Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals

Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé and Benjamin Wesolowski

INRIA Lyon, ENS de Lyon

- New reduction: \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP.
- Application: new distribution of NTRU instances with difficulty based on wc-ideal-SVP.

- New reduction: \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP.
- Application: new distribution of NTRU instances with difficulty based on wc-ideal-SVP.

To appear in the proceedings of **TCC 2023**. Available at: https://eprint.iacr.org/2023/1370

Definitions

Lattices

A 2-dimensional lattice

Definition

For $\mathbf{b}_1, \ldots, \mathbf{b}_n \in \mathbb{Z}^n$ linearly independent, the lattice spanned by the basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$ is $\mathcal{L} = \sum_i \mathbb{Z} \cdot \mathbf{b}_i \subset \mathbb{R}^n$. It is discrete and has a shortest non-zero vector.

Finding any short non-zero vector in \mathcal{L} given $(\mathbf{b}_i)_i$ is hard in general.

Joël Felderhoff

Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals

 $K = \mathbb{Q}[X]/(X^n + 1), \mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^r$ (K a number field, \mathcal{O}_K its ring of integers).

The size of an element $a \in K$ is $||a|| = \left(\sum_{i} |a_i|^2\right)^{1/2}$.

The size of an element is the ℓ_2 -norm of its Minkowski embedding.

 $\mathcal{K} = \mathbb{Q}[X]/(X^n + 1), \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[X]/(X^n + 1) \text{ for } n = 2^r$ (\mathcal{K} a number field, $\mathcal{O}_{\mathcal{K}}$ its ring of integers).

The size of an element $a \in K$ is $||a|| = \left(\sum_{i} |a_i|^2\right)^{1/2}$.

The size of an element is the ℓ_2 -norm of its Minkowski embedding.

Definition (Ideal)

A set $\mathfrak{a} \subseteq K$ is an ideal if it is discrete, stable by addition and by multiplication by any element of \mathcal{O}_{K} . It is then a lattice.

Norm of an ideal: $\mathcal{N}(I) = \operatorname{Vol}(I) / \operatorname{Vol}(\mathcal{O}_{\mathcal{K}}) \in \mathbb{Z}$.

Let $\mathfrak{a}, \mathfrak{b}$ ideals of K, and $a \in K$.

Principal ideal

 $(a) = \{x \cdot a, x \in \mathcal{O}_K\}.$

Multiplication and inverse

$$\mathfrak{a} \cdot \mathfrak{b} = \{\sum_{i} a_{i} \cdot b_{i}\}, \mathfrak{a}^{-1} = \{x \in \mathcal{K}, x \cdot \mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}}\}.$$

We have that $\mathfrak{a} \cdot \mathfrak{a}^{-1} = \mathcal{O}_{\mathcal{K}}.$

Prime ideals

An ideal $\mathfrak p$ is prime $(\mathfrak p\in \mathcal P)$ if

$$\mathfrak{p} = \mathfrak{a} \cdot \mathfrak{b} \Rightarrow \mathfrak{a} = \mathcal{O}_K \text{ or } \mathfrak{b} = \mathcal{O}_K$$

Definition (ideal-HSVP $_{\gamma}$)

Given an ideal $\mathfrak{a} \subseteq K$, find $x \in \mathfrak{a} \setminus \{0\}$ with $||x|| \leq \gamma \cdot \mathcal{N}(\mathfrak{a})^{1/d}$.

Ideal lattices are **not typical lattices**. E.g., they verify $\lambda_1(I) \approx \lambda_d(I)$.

¹[CDPR16, CDW17, PHS19]

Definition (ideal-HSVP $_{\gamma}$)

Given an ideal $\mathfrak{a} \subseteq K$, find $x \in \mathfrak{a} \setminus \{0\}$ with $||x|| \leq \gamma \cdot \mathcal{N}(\mathfrak{a})^{1/d}$.

Ideal lattices are **not typical lattices**. E.g., they verify $\lambda_1(I) \approx \lambda_d(I)$.

- There are specifics attacks on ideal lattices¹.
- Ideals are the simplest examples of module lattices (KYBER, DILITHIUM).
- ideal-HSVP is related to other structured lattice problems (Module-SVP, NTRU, RingLWE).

¹[CDPR16, CDW17, PHS19]

Why small ideal lattices?

Typical lattice basis: $O(d^2)$ integers vs ideal lattice basis: O(d) integers.²

²Images from [Qua14]

Joël Felderhoff

Why small ideal lattices?

Typical lattice basis: $O(d^2)$ integers vs ideal lattice basis: O(d) integers.²

Bitsize of a typical element of \mathfrak{a} is $\log(\mathcal{N}(\mathfrak{a}))$. \rightarrow We want $\mathcal{N}(\mathfrak{a}) \approx \operatorname{poly}(d)^d$ in order to have small keys.

²Images from [Qua14]

Joël Felderhoff

Why small ideal lattices?

Typical lattice basis: $O(d^2)$ integers vs ideal lattice basis: O(d) integers.²

Bitsize of a typical element of \mathfrak{a} is $\log(\mathcal{N}(\mathfrak{a}))$. \rightarrow We want $\mathcal{N}(\mathfrak{a}) \approx \operatorname{poly}(d)^d$ in order to have small keys.

Also: faster algorithms.

Joël Felderhoff

²Images from [Qua14]

Worst-case: Solve \mathcal{P} for **all** instance of \mathcal{P} (for the worst instance). **Average-case for** D: Solve \mathcal{P} for $I \leftarrow D$ with non-negligible probability.

For cryptography, we are interested in Average-case hardness.

Worst-case: Solve \mathcal{P} for **all** instance of \mathcal{P} (for the worst instance). **Average-case for** D: Solve \mathcal{P} for $I \leftarrow D$ with non-negligible probability.

For cryptography, we are interested in Average-case hardness.

Here we show an Average-case to Average-case reduction.

Prior works on ideal-HSVP

Random version of ideal-HSVP

 \mathcal{W} -ideal-HSVP: solving ideal-HSVP for a uniform element of \mathcal{W} .

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

Random version of ideal-HSVP

 $\operatorname{\mathcal{W}\text{-}ideal\text{-}HSVP}$: solving $\operatorname{ideal\text{-}HSVP}$ for a uniform element of $\operatorname{\mathcal{W}}$.

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

We show that \mathcal{P}^{-1} -ideal-HSVP reduces to \mathcal{P} -ideal-HSVP.

Two reasons

- 1. [Gen09]: ideal-HSVP (for all ideals) reduces to \mathcal{P}^{-1} -ideal-HSVP.
- 2. The NTRU reduction from [PS21] works for integral ideals.

Sampling ideals

- 1: Let q a uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let
$$I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$$
.

- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

- 1: Let q a uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let
$$I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$$
.

- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Output: An ideal $\mathfrak b$

- 1: Let q a uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let
$$I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$$
.

- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

- 1: Let q a uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

- 1: Let q a uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let
$$I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$$
.

- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

- 1: Let q a uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let
$$I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$$
.

- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

 $\textbf{Output:} \ \, \text{An ideal} \ \, \mathfrak{b}$

- 1: Let q a uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let
$$I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$$
.

- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Outputs uniform integral ideals of norm $\approx r^d$ for $r = 2^{O(d)}$. \Rightarrow Too big for our use-cases!

Algorithm 2.2 ArakelovSampling' algorithm

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let
$$I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$$

- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 2.2 ArakelovSampling' algorithm

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 2.2 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let
$$I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$$

- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 2.2 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let
$$I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$$

- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 2.2 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 2.2 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 2.2 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 2.2 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 2.2 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$ and $y = x^{-1} \cdot s_I$.

Algorithm 2.2 ArakelovSampling' algorithm

Output: An ideal \mathfrak{b} and $y \in \mathfrak{b}^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$ and $y = x^{-1} \cdot s_I$.

Drawback

The element $y = x^{-1} \cdot s_l$ can be very large compared to $\mathcal{N}(\mathfrak{b}^{-1})^{1/d}$.

Algorithm 2.2 ArakelovSampling' algorithm

Output: An ideal \mathfrak{b} and $y \in \mathfrak{b}^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$ and $y = x^{-1} \cdot s_I$.

Drawback

The element $y = x^{-1} \cdot s_l$ can be very large compared to $\mathcal{N}(\mathfrak{b}^{-1})^{1/d}$. \rightarrow This happens if x is **unbalanced**

Some details on ArakelovSampling

The set $\mathcal{B}_{\infty}(r)$

- 1. We pick q uniform prime.
- 2. We sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap \mathfrak{q})$.
- 3. We return $\mathfrak{b} = x \cdot \mathfrak{q}^{-1}$.

Sufficient conditions for uniform b

- 1. $|\mathcal{B}_{\infty}(r) \bigcap \mathfrak{q}|$ does not depend on \mathfrak{q} (too much).
- 2. Vol $(Log(\mathcal{B}_{\infty}(r)) \cap \{\sum x_i = t\})$ is \approx constant for $t \in [A, B]$.

Some details on ArakelovSampling

The set $\mathcal{B}_{\infty}(r)$

- 1. We pick q uniform prime.
- 2. We sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap \mathfrak{q})$.
- 3. We return $\mathfrak{b} = x \cdot \mathfrak{q}^{-1}$.

Sufficient conditions for uniform b

- 1. $|\mathcal{B}_{\infty}(r) \bigcap \mathfrak{q}|$ does not depend on \mathfrak{q} (too much).
- 2. Vol $(Log(\mathcal{B}_{\infty}(r)) \cap \{\sum x_i = t\})$ is \approx constant for $t \in [A, B]$.

Drawback

There are $x \in \mathcal{B}_{\infty}(r)$ with $||x^{-1}||$ very large.

Main contribution: \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP

We generalize the approach of [BDPW20, Boe22]:

Algorithm 3.1 SampleIdeal $_{\mathcal{B}_{A,B}}$ algorithm

Input: a an ideal, $s_a \in a \text{ small}$, $\mathcal{B}_{A,B} \subset K_{\mathbb{R}}$ a well chosen set. Output: (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$. 1: Let $(\mathfrak{q}, v_{\mathfrak{q}}) \leftarrow \text{SampleWithTrap}(\cdot)$. (Quantum) 2: Sample ζ and u. 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ 4: Let $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_a \in I$. 5: Sample $x \leftrightarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I . 6: Return $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}}) \qquad \triangleright y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 3.1 SampleIdeal $B_{A,B}$ algorithm

Input: a an ideal, $s_a \in a \text{ small}$, $\mathcal{B}_{A,B} \subset K_{\mathbb{R}}$ a well chosen set. Output: (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$. 1: Let $(\mathfrak{q}, v_{\mathfrak{q}}) \leftarrow \text{SampleWithTrap}(\cdot)$. (Quantum) 2: Sample ζ and u. 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ 4: Let $s_I = \exp(\zeta) \cdot u \cdot \mathfrak{s}_{\mathfrak{q}} \cdot \mathfrak{s}_a \in I$. 5: Sample $x \leftrightarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I . 6: Return $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}}) \qquad \triangleright y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 3.1 SampleIdeal $B_{A,B}$ algorithm

Input: a an ideal, $s_a \in a \text{ small}$, $\mathcal{B}_{A,B} \subset K_{\mathbb{R}}$ a well chosen set. Output: (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$. 1: Let $(\mathfrak{q}, v_{\mathfrak{q}}) \leftarrow \text{SampleWithTrap}(\cdot)$. (Quantum) 2: Sample ζ and u. 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ 4: Let $s_I = \exp(\zeta) \cdot u \cdot \mathfrak{s}_{\mathfrak{q}} \cdot \mathfrak{s}_a \in I$. 5: Sample $x \leftrightarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I . 6: Return $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot \mathfrak{s}_I \cdot v_{\mathfrak{q}}) \qquad \triangleright y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 3.1 SampleIdeal $_{\mathcal{B}_{A,B}}$ algorithm

Input: a an ideal, $s_a \in a \text{ small}$, $\mathcal{B}_{A,B} \subset K_{\mathbb{R}}$ a well chosen set. Output: (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$. 1: Let $(\mathfrak{q}, v_{\mathfrak{q}}) \leftarrow \text{SampleWithTrap}(\cdot)$. (Quantum) 2: Sample ζ and u. 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ 4: Let $s_I = \exp(\zeta) \cdot u \cdot \mathfrak{s}_{\mathfrak{q}} \cdot \mathfrak{s}_a \in I$. 5: Sample $x \leftrightarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I . 6: Return $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}}) \qquad \triangleright y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 3.1 SampleIdeal $B_{A,B}$ algorithm

Input: a an ideal, $s_a \in a \text{ small}$, $\mathcal{B}_{A,B} \subset K_{\mathbb{R}}$ a well chosen set. Output: (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$. 1: Let $(\mathfrak{q}, v_{\mathfrak{q}}) \leftarrow \text{SampleWithTrap}(\cdot)$. (Quantum) 2: Sample ζ and u. 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ 4: Let $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_a \in I$. 5: Sample $x \leftrightarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I . 6: Return $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}}) \qquad \triangleright y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 3.1 SampleIdeal $B_{A,B}$ algorithm

Input: a an ideal, $s_a \in a \text{ small}$, $\mathcal{B}_{A,B} \subset K_{\mathbb{R}}$ a well chosen set. Output: (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$. 1: Let $(\mathfrak{q}, v_{\mathfrak{q}}) \leftarrow \text{SampleWithTrap}(\cdot)$. (Quantum) 2: Sample ζ and u. 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ 4: Let $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_a \in I$. 5: Sample $x \leftrightarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I . 6: Return $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}}) \qquad \triangleright y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 3.1 SampleIdeal $B_{A,B}$ algorithm

Input: a an ideal, $s_a \in a \text{ small}$, $\mathcal{B}_{A,B} \subset K_{\mathbb{R}}$ a well chosen set. Output: (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$. 1: Let $(\mathfrak{q}, v_{\mathfrak{q}}) \leftarrow \text{SampleWithTrap}(\cdot)$. (Quantum) 2: Sample ζ and u. 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ 4: Let $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_a \in I$. 5: Sample $x \leftrightarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I . 6: Return $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}}) \qquad \triangleright y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$

Theorem

Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{\mathcal{B}_{A,B}}(\mathfrak{a}, s_{\mathfrak{a}}, A, B)$. If $\mathcal{B}_{A,B}$ is well chosen then \mathfrak{b} is almost uniform in $\mathcal{I}_{A,B}$ and y is small.

- 1. $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ does not depend on \mathfrak{a} (too much).
- 2. Vol $(Log(\mathcal{B}_{A,B}) \cap \{\sum x_i = t\})$ is constant for $t \in [A, B]$.
- 3. Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$\frac{1}{\eta} \le \frac{x_i}{\prod_j x_j^{1/d}} \le \eta.$$

This is the same as $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \dots, 1)$.

- 1. $|\mathcal{B}_{A,B} \cap \mathfrak{a}|$ does not depend on \mathfrak{a} (too much).
- 2. Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- 3. Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$\frac{1}{\eta} \le \frac{x_i}{\prod_j x_j^{1/d}} \le \eta.$$

This is the same as $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \ldots, 1)$.

- 1. $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ does not depend on \mathfrak{a} (too much).
- 2. Vol $(Log(\mathcal{B}_{A,B}) \cap \{\sum x_i = t\})$ is constant for $t \in [A, B]$.
- 3. Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$\frac{1}{\eta} \le \frac{x_i}{\prod_j x_j^{1/d}} \le \eta.$$

This is the same as $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \ldots, 1)$.

- 1. $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ does not depend on \mathfrak{a} (too much).
- 2. Vol $(Log(\mathcal{B}_{A,B}) \cap \{\sum x_i = t\})$ is constant for $t \in [A, B]$.
- 3. Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$\frac{1}{\eta} \le \frac{x_i}{\prod_j x_j^{1/d}} \le \eta.$$

This is the same as $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \dots, 1)$.

In [BDPW20]: $\mathcal{B}_{\infty}(r)$: verifies items 1 and 2 but not 3!

- 1. $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ does not depend on \mathfrak{a} (too much).
- 2. Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- 3. Its elements are balanced.

- 1. $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ does not depend on \mathfrak{a} (too much).
- 2. Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- 3. Its elements are balanced.

$$\mathcal{B}_{A,B}^\eta = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \; \; |\mathcal{N}(x)| \in [A,B], \; \; \left\| \mathsf{Log}\left(rac{x}{\mathcal{N}(x)^{1/d}}
ight)
ight\|_2 \leq \mathsf{log}(\eta)
ight\}$$

- 1. $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ does not depend on \mathfrak{a} (too much).
- 2. Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- 3. Its elements are balanced.

$$\mathcal{B}_{A,B}^\eta = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \; \; |\mathcal{N}(x)| \in [A,B], \; \; \left\| \log\left(rac{x}{\mathcal{N}(x)^{1/d}}
ight)
ight\|_2 \leq \log(\eta)
ight\}$$

- 1. $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ does not depend on \mathfrak{a} (too much).
- 2. Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- 3. Its elements are balanced.

$$\mathcal{B}_{A,B}^\eta = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \ |\mathcal{N}(x)| \in [A,B], \ \left\| \log\left(rac{x}{\mathcal{N}(x)^{1/d}}
ight)
ight\|_2 \leq \log(\eta)
ight\}$$

- 1. $|\mathcal{B}_{A,B} \cap \mathfrak{a}|$ does not depend on \mathfrak{a} (too much).
- 2. Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- 3. Its elements are balanced.

$$\mathcal{B}_{A,B}^\eta = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \ |\mathcal{N}(x)| \in [A,B], \ \left\| \log\left(rac{x}{\mathcal{N}(x)^{1/d}}
ight)
ight\|_2 \leq \log(\eta)
ight\}$$

Input: An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. Output: $x \in \mathfrak{p}^{-1} \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{A,B}(\mathfrak{p}, s_{\mathfrak{p}})$. $\triangleright ||y||$ small 3: if \mathfrak{b} is not prime. then 4: Fail. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. $\triangleright ||s_{\mathfrak{b}}||$ small 6: Return $\underbrace{s_{\mathfrak{b}}}_{\in \mathfrak{b}} \cdot \underbrace{y}_{\in (\mathfrak{b} \cdot \mathfrak{p})^{-1}} \in \mathfrak{p}^{-1}$. $\triangleright ||y \cdot s_{\mathfrak{b}}||$ small

Input: An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. Output: $x \in \mathfrak{p}^{-1} \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{A,B}(\mathfrak{p}, s_{\mathfrak{p}})$. $\triangleright ||y||$ small 3: if \mathfrak{b} is not prime. then 4: Fail. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. $\triangleright ||s_{\mathfrak{b}}||$ small 6: Return $\underbrace{s_{\mathfrak{b}}}_{\in \mathfrak{b}} \cdot \underbrace{y}_{\in (\mathfrak{b} \cdot \mathfrak{p})^{-1}} \in \mathfrak{p}^{-1}$. $\triangleright ||y \cdot s_{\mathfrak{b}}||$ small

Input: An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B].Output: $x \in \mathfrak{p}^{-1} \setminus \{0\}$ small.1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$.2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{A,B}(\mathfrak{p}, s_{\mathfrak{p}})$.3: if \mathfrak{b} is not prime. then4: Fail.5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$.6: Return $\underbrace{s_{\mathfrak{b}}}_{\in \mathfrak{b}} \cdot \underbrace{y}_{\in (\mathfrak{b}, \mathfrak{p})^{-1}}^{I} \in \mathfrak{p}^{-1}$.

Input: An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. Output: $x \in \mathfrak{p}^{-1} \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{A,B}(\mathfrak{p}, s_{\mathfrak{p}})$. $\triangleright ||y||$ small 3: if \mathfrak{b} is not prime. then 4: Fail. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. $\triangleright ||s_{\mathfrak{b}}||$ small 6: Return $\underbrace{s_{\mathfrak{b}}}_{\in \mathfrak{b}} \cdot \underbrace{y}_{\in (\mathfrak{b} \cdot \mathfrak{p})^{-1}} \in \mathfrak{p}^{-1}$. $\triangleright ||y \cdot s_{\mathfrak{b}}||$ small

Input: An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. Output: $x \in \mathfrak{p}^{-1} \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{A,B}(\mathfrak{p}, s_{\mathfrak{p}})$. $\triangleright ||y||$ small 3: if \mathfrak{b} is not prime. then 4: Fail. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. $\triangleright ||s_{\mathfrak{b}}||$ small 6: Return $\underbrace{s_{\mathfrak{b}}}_{\in \mathfrak{b}} \cdot \underbrace{y}_{\in (\mathfrak{b},\mathfrak{p})^{-1}} \in \mathfrak{p}^{-1}$. $\triangleright ||y \cdot s_{\mathfrak{b}}||$ small

Input: An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. Output: $x \in \mathfrak{p}^{-1} \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{A,B}(\mathfrak{p}, s_{\mathfrak{p}})$. $\triangleright ||y||$ small 3: if \mathfrak{b} is not prime. then 4: Fail. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. $\triangleright ||s_{\mathfrak{b}}||$ small 6: Return $s_{\mathfrak{b}} \cdot \underbrace{y}_{\in (\mathfrak{b} \cdot \mathfrak{p})^{-1}} \in \mathfrak{p}^{-1}$. $\triangleright ||y \cdot s_{\mathfrak{b}}||$ small

Wrapping up

Contributions:

- Solving ideal-HSVP on average over inverses of primes is at least as hard as solving ideal-HSVP on average over primes.
- This gives an NTRU instance distribution with hardness based on ideal-HSVP for all ideals.

Contributions:

- Solving ideal-HSVP on average over inverses of primes is at least as hard as solving ideal-HSVP on average over primes.
- This gives an NTRU instance distribution with hardness based on ideal-HSVP for all ideals.

Open problems:

- Can we have such reduction without factoring?
- Can we get rid of the cost dependancy in ρ_K ?
- Can we have more precise approximates for the running time?

Any question?

References i

- K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski, Random self-reducibility of Ideal-SVP via Arakelov random walks, CRYPTO, 2020.
- K. Boudgoust, E. Gachon, and A. Pellet-Mary, Some easy instances of Ideal-SVP and implications on the partial Vandermonde knapsack problem, CRYPTO, 2022.
- K. de Boer, *Random walks on arakelov class groups.*, Ph.D. thesis, Leiden University, 2022, Available on request from the author.
- R. Cramer, L. Ducas, C. Peikert, and O. Regev, *Recovering short generators of principal ideals in cyclotomic rings*, EUROCRYPT 2016, 2016.
- R. Cramer, L. Ducas, and B. Wesolowski, Short Stickelberger class relations and application to Ideal-SVP, EUROCRYPT, 2017.

- C. Gentry, *A fully homomorphic encryption scheme*, Ph.D. thesis, Stanford University, 2009.
- A. Pellet-Mary, G. Hanrot, and D. Stehlé, *Approx-SVP in ideal lattices with pre-processing*, EUROCRYPT, 2019.
- A. Pellet-Mary and D. Stehlé, On the hardness of the NTRU problem, ASIACRYPT, 2021.
- Quartl, Matrix pattern qtl3, 2014, File: Matrix pattern qtl3.svg.