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INRIA Lyon, ENS de Lyon



Contributions

• New reduction: P−1-ideal-SVP to P-ideal-SVP.

• Application: new distribution of NTRU instances with difficulty

based on wc-ideal-SVP.

To appear in the proceedings of TCC 2023. Available at:

https://eprint.iacr.org/2023/1370
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Definitions



Lattices

A 2-dimensional lattice

Definition

For b1, . . . ,bn ∈ Zn linearly independent, the lattice spanned by the

basis b1, . . . ,bn is L =
∑

i Z · bi ⊂ Rn.

It is discrete and has a shortest non-zero vector.

Finding any short non-zero vector in L given (bi )i is hard in general.
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Number fields and ideals

K = Q[X ]/(X n + 1), OK = Z[X ]/(X n + 1) for n = 2r

(K a number field, OK its ring of integers).

The size of an element a ∈ K is ∥a∥ =
(∑

i |ai |
2
)1/2

.

The size of an element is the ℓ2-norm of its Minkowski embedding.

Definition (Ideal)

A set a ⊆ K is an ideal if it is discrete, stable by addition and by

multiplication by any element of OK . It is then a lattice.

Norm of an ideal: N (I ) = Vol(I )/Vol(OK ) ∈ Z.
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Ideal arithmetic

Let a, b ideals of K , and a ∈ K .

Principal ideal

(a) = {x · a, x ∈ OK}.

Multiplication and inverse

a · b = {
∑

i ai · bi} , a−1 = {x ∈ K , x · a ⊆ OK}.
We have that a · a−1 = OK .

Prime ideals

An ideal p is prime (p ∈ P) if

p = a · b⇒ a = OK or b = OK
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The problem ideal-HSVP

Definition (ideal-HSVPγ)

Given an ideal a ⊆ K , find x ∈ a \ {0} with ∥x∥ ≤ γ · N (a)1/d .

Ideal lattices are not typical lattices. E.g., they verify λ1(I ) ≈ λd(I ).

• There are specifics attacks on ideal lattices1.

• Ideals are the simplest examples of module lattices (KYBER,

DILITHIUM).

• ideal-HSVP is related to other structured lattice problems

(Module-SVP, NTRU, RingLWE).

1[CDPR16, CDW17, PHS19]
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Why small ideal lattices?

Typical lattice basis: O(d2) integers vs ideal lattice basis: O(d) integers.2

Bitsize of a typical element of a is log(N (a)).

→ We want N (a) ≈ poly(d)d in order to have small keys.

Also: faster algorithms.

2Images from [Qua14]
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Average-case to average-case reduction

Worst-case: Solve P for all instance of P (for the worst instance).

Average-case for D: Solve P for I ← D with non-negligible probability.

For cryptography, we are interested in Average-case hardness.

Here we show an Average-case to Average-case reduction.
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Prior works on ideal-HSVP

Worst-case

Ideal HSVP

Ideal HSVP for inverses

of uniform small primes

Ideal HSVP for uniform

ideals of large norm

Ideal of

volume qd
NTRU instance

with module ≈ q2

[Gen09]

[BDPW19]

[PS21]
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Description of our work and motivation

Random version of ideal-HSVP

W-ideal-HSVP: solving ideal-HSVP for a uniform element of W.

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

We show that P−1-ideal-HSVP reduces to P-ideal-HSVP.
Two reasons

1. [Gen09]: ideal-HSVP (for all ideals) reduces to P−1-ideal-HSVP.

2. The NTRU reduction from [PS21] works for integral ideals.
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Sampling ideals



Arakelov ideal sampling [BDPW20, Boe22]

Algorithm 2.1 ArakelovSampling algorithm

Output: An ideal b

1: Let q a uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q.
4: Sample x ←↩ U (B∞(r)

⋂
I )

5: Return b = x · I−1

Outputs uniform integral ideals of norm ≈ rd for r = 2O(d).

⇒ Too big for our use-cases!
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What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1.

Algorithm 2.2 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q
4: Sample x ←↩ U (B∞(r)

⋂
I ).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced
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Some details on ArakelovSampling

The set B∞(r)

1. We pick q uniform prime.

2. We sample x ←↩ U (B∞(r)
⋂
q).

3. We return b = x · q−1.

Sufficient conditions for uniform b

1. |B∞(r)
⋂
q| does not depend on q (too much).

2. Vol(Log(B∞(r))
⋂
{
∑

xi = t}) is ≈ constant for t ∈ [A,B].

Drawback

There are x ∈ B∞(r) with
∥∥x−1

∥∥ very large.
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Main contribution:

P−1-ideal-SVP to P-ideal-SVP



First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 3.1 SampleIdealBA,B
algorithm

Input: a an ideal, sa ∈ a small, BA,B ⊂ KR a well chosen set.

Output: (b, y) such that y ∈ (b · a)−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample ζ and u.

3: Let I = exp(ζ) · u · q · a
4: Let sI = exp(ζ) · u · sq · sa ∈ I .

5: Sample x ←↩ U (BA,B
⋂
I ) using sI .

6: Return (b = x · I−1, y = x−1 · sI · vq) ▷ y ∈ (b · a)−1

Theorem

Let (b, y) = SampleIdealBA,B
(a, sa,A,B).

If BA,B is well chosen then b is almost uniform in IA,B and y is small.
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What does “well chosen” mean?

1. |BA,B
⋂
a| does not depend on a (too much).

2. Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

3. Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,

1

η
≤ xi∏

j x
1/d
j

≤ η.

This is the same as x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verifies items 1 and 2 but not 3!
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Our shape

Reminder: conditions for being well chosen:

1. |BA,B
⋂
a| does not depend on a (too much).

2. Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

3. Its elements are balanced.

BηA,B =

{
x ∈ KR, |N (x)| ∈ [A,B],

∥∥∥∥Log( x

N (x)1/d

)∥∥∥∥
2

≤ log(η)

}
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Our P−1-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A,B].

Input: An ideal I = p−1 with p uniform prime of norm in [A,B].

Output: x ∈ p−1 \ {0} small.

1: Let sp = O(p).
2: Let (b, y) = SampleIdealA,B(p, sp). ▷ ∥y∥ small

3: if b is not prime. then

4: Fail.

5: Let sb = O(b). ▷ ∥sb∥ small

6: Return sb︸︷︷︸
∈b

· y︸︷︷︸
∈(b·p)−1

∈ p−1. ▷ ∥y · sb∥ small
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Wrapping up



Contributions and open problems

Contributions:

• Solving ideal-HSVP on average over inverses of primes is at least as

hard as solving ideal-HSVP on average over primes.

• This gives an NTRU instance distribution with hardness based on

ideal-HSVP for all ideals.

Open problems:

• Can we have such reduction without factoring?

• Can we get rid of the cost dependancy in ρK?

• Can we have more precise approximates for the running time?
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Thank you for your attention

Any question?
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Joël Felderhoff Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals Journées C2, 19/10/2023 19/20



References ii

C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis,

Stanford University, 2009.

A. Pellet-Mary, G. Hanrot, and D. Stehlé, Approx-SVP in ideal
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