We Are on the Same Side Alternative Sieving Strategies for the Number Field Sieve

Ambroise Fleury

CEA LIST Saclay - LIP6
ePrint/2023/801

October 18, 2023

Factorization
RSA Cryptosystem
Factoring a large number

Number Field Sieve (NFS)
Overview
Relations CADO-NFS

Our contribution
Batch factoring
Hybrid version
Implementation

Factorization
RSA Cryptosystem
Factoring a large number

Number Field Sieve (NFS)
Overview
Relations
CADO-NFS

Our contribution
Batch factoring
Hybrid version
Implementation

RSA Cryptosystem

Private key

- Used for decryption
- Generated from two random prime numbers p and q

Public key

- Used for encryption
- Generated from product $N=p q$

Factorization

- RSA security is linked to the hardness of integer factorization
- Finding p and q from N breaks RSA

Factoring a large number

Shor's algorithm!

Factoring a large number

Shor's algorithm!

Classically?

Fermat's method

- Try many x 's
- Is $x^{2}-N$ a square?

Then...

- $N=x^{2}-y^{2}$
- $N=(x+y)(x-y)$
$>\operatorname{gcd}(x \pm y, N)$ gives a factor of N
Smarter way than trying x 's until randomly getting a square?

Fermat's method

- Try many x 's
- Is $x^{2}-N$ a square?

Then...

- $N=x^{2}-y^{2}$
- $N=(x+y)(x-y)$
- $\operatorname{gcd}(x \pm y, N)$ gives a factor of N

Smarter way than trying x 's until randomly getting a square?

Fermat's method

- Try many x 's
- Is $x^{2}-N$ a square?

Then...

- $N=x^{2}-y^{2}$
- $N=(x+y)(x-y)$
- $\operatorname{gcd}(x \pm y, N)$ gives a factor of N

Smarter way than trying x 's until randomly getting a square?

Quadratic Sieve

Build a square

- Generate many $y_{i}=x_{i}^{2} \bmod N$
- Build $Y^{2} \bmod N$ as a product of y_{i}^{\prime} 's

Building Y^{2}

- Factor entirely many y_{i} 's (a relation)
- Linear algebra
- Write each relation as a list of exponents of prime factors
- Combine to get even exponents
- It's a square!

From factoring a large number...
...to factoring many small numbers

Quadratic Sieve

Build a square

- Generate many $y_{i}=x_{i}^{2} \bmod N$
- Build $Y^{2} \bmod N$ as a product of y_{i}^{\prime} 's

Building Y^{2}

- Factor entirely many y_{i} 's (a relation)
- Linear algebra
- Write each relation as a list of exponents of prime factors
- Combine to get even exponents
- It's a square!

From factoring a large number...
...to factoring many small numbers

Quadratic Sieve

Build a square

- Generate many $y_{i}=x_{i}^{2} \bmod N$
- Build $Y^{2} \bmod N$ as a product of y_{i}^{\prime} 's

Building Y^{2}

- Factor entirely many y_{i} 's (a relation)
- Linear algebra
- Write each relation as a list of exponents of prime factors
- Combine to get even exponents
- It's a square!

From factoring a large number...
...to factoring many small numbers

Factorization
RSA Cryptosystem
Factoring a large number

Number Field Sieve (NFS)
Overview
Relations
CADO-NFS

Our contribution
Batch factoring
Hybrid version
Implementation

NFS: Overview

State-of-the-art algorithm
General idea

- $x^{2} \equiv y^{2}(\bmod N)$
- $x \pm y \neq 0(\bmod N)$?
$-\operatorname{gcd}(x \pm y, N)$ gives a factor of N

2 main parts

Collection of relations 2. Linear algebra

- Find many relations

Very similar to the quadratic sieve (so far...)

NFS: Overview

State-of-the-art algorithm
General idea

- $x^{2} \equiv y^{2}(\bmod N)$
- $x \pm y \neq 0(\bmod N)$?
$-\operatorname{gcd}(x \pm y, N)$ gives a factor of N

2 main parts

1. Collection of relations

- Find many relations

2. Linear algebra

- Combine them

Very similar to the quadratic sieve (so far...)

NFS : Relations

For each pair (a, b)

- Factor rational norm
- Factor algebraic norm

Small enough factors on both norms?

- Relation

Two sides in NFS

CADO-NFS

- Implementation of the NFS
- Open source: https://gitlab.inria.fr/cado-nfs/cado-nfs
- Can also compute discrete logarithms
- 2019 : Factorization record RSA-240 (240 digits)
- 2020 : Factorization record RSA-250 (current record)
- Computing time is dominated by the relation collection

Relation collection in CADO-NFS

(a, b) pairs space is large

- No need to factor all norms

Objective
Finding just enough relations in the shortest time

Relation collection in CADO-NFS

(a, b) pairs space is large

- No need to factor all norms

Objective
Finding just enough relations in the shortest time

Factoring norms

2 methods:

- Sieving to find small and medium factors
- Elliptic-curve factorization (ECM) to find large factors

- Step 1: sieve all norms
- Step 2: ECM on norms most likely to become relations

Factoring norms

2 methods:

- Sieving to find small and medium factors
- Elliptic-curve factorization (ECM) to find large factors

- Step 1: sieve all norms
- Step 2 : ECM on norms most likely to become relations

Sieving process

The structure of norms and (a, b) pairs allows sieving on a side :

- Pick a side and a prime factor p
- Find and tick a pair (a, b) whose norm it divides
- Tick the next p-th pair $(a+p, b)$
- Tick all p-th pairs

Promising pairs

- Best candidates to give a relation
- Sieving factored enough for both norms
- Only promising pairs get to the ECM step

Promising bound

If the bound deciding wether or not a pair is sent to ECM is...

Promising bound

If the bound deciding wether or not a pair is sent to ECM is...

- Too high
- Many pairs of low quality will take too much time in ECM
- Too low
- Few pairs of high quality will give too few relations and additional sieving will be needed

Promising bound

If the bound deciding wether or not a pair is sent to ECM is...

- Too high
- Many pairs of low quality will take too much time in ECM
- Too low
- Few pairs of high quality will give too few relations and additional sieving will be needed

Factorization
RSA Cryptosystem
Factoring a large number

Number Field Sieve (NFS)
Overview
Relations
CADO-NFS

Our contribution
Batch factoring Hybrid version
Implementation

Improving relation collection in CADO-NFS

Goal : find almost as many promising pairs at a much lower cost

Small sieve
Subroutine of CADO-NFS sieving finding small primes

- Small factors are worth few bits
- Not decisive on promising pairs

Remove small sieve?

Improving relation collection in CADO-NFS

Goal : find almost as many promising pairs at a much lower cost
Small sieve
Subroutine of CADO-NFS sieving finding small primes

- Small factors are worth few bits
- Not decisive on promising pairs

Remove small sieve?

Improving relation collection in CADO-NFS

Goal : find almost as many promising pairs at a much lower cost

Small sieve
Subroutine of CADO-NFS sieving finding small primes

- Small factors are worth few bits
- Not decisive on promising pairs

Remove small sieve?

Batch factoring

How to find smooth parts of integers [Bernstein 2004]

- Input: list of integers, factor base (b bits)
- Output: list of smooth parts, meaning the product of factors from the base found in each integer
- $O\left(b(\lg b)^{2+o(1)}\right)$

Hybrid version

Pick an intermediate "batch promising" bound larger than the "ECM promising" bound, then :

1. Sieve only on medium primes
2. Remove non-batch promising pairs
3. Get small factors using batch factoring
4. Remove non-ECM promising pairs
5. Get large factors using ECM
6. Relations!

Method for each prime factors interval

batch version $\underbrace{2}_{\text {batch }} \underbrace{2}_{\text {partial sieve }}$ batch bound

Path to ECM

Implementation in CADO-NFS

RSA-250's relations

- Targeted number of relations
- Sets of parameters
- Samnled sieved regions
- Easy extrapolation

Results

- Fewer relations are found
- Speedun counteracts this
- Better efficiency
- Up to 1.1 overall speedup

Implementation in CADO-NFS

RSA-250's relations

- Targeted number of relations
- Sets of parameters

Results

- Fewer relations are found
- Speedup counteracts this
- Better efficiency
- Up to 1.1 overall speedup

Benchmarks

- Sampled sieved regions
- Easy extrapolation

Implementation in CADO-NFS

RSA-250's relations

- Targeted number of relations
- Sets of parameters

Benchmarks

- Sampled sieved regions
- Easy extrapolation

Results

- Fewer relations are found
- Speedup counteracts this
- Better efficiency
- Up to 1.1 overall speedup

Speedup

Target: 90% of relations

Thank you!

