OBLIVIOUS LWE SAMPLING IN QUANTUM POLYNOMIAL TIME

Presenter: Pouria Fallahpour¹ Joint work with Thomas Debris-Alazard² and Damien Stehlé³

1 ENS Lyon
 2 Laboratoire LIX, École Polytechnique
 3 ENS Lyon & Cryptolab

Sampling hard instances of lattices

Short Integer Solution (SIS) [Ajtai 96]:

 $\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m \times n})$

Given A, find a short vector x such that $A^T x = 0 \mod q$

Sampling hard instances of lattices

Short Integer Solution (SIS) [Ajtai 96]:

 $\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m imes n})$

Given A, find a short vector x such that $\mathbf{A}^T \mathbf{x} = \mathbf{0} \mod q$

Learning With Errors (LWE) [Regev 05]:

$$\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m \times n}) \quad \mathbf{s} \sim \mathcal{U}(\mathbb{Z}_q^n) \qquad \mathbf{e} \sim \chi_{\sigma}^{\otimes m}$$

Given
$$A, b = As + e \mod q$$
, find (s, e)

Pouria Fallahpour

Sampling hard instances of lattices

Short Integer Solution (SIS) [Ajtai 96]:

 $\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m imes n})$

Given A, find a short vector x such that $A^T x = 0 \mod q$

Learning With Errors (LWE) [Regev 05]:

$$\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m imes n}) \quad \mathbf{s} \sim \mathcal{U}(\mathbb{Z}_q^n) \qquad \mathbf{e} \sim \chi_{\sigma}^{\otimes m}$$

Given
$$\mathbf{A}, \mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$$
, find (\mathbf{s}, \mathbf{e})

Pouria Fallahpour

SIS:

LWE:

 $\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m \times n})$ Given A

 $\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m imes n}) \quad \mathbf{s} \sim \mathcal{U}(\mathbb{Z}_q^n) \qquad \mathbf{e} \sim \chi_{\sigma}^{\otimes m}$ Given \mathbf{A} and $\mathbf{b} = \mathbf{As} + \mathbf{e}$

SIS:

LWE:

 $\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m imes n})$ Given \mathbf{A}

 $\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m imes n}) \quad \mathbf{s} \sim \mathcal{U}(\mathbb{Z}_q^n) \qquad \mathbf{e} \sim \chi_{\sigma}^{\otimes m}$ Given \mathbf{A} and $\mathbf{b} = \mathbf{As} + \mathbf{e}$

Don't know the secret

Witness-Obliviousness

Planting the secret

Witness-Awareness

SIS:

LWE:

 $\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m imes n})$ Given \mathbf{A}

 $\mathbf{A} \sim \mathcal{U}(\mathbb{Z}_q^{m imes n}) \quad \mathbf{s} \sim \mathcal{U}(\mathbb{Z}_q^n) \qquad \mathbf{e} \sim \chi_{\sigma}^{\otimes m}$ Given \mathbf{A} and $\mathbf{b} = \mathbf{As} + \mathbf{e}$

Don't know the secret

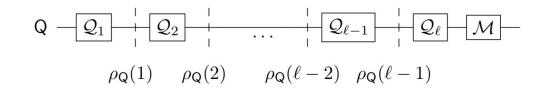
Witness-Obliviousness

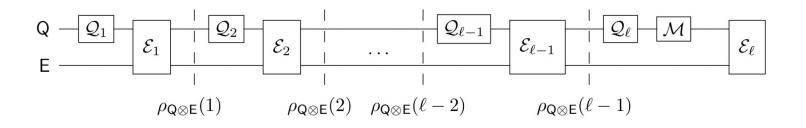
Lattice Knowledge Assumption: if \mathcal{A} is an LWE sampler, it is witness-aware.

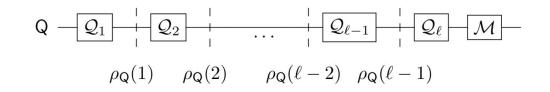
Our contribution: A quantum witness-oblivious LWE sampler

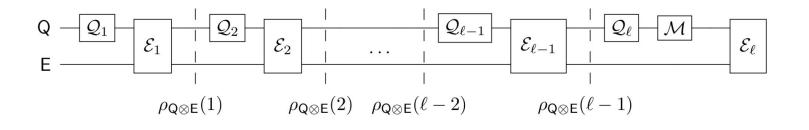
Several cryptographic protocols are built based on the lattice knowledge assumption [LMS11,GMNO18,ISW21].

OBLIVIOUSNESS









For all steps it must hold that: $\operatorname{Tr}_{\mathsf{E}}(
ho_{\mathsf{Q}\otimes\mathsf{E}}(i))=
ho_{\mathsf{Q}}(i)$

Pouria Fallahpour

THE OBLIVIOUS SAMPLER

LWE state [Regev 05, SSTX 09]

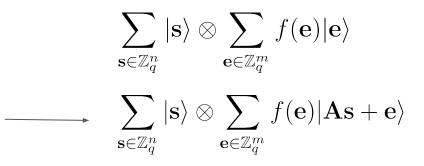
Idea: build uniform superposition of LWE samples, then measure

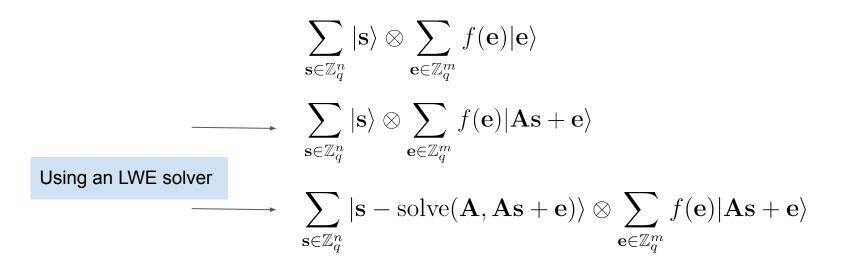
$$|\text{LWE}\rangle_{n,q,f}^m \propto \sum_{\mathbf{s}\in\mathbb{Z}_q^n} \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(\mathbf{e})|\mathbf{As}+\mathbf{e}\rangle \quad \text{with} \quad |f|^2 := (\chi_\sigma)^{\otimes m}$$

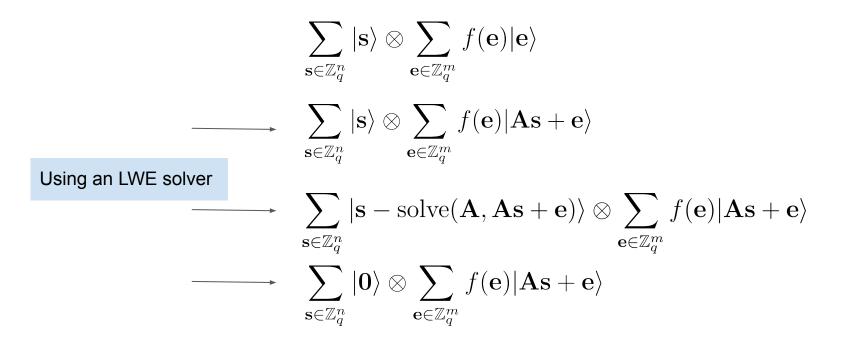
LWE state [Regev 05, SSTX 09]

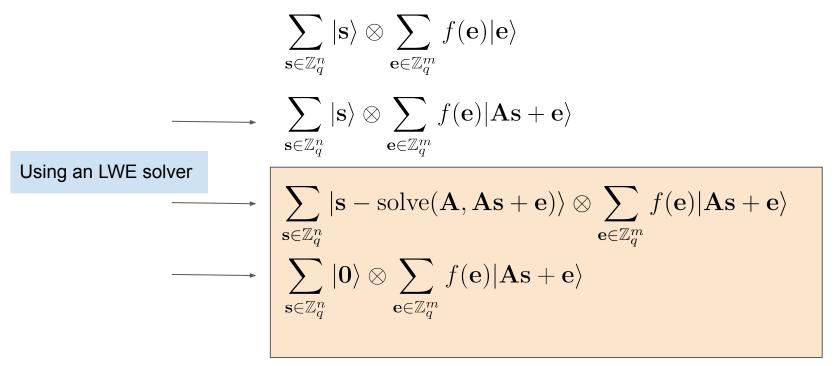
Idea: build uniform superposition of LWE samples, then measure

Pouria Fallahpour









Not doable in polynomial time

TWO INGREDIENTS

$$\sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(\mathbf{e})|\mathbf{e}\rangle \qquad |f|^2 := (\chi_{\sigma})^{\otimes m}$$

$$\rightarrow \sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(\mathbf{e})|\mathbf{A}\mathbf{s}+\mathbf{e}\rangle$$

 $\mathbf{e} \in \mathbb{Z}_{q}^{m}$

$$\sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(\mathbf{e})|\mathbf{e}\rangle \qquad |f|^2 := (\chi_{\sigma})^{\otimes m} = |f_1|^2 \otimes \cdots \otimes |f_m|^2$$

$$\rightarrow \sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(\mathbf{e})|\mathbf{A}\mathbf{s}+\mathbf{e}\rangle$$

$$= \sum |\mathbf{s}\rangle \otimes \sum f_1(e_1)f_2(e_2)\cdots f_m(e_m)|\mathbf{a}_1^T\mathbf{s}+e_1\rangle \otimes |\mathbf{a}_2^T\mathbf{s}+e_2\rangle \otimes \cdots \otimes |\mathbf{a}_m^T\mathbf{s}+e_m\rangle$$

 $\mathbf{s} \in \mathbb{Z}_q^n$

$$\sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(\mathbf{e})|\mathbf{e}\rangle \qquad |f|^2 := (\chi_{\sigma})^{\otimes m} = |f|^2 \otimes \cdots \otimes |f|^2$$

$$\rightarrow \sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(\mathbf{e})|\mathbf{A}\mathbf{s}+\mathbf{e}\rangle$$

$$= \sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(e_1)f(e_2)\cdots f(e_m)|\mathbf{a}_1^T\mathbf{s}+e_1\rangle \otimes |\mathbf{a}_2^T\mathbf{s}+e_2\rangle \otimes \cdots \otimes |\mathbf{a}_m^T\mathbf{s}+e_m\rangle$$

$$\sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(\mathbf{e})|\mathbf{e}\rangle \qquad |f|^2 := (\chi_{\sigma})^{\otimes m}$$

$$\rightarrow \sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(\mathbf{e})|\mathbf{A}\mathbf{s}+\mathbf{e}\rangle$$

$$= \sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes \sum_{\mathbf{e}\in\mathbb{Z}_q^m} f(e_1)f(e_2)\cdots f(e_m)|\mathbf{a}_1^T\mathbf{s}+e_1\rangle \otimes |\mathbf{a}_2^T\mathbf{s}+e_2\rangle \otimes \cdots \otimes |\mathbf{a}_m^T\mathbf{s}+e_m\rangle$$

$$= \sum_{\mathbf{s}\in\mathbb{Z}_q^n} |\mathbf{s}\rangle \otimes |\psi_{\mathbf{a}_1^T\mathbf{s}}\rangle \otimes \cdots \otimes |\psi_{\mathbf{a}_m^T\mathbf{s}}\rangle$$

$$|\psi_j\rangle := \sum_{e\in\mathbb{Z}_q} f(e)|j+e\rangle$$

First ingredient: unambiguous extraction

Unambiguous Quantum State Discrimination:

Given $|\psi_j
angle$ for unknown j

Find j without error or return \perp in the case of failure

First ingredient: unambiguous extraction

Unambiguous Quantum State Discrimination:

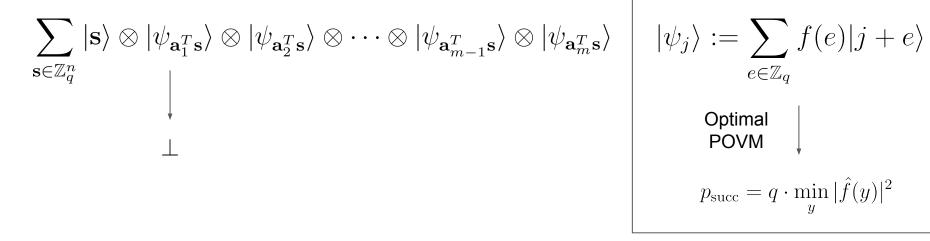
Given $|\psi_j
angle$ for unknown j

Find j without error or return \perp in the case of failure

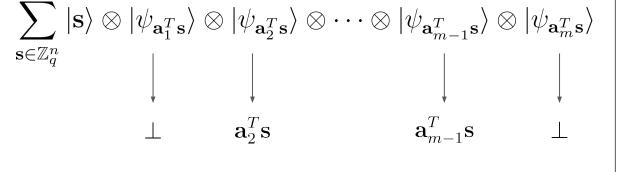
$$\begin{split} & \underset{POVM}{|\psi_j\rangle} := \sum_{e \in \mathbb{Z}_q} f(e) |j+e\rangle & \underbrace{POVM}_{\text{[CB98]}} & p_{\text{succ}} = q \cdot \min_y |\hat{f}(y)|^2 \end{split}$$

$$\sum_{\mathbf{s}\in\mathbb{Z}_q^n}|\mathbf{s}\rangle\otimes|\psi_{\mathbf{a}_1^T\mathbf{s}}\rangle\otimes|\psi_{\mathbf{a}_2^T\mathbf{s}}\rangle\otimes\cdots\otimes|\psi_{\mathbf{a}_{m-1}^T\mathbf{s}}\rangle\otimes|\psi_{\mathbf{a}_m^T\mathbf{s}}\rangle$$

$$\begin{split} |\psi_{j}\rangle &:= \sum_{e \in \mathbb{Z}_{q}} f(e) |j + e\rangle \\ & \text{Optimal}_{\text{POVM}} \\ & \downarrow \\ p_{\text{succ}} &= q \cdot \min_{y} |\hat{f}(y)|^{2} \end{split}$$

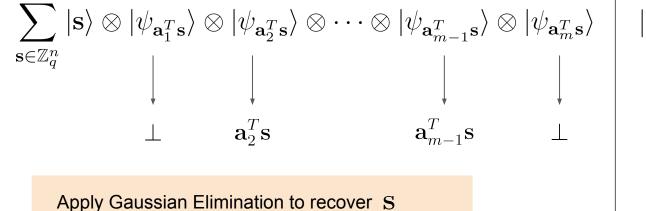


$$\begin{split} |\psi_{j}\rangle &:= \sum_{e \in \mathbb{Z}_{q}} f(e) |j + e\rangle \\ & \text{Optimal} \\ \text{POVM} \\ \\ p_{\text{succ}} &= q \cdot \min_{y} |\hat{f}(y)|^{2} \end{split}$$



$$ert \psi_{j}
angle := \sum_{e \in \mathbb{Z}_{q}} f(e) ert j + e
angle$$

Optimal
POVM ert
 $p_{ ext{succ}} = q \cdot \min_{y} ert \hat{f}(y) ert^{2}$



$$ert \psi_{j}
angle := \sum_{e \in \mathbb{Z}_{q}} f(e) ert j + e
angle$$

Optimal
POVM
 $p_{
m succ} = q \cdot \min_{y} ert \hat{f}(y) ert^{2}$

ENS Lyon

Pouria Fallahpour

ENS Lyon

Apply Gaussian Elimination to recover S

Require
$$m \gtrsim \frac{n}{p_{\mathrm{succ}}} = \frac{n}{q} \cdot \frac{1}{\min_y |\hat{f}(y)|^2}$$

$$\sum_{\mathbf{s}\in\mathbb{Z}_{q}^{n}} |\mathbf{s}\rangle \otimes |\psi_{\mathbf{a}_{1}^{T}\mathbf{s}}\rangle \otimes |\psi_{\mathbf{a}_{2}^{T}\mathbf{s}}\rangle \otimes \cdots \otimes |\psi_{\mathbf{a}_{m-1}^{T}\mathbf{s}}\rangle \otimes |\psi_{\mathbf{a}_{m}^{T}\mathbf{s}}\rangle | |\mathbf{s}\rangle | |\mathbf{s}\rangle \otimes |\psi_{\mathbf{a}_{m}^{T}\mathbf{s}}\rangle | |\mathbf{s}\rangle | |\mathbf{s}\rangle \otimes |\psi_{\mathbf{a}_{m}^{T}\mathbf{s}}\rangle | |\mathbf{s}\rangle \otimes |\psi_{\mathbf{a}_{m}^{T}\mathbf{s}}\rangle | |\mathbf{s}\rangle | |\mathbf{s}\rangle \otimes |\psi_{\mathbf{a}_{m}^{T}\mathbf{s}}\rangle | |\mathbf{s}\rangle | |\mathbf{s}\rangle | |\mathbf{s}\rangle \otimes |\psi_{\mathbf{a}_{m}^{T}\mathbf{s}}\rangle | |\mathbf{s}\rangle | |\mathbf{$$

$$\begin{aligned} |\psi_{j}\rangle &:= \sum_{e \in \mathbb{Z}_{q}} f(e)|j+e\rangle \\ & \text{Optimal} \\ & \text{POVM} \\ \\ p_{\text{succ}} &= q \cdot \min_{y} |\hat{f}(y)|^{2} \end{aligned}$$

Require
$$m \gtrsim \frac{n}{p_{\text{succ}}} = \frac{n}{q} \cdot \frac{1}{\min_y |\hat{f}(y)|^2}$$

What we actually do: Naimark's dilation.

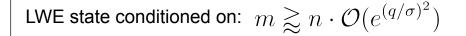
7 N

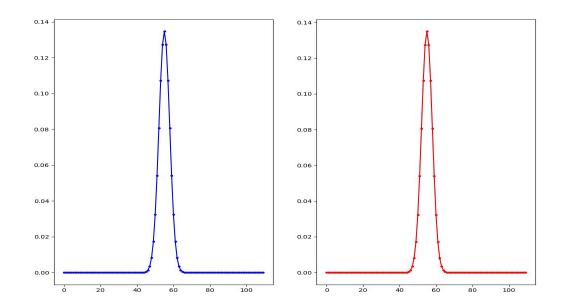
١

Summary of the first ingredient

LWE state conditioned on:
$$m \gtrsim \frac{n}{q} \cdot \frac{1}{\min_y |\hat{f}(y)|^2}$$
 where $|f|^2 := \chi_\sigma$ (Gaussian)

Second ingredient: the issue of Gaussian





Modulus q: 110 Standard deviation σ : 10.5 Blue: $|f|^2$ Red: $|\hat{f}|^2$

ENS Lyon

Pouria Fallahpour

Second ingredient: adding phases

idea: add minus one phases

 $\sum \sum (-1)^{\theta(\mathbf{e})} f(\mathbf{e}) |\mathbf{As} + \mathbf{e}\rangle$ $\mathbf{s} \in \mathbb{Z}_q^n \mathbf{e} \in \mathbb{Z}_q^m$

Second ingredient: adding phases

idea: add minus one phases

$$\implies \sum_{\mathbf{s}\in\mathbb{Z}_q^n}\sum_{\mathbf{e}\in\mathbb{Z}_q^m}(-1)^{\theta(\mathbf{e})}f(\mathbf{e})|\mathbf{A}\mathbf{s}+\mathbf{e}\rangle$$

New condition:
$$m \gtrapprox n \cdot \sigma$$

Wrapping up

Theorem: We construct a quantum witness-oblivious LWE sampler when the standard deviation is polynomially large.

Conclusion

- Obliviously sampling instances of LWE
 - New techniques and definitions: robust definition of obliviousness, (-1) phases
 - Maybe a new example of quantum vs classical gap.

• Breaking the security of several proof systems

Thank you!

