabilistic commutation with different layers Let $p \in [0, 1]$.

- $A \circ T_k \stackrel{p}{=} T_k \circ B$: well-understood.
- $A \circ L \stackrel{p}{=} L \circ B$: manageable for parallel mappings.
- $A \circ S \stackrel{p}{=} S \circ B$: 4-bit mappings can be listed exhaustively.

What about probabilistic commutative trails?

Probabilistic commutation with different layers Let $p \in [0, 1]$.

- $A \circ T_k \stackrel{p}{=} T_k \circ B$: well-understood.
- $A \circ L \stackrel{p}{=} L \circ B$: manageable for parallel mappings.
- $A \circ S \stackrel{P}{=} S \circ B$: 4-bit mappings can be listed exhaustively.

In practice

- Trade-offs: number-of-weak-keys VS probability-of-success.
- Independence of rounds must be supposed ...
- ... but often too optimistic.

Conclusion

Further studies

- Algorithm for probabilistic affine-equivalence.
- Study the dependencies.

Standard case : quite low $\mathbb{P}_{k,x}$

- Hybridization: e.g. commutative-differential?

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16]. This work: high $\mathbb{P}_{\mathbf{x}}$ for some k

