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Overview of symmetric cryptanalysis

E ◦ TcA ◦ LA(x) = Tcb ◦ LB ◦ E(x).
K
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where A(x) = LA(x) + cA,B(x) = LB(x) + cB
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Overview of symmetric cryptanalysis

E ◦ TcA ◦ LA(x) = Tcb ◦ LB ◦ E(x).
K

x yETcALA

K

x yE TcBLB

where A(x) = LA(x) + cA,B(x) = LB(x) + cB

A tempting desire of unification
- Mathematically elegant
- Better understanding & new attacks

A 20-year-old idea [Wagner, FSE 2004]
Commutative diagram cryptanalysis: not so fruitful1 since.

1to the best of our knowledge...

≃
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Commutative (diagram) cryptanalysis

X Y

X ′ Y ′

πi

E

πo

E′
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Linear cryptanalysis

Any commutants [FSE:Wagner04]

Bijective affine commutants [This work]

Differentials π = Id+ δ,
Rotational-(XOR) π = ρ+ δ
Linear commutants π = L+ 0 . . .
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In this talk

Affine commutation with probability 1: theory + practice

A surprising differential interpretation

A few words about the probabilistic case
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Commutative cryptanalysis principle

Goal
Find bijective affine A,B st. : E ◦ A = B ◦ E (for many k, if E = (Ek)k).

E = Rr−1 ◦ · · · ◦ R1 ◦ R0

x0 x1 xr−1 E(x0)

y0 y1 yr−1 E(y0)

A0(⋆)

R0

A1

Rr−1

Ar−1 Ar(⋆)

R0 Rr−1

⟲
(⋆) y0 = A0(x0)
(⋆) E(y0) = Ar ◦ E(x0)
=⇒ E ◦ A0(x0) = Ar ◦ E(x0)

Sufficient condition for iterated constructions
There exist A0, · · · ,Ar st. for all i, we have Ai+1 ◦ Fi = Fi ◦ Ai .

=⇒ round-by-round and layer-by-layer studies.
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Layer-by-layer probability-1 trail

Simplified setting for this presentation
- Commutation only: E ◦ A = A ◦ E (case A = B)
- Parallel mappings: A := A× A× · · · × A, where A : Fm

2 → Fm
2 .

S-box layer

A ◦ S = S ◦ A ⇐⇒ A ◦ S = S ◦ A =⇒ self-affine equivalent S-box.
Effective search for small m (4, 8 bits).

Constant addition
Tc(x) := x + c, A(x) := LA(x) + cA.

A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).
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A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).

Linear layer
Let L = (Lij) be an invertible block matrix with m-size blocks Lij .
L ◦ A = A ◦ L ⇐⇒ Lij ◦ LA = LA ◦ Lij for all i, j and cA ∈ Fix(L).
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Midori [AC:BBISHA15] in a nutshell

A (not so) standard SPN
- AES-like,
- Standard wide-trail analysis,
- . . . yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

p = AK ◦ AC ◦MC ◦ PC ◦ S
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The Midori case

p = AK ◦ AC ◦MC ◦ PC ◦ S

Sbox layer
There exists a single non-trivial A⋆ st. A⋆ ◦ S = S ◦ A⋆. S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Cells permutation
Parallel mapping A : free commutation.

i

σ(i)

σ

Linear layer
- Mij ◦ LA = LA ◦Mij ∀ i, j. But Mij ∈ {04, Id4}.
- cA ∈ Fix(L). But M(c,c,c,c) = (c,c,c,c).

Any A would work.

M M M M

Constants
Fix(LA⋆) = ⟨0x2, 0x5, 0x8⟩.
⇝ Consider variants with modified constants.

Weak-keys 1-bit condition/nibble⇝ 296 out of 2128
⊕
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⊕

⊕

⊕
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The Midori case, part 2

Recap
A⋆ ◦ P = P ◦ A⋆ for every layer P (given weak constants/keys).

Px(A⋆ → A⋆ → · · · → A⋆︸ ︷︷ ︸
r times

) = 1, for any r .

A⋆ ◦ Ek = Ek ◦ A⋆ for 1 out of 232 keys k.

x0 x1 xr−1 E(x0)

y0 y1 yr−1 E(y0)
A⋆

R0

A⋆

Rr−1

A⋆ A⋆

R0 Rr−1

∆i := xi⊕yi = xi⊕A⋆(xi)

Surprising differential interpretation
δ = 0xf, ∆ = δ⊗16, δ′ = 0xa, ∆′ = δ′⊗16.

- A⋆: Px (A⋆(x) = x + 0xf) = 1
2 Px (A⋆(x) = x + 0xa) = 1

2 .
- A⋆: ∀ x , x +A⋆(x) ∈ {δ, δ′}16

∆
2−16
−−−→ A⋆ 1−→ · · · 1−→ A⋆ 2−16

−−−→ ∆
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Fixed-key Differential interpretation

Recap
If k is weak (fixed-key setting):
- Px(∆ → ∆′) = 2−32 for any ∆,∆′ ∈ {δ, δ′}16.

- Px
(
∆ → {δ, δ′}16

)
= 2−16 for any ∆ ∈ {δ, δ′}16.

- For any number of rounds, activate all S-boxes.

Standard case : quite low Pk,x

∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2

KS

k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

This work: high Px for some k

∆IN

KS

k0
AK
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Fixed-key Differential interpretation

Recap
If k is weak (fixed-key setting):
- Px(∆ → ∆′) = 2−32 for any ∆,∆′ ∈ {δ, δ′}16.

- Px
(
∆ → {δ, δ′}16

)
= 2−16 for any ∆ ∈ {δ, δ′}16.

- For any number of rounds, activate all S-boxes.

Standard case : quite low Pk,x
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What about probabilistic commutative trails?

Probabilistic commutation with different layers
Let p ∈ [0, 1].
- A ◦ Tk

p
= Tk ◦ B : well-understood.

- A ◦ L p
= L ◦ B : manageable for parallel mappings.

- A ◦ S p
= S ◦ B : 4-bit mappings can be listed exhaustively.

In practice
- Trade-offs: number-of-weak-keys VS probability-of-success.
- Independence of rounds must be supposed . . .
- . . .but often too optimistic.
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Conclusion

Further studies
- Algorithm for probabilistic affine-equivalence.
- Study the dependencies.
- Hybridization: e.g. commutative-differential ?
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