On the module-Lattice Isomorphism Problem, based on a joint work with A. Pellet-Mary, G. Pliatsok and A. Wallet.

Guilhem Mureau, 1st year PhD.

Supervisors: Alice Pellet-Mary, Renaud Coulangeon
INRIA, Université de Bordeaux
$$
\text { Journées C2 } 2023
$$

What's in this talk?

- Defining the module-Lattice Isomorphism Problem (module-LIP). \rightarrow a generalization of an existing problem.

What's in this talk?

- Defining the module-Lattice Isomorphism Problem (module-LIP). \rightarrow a generalization of an existing problem.
- An (algebraic) attack on module-LIP in a special case.

(Unstructured) LIP

- Linearly independent vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}} \in \mathbb{R}^{n}$ form a basis of a lattice $\mathcal{L} \subset \mathbb{R}^{n}$ if

$$
\mathcal{L}=\mathcal{L}\left(\mathrm{v}_{1}\|\cdots\| \mathrm{v}_{k}\right):=\left\{\sum_{i=1}^{k} a_{i} \mathrm{v}_{\mathrm{i}} \mid \forall i \in\{1, \ldots, k\}, a_{i} \in \mathbb{Z}\right\} .
$$

(Unstructured) LIP

- Linearly independent vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}} \in \mathbb{R}^{n}$ form a basis of a lattice $\mathcal{L} \subset \mathbb{R}^{n}$ if

$$
\mathcal{L}=\mathcal{L}\left(\mathrm{v}_{1}\|\cdots\| \mathrm{v}_{k}\right):=\left\{\sum_{i=1}^{k} a_{i} \mathrm{v}_{\mathrm{i}} \mid \forall i \in\{1, \ldots, k\}, a_{i} \in \mathbb{Z}\right\} .
$$

We consider full rank lattices i.e., $k=n$.

(Unstructured) LIP

- Linearly independent vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}} \in \mathbb{R}^{n}$ form a basis of a lattice $\mathcal{L} \subset \mathbb{R}^{n}$ if

$$
\mathcal{L}=\mathcal{L}\left(\mathrm{v}_{1}\|\cdots\| \mathrm{v}_{k}\right):=\left\{\sum_{i=1}^{k} a_{i} \mathrm{v}_{\mathrm{i}} \mid \forall i \in\{1, \ldots, k\}, a_{i} \in \mathbb{Z}\right\} .
$$

We consider full rank lattices i.e., $k=n$.

- $\mathcal{L}_{1}=\mathcal{L}(B)$ and $\mathcal{L}_{2}=\mathcal{L}\left(B^{\prime}\right)$ are isomorphic if there exists $\mathrm{O} \in \mathcal{O}_{n}(\mathbb{R})$ such that $\mathcal{L}_{2}=\mathrm{O} \cdot \mathcal{L}_{1}$.

(Unstructured) LIP

- Linearly independent vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}} \in \mathbb{R}^{n}$ form a basis of a lattice $\mathcal{L} \subset \mathbb{R}^{n}$ if

$$
\mathcal{L}=\mathcal{L}\left(\mathrm{v}_{1}\|\cdots\| \mathrm{v}_{k}\right):=\left\{\sum_{i=1}^{k} a_{i} \mathrm{v}_{\mathrm{i}} \mid \forall i \in\{1, \ldots, k\}, a_{i} \in \mathbb{Z}\right\} .
$$

We consider full rank lattices i.e., $k=n$.

- $\mathcal{L}_{1}=\mathcal{L}(B)$ and $\mathcal{L}_{2}=\mathcal{L}\left(B^{\prime}\right)$ are isomorphic if there exists $\mathrm{O} \in \mathcal{O}_{n}(\mathbb{R})$ such that $\mathcal{L}_{2}=0 \cdot \mathcal{L}_{1}$. In terms of bases,
$\mathrm{O} \cdot \mathrm{B}$ is a basis of $\mathcal{L}_{2} \Rightarrow \exists \mathrm{U} \in \mathrm{GL}_{n}(\mathbb{Z}): \mathrm{B}^{\prime}=\mathrm{OBU}$.

(Unstructured) LIP

- Linearly independent vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}} \in \mathbb{R}^{n}$ form a basis of a lattice $\mathcal{L} \subset \mathbb{R}^{n}$ if

$$
\mathcal{L}=\mathcal{L}\left(\mathrm{v}_{1}\|\cdots\| \mathrm{v}_{k}\right):=\left\{\sum_{i=1}^{k} a_{i} \mathrm{v}_{\mathrm{i}} \mid \forall i \in\{1, \ldots, k\}, a_{i} \in \mathbb{Z}\right\} .
$$

We consider full rank lattices i.e., $k=n$.

- $\mathcal{L}_{1}=\mathcal{L}(B)$ and $\mathcal{L}_{2}=\mathcal{L}\left(B^{\prime}\right)$ are isomorphic if there exists $\mathrm{O} \in \mathcal{O}_{n}(\mathbb{R})$ such that $\mathcal{L}_{2}=\mathrm{O} \cdot \mathcal{L}_{1}$. In terms of bases,
$\mathrm{O} \cdot \mathrm{B}$ is a basis of $\mathcal{L}_{2} \Rightarrow \exists \mathrm{U} \in \mathrm{GL}_{n}(\mathbb{Z}): \mathrm{B}^{\prime}=\mathrm{OBU}$.

(a) \mathcal{L}_{1} with known basis $B=\left(b_{1}, b_{2}\right)$.

(b) \mathcal{L}_{2} with known basis $B^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$.

(Unstructured) LIP

Move to Gram matrices: $G=B^{\top} B$ and $G^{\prime}=B^{\prime T} B^{\prime}$,

$$
B^{\prime}=O B U \Rightarrow G^{\prime}=U^{\top} G U \text { are } G L_{n}(\mathbb{Z}) \text {-congruent. }
$$

(Unstructured) LIP

Move to Gram matrices: $G=B^{\top} B$ and $G^{\prime}=B^{\prime T} B^{\prime}$,

$$
B^{\prime}=O B U \Rightarrow G^{\prime}=U^{\top} G U \text { are } G L_{n}(\mathbb{Z}) \text {-congruent. }
$$

(Unstructured) LIP :

Parameter: $G \in \mathcal{S}_{n}^{>0}(\mathbb{R})$.
Input: $G^{\prime} \in \mathcal{S}_{n}^{>0}(\mathbb{R}) G L_{n}(\mathbb{Z})$-congruent to G.
Goal : Find $U \in G L_{n}(\mathbb{Z})$ such that $\mathrm{G}^{\prime}=\mathrm{U}^{\top} \mathrm{GU}$.

(Unstructured) LIP

Move to Gram matrices: $G=B^{\top} B$ and $G^{\prime}=B^{\prime T} B^{\prime}$,

$$
B^{\prime}=O B U \Rightarrow G^{\prime}=U^{\top} G U \text { are } G L_{n}(\mathbb{Z}) \text {-congruent. }
$$

(Unstructured) LIP :

Parameter: $G \in \mathcal{S}_{n}^{>0}(\mathbb{R})$.
Input: $G^{\prime} \in \mathcal{S}_{n}^{>0}(\mathbb{R}) G L_{n}(\mathbb{Z})$-congruent to G.
Goal : Find $U \in G L_{n}(\mathbb{Z})$ such that $\mathrm{G}^{\prime}=\mathrm{U}^{\top} \mathrm{GU}$.

LIP in cryptography

- Best known algorithm runs in time $n^{O(n)}$ (Haviv and Regev, 2013 [1]). Needs to enumerate (possibly many) short vectors.

LIP in cryptography

- Best known algorithm runs in time $n^{O(n)}$ (Haviv and Regev, 2013 [1]). Needs to enumerate (possibly many) short vectors.
- Recently, LIP to build cryptographic schemes.

LIP in cryptography

- Best known algorithm runs in time $n^{O(n)}$ (Haviv and Regev, 2013 [1]). Needs to enumerate (possibly many) short vectors.
- Recently, LIP to build cryptographic schemes.
- LIP with unstructured lattices ([3] and [4] e.g., $\mathcal{L}=\mathbb{Z}^{n}$).

LIP in cryptography

- Best known algorithm runs in time $n^{O(n)}$ (Haviv and Regev, 2013 [1]). Needs to enumerate (possibly many) short vectors.
- Recently, LIP to build cryptographic schemes.
- LIP with unstructured lattices ([3] and [4] e.g., $\mathcal{L}=\mathbb{Z}^{n}$).
- Signature scheme Hawk (Ducas, Postlethwaite, Pulles, van Woerden, 2023 [2]). Instantiated on the module \mathcal{O}_{K}^{2} (a structured lattice).

LIP in cryptography

- Best known algorithm runs in time $n^{O(n)}$ (Haviv and Regev, 2013
[1]). Needs to enumerate (possibly many) short vectors.
- Recently, LIP to build cryptographic schemes.
- LIP with unstructured lattices ([3] and [4] e.g., $\mathcal{L}=\mathbb{Z}^{n}$).
- Signature scheme Hawk (Ducas, Postlethwaite, Pulles, van Woerden, 2023 [2]). Instantiated on the module \mathcal{O}_{K}^{2} (a structured lattice).
- Generalize LIP for any module?

LIP in cryptography

- Best known algorithm runs in time $n^{O(n)}$ (Haviv and Regev, 2013
[1]). Needs to enumerate (possibly many) short vectors.
- Recently, LIP to build cryptographic schemes.
- LIP with unstructured lattices ([3] and [4] e.g., $\mathcal{L}=\mathbb{Z}^{n}$).
- Signature scheme Hawk (Ducas, Postlethwaite, Pulles, van Woerden, 2023 [2]). Instantiated on the module \mathcal{O}_{K}^{2} (a structured lattice).
- Generalize LIP for any module?
- Use the algebraic structure to solve LIP more efficiently?

Modules and module-LIP

K a number field, $d=[K: \mathbb{Q}]$ and ring of integers \mathcal{O}_{K}.

Modules and module-LIP

K a number field, $d=[K: \mathbb{Q}]$ and ring of integers \mathcal{O}_{K}.

- A (free) module of rank ℓ is any set

$$
M=\mathcal{O}_{K} b_{1}+\cdots+\mathcal{O}_{K} b_{\ell} \subset K^{\ell}
$$

with $b_{1}, \ldots, b_{\ell} \in K^{\ell}$ which are K-linearly independent.

Modules and module-LIP

K a number field, $d=[K: \mathbb{Q}]$ and ring of integers \mathcal{O}_{K}.

- A (free) module of rank ℓ is any set

$$
M=\mathcal{O}_{K} b_{1}+\cdots+\mathcal{O}_{K} b_{\ell} \subset K^{\ell}
$$

with $b_{1}, \ldots, b_{\ell} \in K^{\ell}$ which are K-linearly independent.

- Analogy with unstructured lattices:
- With Minkowski embedding $\sigma: K \hookrightarrow \mathbb{R}^{d}$, see M as $\mathcal{L} \subset \mathbb{R}^{d \ell}$.

Modules and module-LIP

K a number field, $d=[K: \mathbb{Q}]$ and ring of integers \mathcal{O}_{K}.

- A (free) module of rank ℓ is any set

$$
M=\mathcal{O}_{K} b_{1}+\cdots+\mathcal{O}_{K} b_{\ell} \subset K^{\ell}
$$

with $b_{1}, \ldots, b_{\ell} \in K^{\ell}$ which are K-linearly independent.

- Analogy with unstructured lattices:
- With Minkowski embedding $\sigma: K \hookrightarrow \mathbb{R}^{d}$, see M as $\mathcal{L} \subset \mathbb{R}^{d \ell}$.
- $B:=\left(b_{1}\|\cdots\| b_{\ell}\right)$ is a basis of M.

Modules and module-LIP

K a number field, $d=[K: \mathbb{Q}]$ and ring of integers \mathcal{O}_{K}.

- A (free) module of rank ℓ is any set

$$
M=\mathcal{O}_{K} b_{1}+\cdots+\mathcal{O}_{K} b_{\ell} \subset K^{\ell}
$$

with $b_{1}, \ldots, b_{\ell} \in K^{\ell}$ which are K-linearly independent.

- Analogy with unstructured lattices:
- With Minkowski embedding $\sigma: K \hookrightarrow \mathbb{R}^{d}$, see M as $\mathcal{L} \subset \mathbb{R}^{d \ell}$.
- $B:=\left(b_{1}\|\cdots\| b_{\ell}\right)$ is a basis of M.
- $G:=B^{*} B$ is the Gram matrix associated.

Modules and module-LIP

K a number field, $d=[K: \mathbb{Q}]$ and ring of integers \mathcal{O}_{K}.

- A (free) module of rank ℓ is any set

$$
M=\mathcal{O}_{K} b_{1}+\cdots+\mathcal{O}_{K} b_{\ell} \subset K^{\ell}
$$

with $b_{1}, \ldots, b_{\ell} \in K^{\ell}$ which are K-linearly independent.

- Analogy with unstructured lattices:
- With Minkowski embedding $\sigma: K \hookrightarrow \mathbb{R}^{d}$, see M as $\mathcal{L} \subset \mathbb{R}^{d \ell}$.
- $B:=\left(b_{1}\|\cdots\| b_{\ell}\right)$ is a basis of M.
- $G:=B^{*} B$ is the Gram matrix associated.
- Gram matrices G, G^{\prime} are congruent if there is $U \in \mathrm{GL}_{\ell}\left(\mathcal{O}_{K}\right)$ such that $G^{\prime}=U^{*} G U$.

Modules and module-LIP

K a number field, $d=[K: \mathbb{Q}]$ and ring of integers \mathcal{O}_{K}.

- A (free) module of rank ℓ is any set

$$
M=\mathcal{O}_{K} b_{1}+\cdots+\mathcal{O}_{K} b_{\ell} \subset K^{\ell}
$$

with $b_{1}, \ldots, b_{\ell} \in K^{\ell}$ which are K-linearly independent.

- Analogy with unstructured lattices:
- With Minkowski embedding $\sigma: K \hookrightarrow \mathbb{R}^{d}$, see M as $\mathcal{L} \subset \mathbb{R}^{d \ell}$.
- $B:=\left(b_{1}\|\cdots\| b_{\ell}\right)$ is a basis of M.
- $G:=B^{*} B$ is the Gram matrix associated.
- Gram matrices G, G^{\prime} are congruent if there is $U \in \mathrm{GL}_{\ell}\left(\mathcal{O}_{K}\right)$ such that $G^{\prime}=U^{*} G U$.
- More generally (for non-free modules), one can use pseudo-bases and pseudo-Gram matrices.

Modules and module-LIP

Module-Lattice Isomorphism Problem
Parameters: K, a basis B of a (free) module M, Gram matrix G. Input: Any G^{\prime} congruent to G.
Goal : Find $U \in G L_{\ell}\left(\mathcal{O}_{K}\right)$ such that $G^{\prime}=U^{*} G U$.

Modules and module-LIP

Module-Lattice Isomorphism Problem
Parameters: K, a basis B of a (free) module M, Gram matrix G. Input: Any G^{\prime} congruent to G.
Goal : Find $U \in G L_{\ell}\left(\mathcal{O}_{K}\right)$ such that $G^{\prime}=U^{*} G U$.
Solving module-LIP for rank 2 modules?

Modules and module-LIP

Module-Lattice Isomorphism Problem

Parameters: K, a basis B of a (free) module M, Gram matrix G. Input: Any G^{\prime} congruent to G.
Goal : Find $U \in G L_{\ell}\left(\mathcal{O}_{K}\right)$ such that $G^{\prime}=U^{*} G U$.
Solving module-LIP for rank 2 modules?
e.g., when $M=\mathcal{O}_{K}^{2}$ (as in Hawk) then $B=G=I_{2}$ and

$$
G^{\prime}=U^{*} U=\left(\begin{array}{ll}
\bar{a} & \bar{b} \\
\bar{c} & \bar{d}
\end{array}\right)\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(\begin{array}{cc}
a \bar{a}+b \bar{b} & \star \\
\star & c \bar{c}+d \bar{d}
\end{array}\right)
$$

Modules and module-LIP

Module-Lattice Isomorphism Problem

Parameters: K, a basis B of a (free) module M, Gram matrix G. Input: Any G^{\prime} congruent to G.
Goal : Find $U \in G L_{\ell}\left(\mathcal{O}_{K}\right)$ such that $G^{\prime}=U^{*} G U$.
Solving module-LIP for rank 2 modules?
e.g., when $M=\mathcal{O}_{K}^{2}$ (as in Hawk) then $B=G=I_{2}$ and

$$
G^{\prime}=U^{*} U=\left(\begin{array}{ll}
\bar{a} & \bar{b} \\
\bar{c} & \bar{d}
\end{array}\right)\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(\begin{array}{cc}
a \bar{a}+b \bar{b} & \star \\
\star & c \bar{c}+d \bar{d}
\end{array}\right)
$$

When K is totally real, the diagonal coefficients are sums of two squares in K. Finding those squares allows to reconstruct U.

Modules and module-LIP

Module-Lattice Isomorphism Problem

Parameters: K, a basis B of a (free) module M, Gram matrix G. Input: Any G^{\prime} congruent to G.
Goal : Find $U \in G L_{\ell}\left(\mathcal{O}_{K}\right)$ such that $G^{\prime}=U^{*} G U$.
Solving module-LIP for rank 2 modules?
e.g., when $M=\mathcal{O}_{K}^{2}$ (as in Hawk) then $B=G=I_{2}$ and

$$
G^{\prime}=U^{*} U=\left(\begin{array}{ll}
\bar{a} & \bar{b} \\
\bar{c} & \bar{d}
\end{array}\right)\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(\begin{array}{cc}
a \bar{a}+b \bar{b} & \star \\
\star & c \bar{c}+d \bar{d}
\end{array}\right)
$$

When K is totally real, the diagonal coefficients are sums of two squares in K. Finding those squares allows to reconstruct U.
Writing elements as sums of two squares in K is equivalent to solve a norm equation (in the appropriate extension).

First attack on module-LIP

\rightarrow Using arithmetic of ideals (factorization, splittings) and algorithmic tools (variants of Gentry Szydlo algorithm) we can solve module-LIP for rank two modules when K is totally real!
\rightarrow Using arithmetic of ideals (factorization, splittings) and algorithmic tools (variants of Gentry Szydlo algorithm) we can solve module-LIP for rank two modules when K is totally real!

Breaking module-LIP on \mathcal{O}_{K}^{2}.
Suppose K is totally real and $M=\mathcal{O}_{K}^{2}$. There exists a polynomial time algorithm that, given any G^{\prime} congruent to I_{2}, returns all $U \in \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)$ such that $G^{\prime}=U^{*} U$.
\rightarrow Using arithmetic of ideals (factorization, splittings) and algorithmic tools (variants of Gentry Szydlo algorithm) we can solve module-LIP for rank two modules when K is totally real!

Breaking module-LIP on \mathcal{O}_{K}^{2}.
Suppose K is totally real and $M=\mathcal{O}_{K}^{2}$. There exists a polynomial time algorithm that, given any G^{\prime} congruent to I_{2}, returns all $U \in \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)$ such that $G^{\prime}=U^{*} U$.

We proved a more general statement : for K totally real and most of rank two modules $M \subset K^{2}$, there exists a probabilistic and heuristic polynomial time algorithm that solves module-LIP on M (G. M., A. Pellet-Mary, G. Pliatsok, A. Wallet).

Ok that's nice, and after?

First attack on module-LIP

Ok that's nice, and after?

- Generalize to any field? (would break Hawk)

First attack on module-LIP

Ok that's nice, and after?

- Generalize to any field? (would break Hawk)
- Decide algorithmically if two module lattices are isomorphic? (distinguishing variant of module-LIP)

Ok that's nice, and after?

- Generalize to any field? (would break Hawk)
- Decide algorithmically if two module lattices are isomorphic? (distinguishing variant of module-LIP)

Thank you!

[1] On the Lattice Isomorphism Problem, I. Haviv, O. Regev, 2013.
[2] HAWK : Module LIP makes Lattice Signatures Fast, Compact and Simple, L. Ducas, E.W. Postlethwaite, L. N. Pulles. W. van Woerden, 2023.
[3] Just how hard are rotations of \mathbb{Z}^{n} ? H. Bennett, A. Ganju, P. Peetathawatchai, N. Sthephens-Davidowitz, 2023.
[4] On the lattice isomorphism problem, quadratic forms, remarkable lattices and cryptography, L. Ducas, W. van Woerden.

