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What’s in this talk ?

• Defining the module-Lattice Isomorphism Problem (module-LIP).
→ a generalization of an existing problem.

• An (algebraic) attack on module-LIP in a special case.

2 / 9



What’s in this talk ?

• Defining the module-Lattice Isomorphism Problem (module-LIP).
→ a generalization of an existing problem.

• An (algebraic) attack on module-LIP in a special case.

2 / 9



(Unstructured) LIP
• Linearly independent vectors v1, . . . , vk ∈ Rn form a basis of a
lattice L ⊂ Rn if

L = L(v1|| · · · ||vk) :=

{
k∑

i=1

aivi | ∀ i ∈ {1, . . . , k}, ai ∈ Z

}
.

We consider full rank lattices i .e., k = n.

• L1 = L(B) and L2 = L(B′) are isomorphic if there exists
O ∈ On(R) such that L2 = O · L1. In terms of bases,

O · B is a basis of L2 ⇒ ∃U ∈ GLn(Z) : B′ = OBU.
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(Unstructured) LIP

Move to Gram matrices : G = BTB and G ′ = B ′TB ′,

B ′ = OBU ⇒ G ′ = UTGU are GLn(Z)-congruent.

(Unstructured) LIP :

Parameter : G ∈ S>0
n (R).

Input : G′ ∈ S>0
n (R) GLn(Z)-congruent to G .

Goal : Find U ∈ GLn(Z) such that G′ = UTGU.
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LIP in cryptography

• Best known algorithm runs in time nO(n) (Haviv and Regev, 2013
[1]). Needs to enumerate (possibly many) short vectors.

• Recently, LIP to build cryptographic schemes.
LIP with unstructured lattices ([3] and [4] e.g .,L = Zn).
Signature scheme Hawk (Ducas, Postlethwaite, Pulles, van
Woerden, 2023 [2]). Instantiated on the module O2

K (a
structured lattice).

• Generalize LIP for any module ?

• Use the algebraic structure to solve LIP more efficiently ?
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Modules and module-LIP

K a number field, d = [K : Q] and ring of integers OK .

• A (free) module of rank ℓ is any set

M = OKb1 + · · ·+OKbℓ ⊂ K ℓ,

with b1, . . . , bℓ ∈ K ℓ which are K -linearly independent.

• Analogy with unstructured lattices :
With Minkowski embedding σ : K ↪→ Rd , see M as L ⊂ Rdℓ.

B := (b1|| · · · ||bℓ) is a basis of M.
G := B∗B is the Gram matrix associated.
Gram matrices G ,G ′ are congruent if there is U ∈ GLℓ(OK )
such that G ′ = U∗GU.

• More generally (for non-free modules), one can use pseudo-bases
and pseudo-Gram matrices.
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Modules and module-LIP

Module-Lattice Isomorphism Problem

Parameters : K , a basis B of a (free) module M, Gram matrix G .
Input : Any G ′ congruent to G .
Goal : Find U ∈ GLℓ(OK ) such that G ′ = U∗GU.

Solving module-LIP for rank 2 modules ?
e.g ., when M = O2

K (as in Hawk) then B = G = I2 and

G ′ = U∗U =

(
a b

c d

)(
a c
b d

)
=

(
aa+ bb ⋆

⋆ cc + dd

)
When K is totally real, the diagonal coefficients are sums of two
squares in K . Finding those squares allows to reconstruct U.
Writing elements as sums of two squares in K is equivalent to solve
a norm equation (in the appropriate extension).
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First attack on module-LIP

→ Using arithmetic of ideals (factorization, splittings) and
algorithmic tools (variants of Gentry Szydlo algorithm) we can solve
module-LIP for rank two modules when K is totally real !

Breaking module-LIP on O2
K .

Suppose K is totally real and M = O2
K . There exists a polynomial

time algorithm that, given any G ′ congruent to I2, returns all
U ∈ GL2(OK ) such that G ′ = U∗U.

We proved a more general statement : for K totally real and
most of rank two modules M ⊂ K 2, there exists a probabilistic and
heuristic polynomial time algorithm that solves module-LIP on M
(G. M., A. Pellet-Mary, G. Pliatsok, A. Wallet).
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First attack on module-LIP

Ok that’s nice, and after ?

Generalize to any field ? (would break Hawk)
Decide algorithmically if two module lattices are isomorphic ?
(distinguishing variant of module-LIP)

Thank you !

[1] On the Lattice Isomorphism Problem, I. Haviv, O. Regev, 2013.
[2] HAWK : Module LIP makes Lattice Signatures Fast, Compact
and Simple, L. Ducas, E.W. Postlethwaite, L. N. Pulles. W. van
Woerden, 2023.
[3] Just how hard are rotations of Zn ? H. Bennett, A. Ganju, P.
Peetathawatchai, N. Sthephens-Davidowitz, 2023.

[4] On the lattice isomorphism problem, quadratic forms,
remarkable lattices and cryptography, L. Ducas, W. van Woerden.
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