On the module-Lattice Isomorphism Problem, based on a joint work with A. Pellet-Mary, G. Pliatsok and A. Wallet.

Guilhem Mureau, 1st year PhD.

Supervisors : Alice Pellet-Mary, Renaud Coulangeon

INRIA, Université de Bordeaux

Journées C2 2023

Guilhem Mureau, 1st year PhD.

On the module-Lattice Isomorphism Problem,

• Defining the module-Lattice Isomorphism Problem (module-LIP). \rightarrow a generalization of an existing problem. • Defining the module-Lattice Isomorphism Problem (module-LIP). \rightarrow a generalization of an existing problem.

• An (algebraic) attack on module-LIP in a special case.

 \bullet Linearly independent vectors $v_1,\ldots,v_k\in\mathbb{R}^n$ form a basis of a lattice $\mathcal{L}\subset\mathbb{R}^n$ if

$$\mathcal{L} = \mathcal{L}(\mathsf{v}_1 || \cdots || \mathsf{v}_k) := \left\{ \sum_{i=1}^k a_i \mathsf{v}_i \mid \forall i \in \{1, \ldots, k\}, \ a_i \in \mathbb{Z} \right\}.$$

• Linearly independent vectors $v_1,\ldots,v_k\in\mathbb{R}^n$ form a basis of a lattice $\mathcal{L}\subset\mathbb{R}^n$ if

$$\mathcal{L} = \mathcal{L}(\mathsf{v}_1 || \cdots || \mathsf{v}_k) := \left\{ \sum_{i=1}^k \mathsf{a}_i \mathsf{v}_i \mid \forall i \in \{1, \ldots, k\}, \, \mathsf{a}_i \in \mathbb{Z} \right\}.$$

We consider full rank lattices *i.e.*, k = n.

• Linearly independent vectors $v_1,\ldots,v_k\in\mathbb{R}^n$ form a basis of a lattice $\mathcal{L}\subset\mathbb{R}^n$ if

$$\mathcal{L} = \mathcal{L}(\mathsf{v}_1 || \cdots || \mathsf{v}_k) := \left\{ \sum_{i=1}^k a_i \mathsf{v}_i \mid \forall i \in \{1, \ldots, k\}, a_i \in \mathbb{Z} \right\}.$$

We consider full rank lattices *i.e.*, k = n.

• $\mathcal{L}_1 = \mathcal{L}(B)$ and $\mathcal{L}_2 = \mathcal{L}(B')$ are isomorphic if there exists $O \in \mathcal{O}_n(\mathbb{R})$ such that $\mathcal{L}_2 = O \cdot \mathcal{L}_1$.

• Linearly independent vectors $v_1,\ldots,v_k\in\mathbb{R}^n$ form a basis of a lattice $\mathcal{L}\subset\mathbb{R}^n$ if

$$\mathcal{L} = \mathcal{L}(\mathsf{v}_1 || \cdots || \mathsf{v}_k) := \left\{ \sum_{i=1}^k a_i \mathsf{v}_i \mid \forall i \in \{1, \ldots, k\}, a_i \in \mathbb{Z} \right\}.$$

We consider full rank lattices *i.e.*, k = n.

• $\mathcal{L}_1 = \mathcal{L}(B)$ and $\mathcal{L}_2 = \mathcal{L}(B')$ are **isomorphic** if there exists $O \in \mathcal{O}_n(\mathbb{R})$ such that $\mathcal{L}_2 = O \cdot \mathcal{L}_1$. In terms of bases, $O \cdot B$ is a basis of $\mathcal{L}_2 \Rightarrow \exists U \in GL_n(\mathbb{Z}) : B' = OBU$.

• Linearly independent vectors $v_1,\ldots,v_k\in\mathbb{R}^n$ form a basis of a lattice $\mathcal{L}\subset\mathbb{R}^n$ if

$$\mathcal{L} = \mathcal{L}(\mathsf{v}_1 || \cdots || \mathsf{v}_k) := \left\{ \sum_{i=1}^k a_i \mathsf{v}_i \mid \forall i \in \{1, \ldots, k\}, a_i \in \mathbb{Z} \right\}.$$

We consider full rank lattices *i.e.*, k = n.

• $\mathcal{L}_1 = \mathcal{L}(B)$ and $\mathcal{L}_2 = \mathcal{L}(B')$ are isomorphic if there exists $O \in \mathcal{O}_n(\mathbb{R})$ such that $\mathcal{L}_2 = O \cdot \mathcal{L}_1$. In terms of bases,

 $O \cdot B$ is a basis of $\mathcal{L}_2 \Rightarrow \exists U \in GL_n(\mathbb{Z}) : B' = OBU.$

Move to Gram matrices : $G = B^T B$ and $G' = B'^T B'$,

 $B' = OBU \Rightarrow G' = U^T GU$ are $GL_n(\mathbb{Z})$ -congruent.

Move to Gram matrices : $G = B^T B$ and $G' = B'^T B'$,

$$B' = OBU \Rightarrow G' = U^T GU$$
 are $GL_n(\mathbb{Z})$ -congruent.

(Unstructured) LIP :

Parameter : $G \in S_n^{>0}(\mathbb{R})$. Input : $G' \in S_n^{>0}(\mathbb{R})$ $GL_n(\mathbb{Z})$ -congruent to G. Goal : Find $U \in GL_n(\mathbb{Z})$ such that $G' = U^T GU$. Move to Gram matrices : $G = B^T B$ and $G' = B'^T B'$,

$$B' = OBU \Rightarrow G' = U^T GU$$
 are $GL_n(\mathbb{Z})$ -congruent.

(Unstructured) LIP :

Parameter : $G \in S_n^{>0}(\mathbb{R})$. Input : $G' \in S_n^{>0}(\mathbb{R})$ $GL_n(\mathbb{Z})$ -congruent to G. Goal : Find $U \in GL_n(\mathbb{Z})$ such that $G' = U^T GU$.

LIP in cryptography

• Best known algorithm runs in time $n^{O(n)}$ (Haviv and Regev, 2013 [1]). Needs to enumerate (possibly many) short vectors.

• Best known algorithm runs in time $n^{O(n)}$ (Haviv and Regev, 2013 [1]). Needs to enumerate (possibly many) short vectors.

• Recently, LIP to build cryptographic schemes.

LIP in cryptography

• Best known algorithm runs in time $n^{O(n)}$ (Haviv and Regev, 2013 [1]). Needs to enumerate (possibly many) short vectors.

• Recently, LIP to build cryptographic schemes.

• LIP with unstructured lattices ([3] and [4] $e.g., \mathcal{L} = \mathbb{Z}^n$).

Best known algorithm runs in time n^{O(n)} (Haviv and Regev, 2013
[1]). Needs to enumerate (possibly many) short vectors.

- Recently, LIP to build cryptographic schemes.
 - LIP with unstructured lattices ([3] and [4] $e.g., \mathcal{L} = \mathbb{Z}^n$).
 - Signature scheme Hawk (Ducas, Postlethwaite, Pulles, van Woerden, 2023 [2]). Instantiated on the module \mathcal{O}_{K}^{2} (a structured lattice).

Best known algorithm runs in time n^{O(n)} (Haviv and Regev, 2013
[1]). Needs to enumerate (possibly many) short vectors.

- Recently, LIP to build cryptographic schemes.
 - LIP with unstructured lattices ([3] and [4] $e.g., \mathcal{L} = \mathbb{Z}^n$).
 - Signature scheme Hawk (Ducas, Postlethwaite, Pulles, van Woerden, 2023 [2]). Instantiated on the module \mathcal{O}_{K}^{2} (a structured lattice).
- Generalize LIP for any module?

Best known algorithm runs in time n^{O(n)} (Haviv and Regev, 2013
[1]). Needs to enumerate (possibly many) short vectors.

- Recently, LIP to build cryptographic schemes.
 - LIP with unstructured lattices ([3] and [4] $e.g., \mathcal{L} = \mathbb{Z}^n$).
 - Signature scheme Hawk (Ducas, Postlethwaite, Pulles, van Woerden, 2023 [2]). Instantiated on the module \mathcal{O}_{K}^{2} (a structured lattice).
- Generalize LIP for any module?
- Use the algebraic structure to solve LIP more efficiently?

K a number field, $d = [K : \mathbb{Q}]$ and ring of integers \mathcal{O}_K .

K a number field, $d = [K : \mathbb{Q}]$ and ring of integers \mathcal{O}_K .

• A (free) module of rank ℓ is any set

$$M = \mathcal{O}_{\mathcal{K}}b_1 + \cdots + \mathcal{O}_{\mathcal{K}}b_\ell \subset \mathcal{K}^\ell,$$

K a number field, $d = [K : \mathbb{Q}]$ and ring of integers \mathcal{O}_K .

• A (free) module of rank ℓ is any set

$$M = \mathcal{O}_{\mathcal{K}}b_1 + \cdots + \mathcal{O}_{\mathcal{K}}b_\ell \subset \mathcal{K}^\ell,$$

- Analogy with unstructured lattices :
 - With Minkowski embedding $\sigma: K \hookrightarrow \mathbb{R}^d$, see M as $\mathcal{L} \subset \mathbb{R}^{d\ell}$.

K a number field, $d = [K : \mathbb{Q}]$ and ring of integers \mathcal{O}_K .

• A (free) module of rank ℓ is any set

$$M = \mathcal{O}_{\mathcal{K}}b_1 + \cdots + \mathcal{O}_{\mathcal{K}}b_\ell \subset \mathcal{K}^\ell,$$

- Analogy with unstructured lattices :
 - With Minkowski embedding $\sigma : K \hookrightarrow \mathbb{R}^d$, see M as $\mathcal{L} \subset \mathbb{R}^{d\ell}$.
 - $B := (b_1 || \cdots || b_\ell)$ is a basis of M.

K a number field, $d = [K : \mathbb{Q}]$ and ring of integers \mathcal{O}_K .

• A (free) module of rank ℓ is any set

$$M = \mathcal{O}_{\mathcal{K}}b_1 + \cdots + \mathcal{O}_{\mathcal{K}}b_\ell \subset \mathcal{K}^\ell,$$

- Analogy with unstructured lattices :
 - With Minkowski embedding $\sigma: K \hookrightarrow \mathbb{R}^d$, see M as $\mathcal{L} \subset \mathbb{R}^{d\ell}$.
 - $B := (b_1 || \cdots || b_\ell)$ is a basis of M.
 - $G := B^*B$ is the Gram matrix associated.

K a number field, $d = [K : \mathbb{Q}]$ and ring of integers \mathcal{O}_K .

• A (free) module of rank ℓ is any set

$$M = \mathcal{O}_{\mathcal{K}}b_1 + \cdots + \mathcal{O}_{\mathcal{K}}b_\ell \subset \mathcal{K}^\ell,$$

- Analogy with unstructured lattices :
 - With Minkowski embedding $\sigma: K \hookrightarrow \mathbb{R}^d$, see M as $\mathcal{L} \subset \mathbb{R}^{d\ell}$.
 - $B := (b_1 || \cdots || b_\ell)$ is a basis of M.
 - $G := B^*B$ is the Gram matrix associated.
 - Gram matrices G, G' are congruent if there is $U \in GL_{\ell}(\mathcal{O}_{K})$ such that $G' = U^{*}GU$.

K a number field, $d = [K : \mathbb{Q}]$ and ring of integers \mathcal{O}_K .

• A (free) module of rank ℓ is any set

$$M = \mathcal{O}_{\mathcal{K}}b_1 + \cdots + \mathcal{O}_{\mathcal{K}}b_\ell \subset \mathcal{K}^\ell,$$

- Analogy with unstructured lattices :
 - With Minkowski embedding $\sigma : K \hookrightarrow \mathbb{R}^d$, see M as $\mathcal{L} \subset \mathbb{R}^{d\ell}$.
 - $B := (b_1 || \cdots || b_\ell)$ is a basis of M.
 - $G := B^*B$ is the Gram matrix associated.
 - Gram matrices G, G' are congruent if there is $U \in GL_{\ell}(\mathcal{O}_{K})$ such that $G' = U^{*}GU$.
- More generally (for non-free modules), one can use pseudo-bases and pseudo-Gram matrices.

Parameters : K, a basis B of a (free) module M, Gram matrix G. Input : Any G' congruent to G. Goal : Find $U \in GL_{\ell}(\mathcal{O}_{K})$ such that $G' = U^{*}GU$.

Parameters : K, a basis B of a (free) module M, Gram matrix G. Input : Any G' congruent to G. Goal : Find $U \in GL_{\ell}(\mathcal{O}_K)$ such that $G' = U^*GU$.

Solving module-LIP for rank 2 modules?

Parameters : K, a basis B of a (free) module M, Gram matrix G. Input : Any G' congruent to G. Goal : Find $U \in GL_{\ell}(\mathcal{O}_{K})$ such that $G' = U^{*}GU$.

Solving module-LIP for rank 2 modules? e.g., when $M = \mathcal{O}_{K}^{2}$ (as in Hawk) then $B = G = I_{2}$ and

$$G' = U^*U = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \star \\ \star & c\overline{c} + d\overline{d} \end{pmatrix}$$

Parameters : K, a basis B of a (free) module M, Gram matrix G. Input : Any G' congruent to G. Goal : Find $U \in GL_{\ell}(\mathcal{O}_K)$ such that $G' = U^*GU$.

Solving module-LIP for rank 2 modules? e.g., when $M = \mathcal{O}_{K}^{2}$ (as in Hawk) then $B = G = I_{2}$ and

$$G' = U^*U = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \star \\ \star & c\overline{c} + d\overline{d} \end{pmatrix}$$

When K is totally real, the diagonal coefficients are sums of two squares in K. Finding those squares allows to reconstruct U.

Parameters : K, a basis B of a (free) module M, Gram matrix G. Input : Any G' congruent to G. Goal : Find $U \in GL_{\ell}(\mathcal{O}_{K})$ such that $G' = U^{*}GU$.

Solving module-LIP for rank 2 modules? e.g., when $M = O_K^2$ (as in Hawk) then $B = G = I_2$ and

$$G' = U^*U = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \star \\ \star & c\overline{c} + d\overline{d} \end{pmatrix}$$

When K is totally real, the diagonal coefficients are sums of two squares in K. Finding those squares allows to reconstruct U. Writing elements as sums of two squares in K is equivalent to solve a norm equation (in the appropriate extension).

 \rightarrow Using arithmetic of ideals (factorization, splittings) and algorithmic tools (variants of Gentry Szydlo algorithm) we can solve module-LIP for rank two modules when K is totally real !

 \rightarrow Using arithmetic of ideals (factorization, splittings) and algorithmic tools (variants of Gentry Szydlo algorithm) we can solve module-LIP for rank two modules when K is totally real!

Breaking module-LIP on $\mathcal{O}_{\mathcal{K}}^2$.

Suppose K is totally real and $M = \mathcal{O}_{K}^{2}$. There exists a polynomial time algorithm that, given any G' congruent to I_{2} , returns all $U \in GL_{2}(\mathcal{O}_{K})$ such that $G' = U^{*}U$.

 \rightarrow Using arithmetic of ideals (factorization, splittings) and algorithmic tools (variants of Gentry Szydlo algorithm) we can solve module-LIP for rank two modules when K is totally real!

Breaking module-LIP on $\mathcal{O}_{\mathcal{K}}^2$.

Suppose K is totally real and $M = \mathcal{O}_{K}^{2}$. There exists a polynomial time algorithm that, given any G' congruent to I_{2} , returns all $U \in GL_{2}(\mathcal{O}_{K})$ such that $G' = U^{*}U$.

We proved a more general statement : for K totally real and most of rank two modules $M \subset K^2$, there exists a probabilistic and heuristic polynomial time algorithm that solves module-LIP on M(G. M., A. Pellet-Mary, G. Pliatsok, A. Wallet).

Ok that's nice, and after?

Ok that's nice, and after ?

• Generalize to any field? (would break Hawk)

Ok that's nice, and after?

- Generalize to any field? (would break Hawk)
- Decide algorithmically if two module lattices are isomorphic? (distinguishing variant of module-LIP)

Ok that's nice, and after?

- Generalize to any field? (would break Hawk)
- Decide algorithmically if two module lattices are isomorphic? (distinguishing variant of module-LIP)

Thank you !

 On the Lattice Isomorphism Problem, I. Haviv, O. Regev, 2013.
 HAWK : Module LIP makes Lattice Signatures Fast, Compact and Simple, L. Ducas, E.W. Postlethwaite, L. N. Pulles. W. van Woerden, 2023.

[3] Just how hard are rotations of \mathbb{Z}^n ? H. Bennett, A. Ganju, P. Peetathawatchai, N. Sthephens-Davidowitz, 2023.

[4] On the lattice isomorphism problem, quadratic forms, remarkable lattices and cryptography, L. Ducas, W. van Woerden.