New attacks on Biscuit signature scheme

Charles Bouillaguet, Julia SAUVAGE

Almasty, lip6

October 17, 2023

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Round-1 submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature.
- m structured algebraic equations in n variables $(m \approx n)$ over \mathbb{F}_{q}.
- With $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{F}_{q}^{n}, u_{i}, v_{i}$ and w_{i} affine forms:

$$
\begin{equation*}
p_{i}(\mathbf{x})=u_{i}(\mathbf{x})+v_{i}(\mathbf{x}) \times w_{i}(\mathbf{x}) \tag{1}
\end{equation*}
$$

$i \in\{1, \ldots, m\}$

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Round-1 submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature.
- m structured algebraic equations in n variables $(m \approx n)$ over \mathbb{F}_{q}.
- With $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{F}_{q}^{n}, u_{i}, v_{i}$ and w_{i} affine forms:

$$
\begin{equation*}
p_{i}(\mathbf{x})=u_{i}(\mathbf{x})+v_{i}(\mathbf{x}) \times w_{i}(\mathbf{x}) \tag{1}
\end{equation*}
$$

$i \in\{1, \ldots, m\}$

Attack complexity

- Combinatory algo : $q^{\frac{3}{4} n}$.
- asymptotic complexity Hybrid Method: $2^{2.01 n}$

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Round-1 submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature.
- m structured algebraic equations in n variables $(m \approx n)$ over \mathbb{F}_{q}.
- With $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{F}_{q}^{n}, u_{i}, v_{i}$ and w_{i} affine forms:

$$
\begin{equation*}
p_{i}(\mathbf{x})=u_{i}(\mathbf{x})+v_{i}(\mathbf{x}) \times w_{i}(\mathbf{x}) \tag{1}
\end{equation*}
$$

$i \in\{1, \ldots, m\}$

Attack complexity

- Combinatory algo: $q^{\frac{3}{4} n}$.
- asymptotic complexity Hybrid Method : $2^{2.01 n}$

Our new algorithm

- direct: $n^{3} q^{\frac{n}{2}}$.
- New hybrid approach : $2^{1.59 n}$

New idea

We have

$$
\begin{equation*}
p_{i}(\mathbf{x})=u_{i}(\mathbf{x})+v_{i}(\mathbf{x}) \times w_{i}(\mathbf{x}) \tag{2}
\end{equation*}
$$

We guess $v_{i}(\mathbf{x})=a \in \mathbb{F}_{q}$. We have now:

$$
\begin{aligned}
p_{i}(\mathbf{x}) & =u_{i}(\mathbf{x})+a \times w_{i}(\mathbf{x}) \\
v_{i}(\mathbf{x}) & =a
\end{aligned}
$$

$\hookrightarrow m-1$ polynomials in $n-2$ variables.

New idea

We have

$$
\begin{equation*}
p_{i}(\mathbf{x})=u_{i}(\mathbf{x})+v_{i}(\mathbf{x}) \times w_{i}(\mathbf{x}) \tag{2}
\end{equation*}
$$

We guess $v_{i}(\mathbf{x})=a \in \mathbb{F}_{q}$. We have now:

$$
\begin{aligned}
p_{i}(\mathbf{x}) & =u_{i}(\mathbf{x})+a \times w_{i}(\mathbf{x}) \\
v_{i}(\mathbf{x}) & =a
\end{aligned}
$$

$\hookrightarrow m-1$ polynomials in $n-2$ variables.

Direct attack algorithm

- Guess $n / 2$ linear equations
- Get the $n / 2$ other
- Complexity : $n^{3} q^{\frac{n}{2}}$

New Hybrid Approach

Hybrid method [Bettale et al., ACM, 2012]

- Guess an optimal k variables.
- Groebner basis algorithm on $m-k$ polynomials and $n-2 k$ variables.
- Asymptotic complexity at m / n and q fixed.

New Hybrid Approach

Hybrid method [Bettale et al., ACM, 2012]

- Guess an optimal k variables.
- Groebner basis algorithm on $m-k$ polynomials and $n-2 k$ variables.
- Asymptotic complexity at m / n and q fixed.

Asymptotic complexity with $m=n$ and $q=16$

- Classic : $2^{2.01 n}$
- Biscuit polynomials : $2^{1.59 n}$

New Hybrid Approach

Hybrid method [Bettale et al., ACM, 2012]

- Guess an optimal k variables.
- Groebner basis algorithm on $m-k$ polynomials and $n-2 k$ variables.
- Asymptotic complexity at m / n and q fixed.

Asymptotic complexity with $m=n$ and $q=16$

- Classic : $2^{2.01 n}$
- Biscuit polynomials : $2^{1.59 n}$

Key recovery cost for Biscuit (MQ-estimator)

name	Claimed security level	Our attack
biscuit128	160	124
biscuit192	210	163
biscuit256	276	215

Forgery attack

Forgery attack

- Kales-Zaverucha forgery attack [Kales et al., Cham, 20].
- Solving a chosen polynomial subsystem.
\hookrightarrow easier in our case

Forgery attack

Forgery attack

- Kales-Zaverucha forgery attack [Kales et al., Cham, 20].
- Solving a chosen polynomial subsystem.
\hookrightarrow easier in our case

Security estimate

name	biscuit128s	biscuit128f
Claimed key-recovery cost	160	160
our attack	124	124
Claimed forgery cost	143	143
our attack	116	120

biscuit128s: $n=64, m=67, q=16, N=256$,
biscuit128f : $n=64, m=67, q=16, N=256$

Forgery attack

Interesting case

If the subsystem is underdetermined :

- $n-u$ polynomials in n variables
- We can add u linear dependencies

Forgery attack

Interesting case

If the subsystem is underdetermined :

- $n-u$ polynomials in n variables
- We can add u linear dependencies

Algorithm in this case

- With $i \in\{1, \ldots, u\}$, we set :
$v_{i}(\mathbf{x})=0$
- $p_{i}=u_{i}(\mathbf{x})+v_{i}(\mathbf{x}) \times w_{i}(\mathbf{x})$ becomes:
$u_{i}(\mathbf{x})=0$
\hookrightarrow We have now $n-2 u$ polynomials in $n-2 u$ variables to solve.

New parameters for Biscuit

Actual parameters
biscuit128s: $n=64, m=67, q=16, N=256$
\rightarrow sig $=4758$ bytes

New parameters for Biscuit

Actual parameters

biscuit128s: $n=64, m=67, q=16, N=256$
\rightarrow sig $=4758$ bytes

New parameters

q	256	512	1024
16	$n=80, m=94$ sign $=5840$	$n=84, m=104$ sign $=5730$	$n=80, m=104$ sign $=5420$
32	$n=68, m=77$ sign $=5910$	$n=70, m=77$ sign $=5730$	$n=68, m=77$ sign $=5470$
256	$n=47, m=51$ sign $=6080$	$n=49, m=55$ sign $=5890$	$n=47, m=51$ sign $=5610$

Work in progress

LWE with binary error
$A * s+e=b$ with

- $s \in \mathbb{F}_{q}^{n}$ the secret.
- $e \in\{0,1\}^{m}$ an unknown error vector.
- $A \in \mathbb{F}_{q}^{m \times n}$ and $b \in \mathbb{F}_{q}^{m}$ public.

Work in progress

LWE with binary error

$A * s+e=b$ with

- $s \in \mathbb{F}_{q}^{n}$ the secret.
- $e \in\{0,1\}^{m}$ an unknown error vector.
- $A \in \mathbb{F}_{q}^{m \times n}$ and $b \in \mathbb{F}_{q}^{m}$ public.

Attack idea

- We have : $\left(\left\langle A_{i}, s\right\rangle-b_{i}\right)\left(\left\langle A_{i}, s\right\rangle-b_{i}-1\right)=0$
\hookrightarrow Quadratic polynomial in n variables over \mathbb{F}_{q}.
- We guess an optimal $k e_{i}$ and solve $m-k$ polynomials of $n-k$ variables over \mathbb{F}_{q}.

Thank you !

