New attacks on Biscuit signature scheme

Charles Bouillaguet, Julia SAUVAGE

Almasty, lip6

October 17, 2023

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Round-1 submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature.
- *m* structured algebraic equations in *n* variables $(m \approx n)$ over \mathbb{F}_q .
- With $\mathbf{x} = \{x_1, \dots, x_n\} \in \mathbb{F}_q^n$, u_i , v_i and w_i affine forms :

$$p_i(\mathbf{x}) = u_i(\mathbf{x}) + v_i(\mathbf{x}) \times w_i(\mathbf{x})$$
(1)

 $i \in \{1, \ldots, m\}$

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Round-1 submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature.
- *m* structured algebraic equations in *n* variables $(m \approx n)$ over \mathbb{F}_q .
- With $\mathbf{x} = \{x_1, \dots, x_n\} \in \mathbb{F}_q^n$, u_i , v_i and w_i affine forms :

$$p_i(\mathbf{x}) = u_i(\mathbf{x}) + v_i(\mathbf{x}) \times w_i(\mathbf{x})$$
(1)

 $i \in \{1, \ldots, m\}$

Attack complexity

- Combinatory algo : $q^{\frac{3}{4}n}$.
- asymptotic complexity Hybrid Method : 2^{2.01n}

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Round-1 submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature.
- *m* structured algebraic equations in *n* variables $(m \approx n)$ over \mathbb{F}_q .
- With $\mathbf{x} = \{x_1, \dots, x_n\} \in \mathbb{F}_q^n$, u_i , v_i and w_i affine forms :

$$p_i(\mathbf{x}) = u_i(\mathbf{x}) + v_i(\mathbf{x}) \times w_i(\mathbf{x})$$
(1)

 $i \in \{1, \ldots, m\}$

Attack complexity

- Combinatory algo : $q^{\frac{3}{4}n}$.
- asymptotic complexity Hybrid Method : 2^{2.01n}

Our new algorithm

- direct : $n^3 q^{\frac{n}{2}}$.
- New hybrid approach : 2^{1.59n}

New idea

We have

$$p_i(\mathbf{x}) = u_i(\mathbf{x}) + v_i(\mathbf{x}) \times w_i(\mathbf{x})$$
(2)

We guess $v_i(\mathbf{x}) = a \in \mathbb{F}_q$. We have now:

$$p_i(\mathbf{x}) = u_i(\mathbf{x}) + a imes w_i(\mathbf{x})$$

 $v_i(\mathbf{x}) = a$

 \hookrightarrow *m* – 1 polynomials in *n* – 2 variables.

New idea

We have

$$p_i(\mathbf{x}) = u_i(\mathbf{x}) + v_i(\mathbf{x}) \times w_i(\mathbf{x})$$
(2)

We guess $v_i(\mathbf{x}) = a \in \mathbb{F}_q$. We have now:

$$p_i(\mathbf{x}) = u_i(\mathbf{x}) + a imes w_i(\mathbf{x})$$

 $v_i(\mathbf{x}) = a$

$$\hookrightarrow m-1$$
 polynomials in $n-2$ variables.

Direct attack algorithm

- ▶ Guess *n*/2 linear equations
- ▶ Get the *n*/2 other
- Complexity : $n^3 q^{\frac{n}{2}}$

New Hybrid Approach

Hybrid method [Bettale et al., ACM, 2012]

- Guess an optimal k variables.
- Groebner basis algorithm on m k polynomials and n 2k variables.
- Asymptotic complexity at m/n and q fixed.

New Hybrid Approach

Hybrid method [Bettale et al., ACM, 2012]

- Guess an optimal k variables.
- Groebner basis algorithm on m k polynomials and n 2k variables.
- Asymptotic complexity at m/n and q fixed.

Asymptotic complexity with m = n and q = 16

- Classic : 2^{2.01n}
- Biscuit polynomials : 2^{1.59n}

New Hybrid Approach

Hybrid method [Bettale et al., ACM, 2012]

- Guess an optimal k variables.
- Groebner basis algorithm on m k polynomials and n 2k variables.
- Asymptotic complexity at m/n and q fixed.

Asymptotic complexity with m = n and q = 16

- Classic : 2^{2.01n}
- Biscuit polynomials : 2^{1.59n}

Key recovery cost for Biscuit (MQ-estimator)

name	Claimed security level	Our attack
biscuit128	160	124
biscuit192	210	163
biscuit256	276	215

Forgery attack

- Kales-Zaverucha forgery attack [Kales et al., Cham, 20].
- ▶ Solving a chosen polynomial subsystem.
 ↔ easier in our case

Forgery attack

- Kales-Zaverucha forgery attack [Kales et al., Cham, 20].
- ▶ Solving a chosen polynomial subsystem.
 → easier in our case

Security estimate

name	biscuit128s	biscuit128f
Claimed key-recovery cost	160	160
our attack	124	124
Claimed forgery cost	143	143
our attack	116	120

biscuit128s: n = 64, m = 67, q = 16, N = 256, biscuit128f: n = 64, m = 67, q = 16, N = 256

Interesting case

If the subsystem is underdetermined :

- n u polynomials in n variables
- We can add u linear dependencies

Interesting case

If the subsystem is underdetermined :

- n u polynomials in n variables
- We can add u linear dependencies

Algorithm in this case

• With
$$i \in \{1, \ldots, u\}$$
, we set :
 $v_i(\mathbf{x}) = 0$

$$p_i = u_i(\mathbf{x}) + v_i(\mathbf{x}) \times w_i(\mathbf{x}) \text{ becomes } : u_i(\mathbf{x}) = 0$$

 \hookrightarrow We have now n - 2u polynomials in n - 2u variables to solve.

New parameters for Biscuit

Actual parameters

biscuit128s : n = 64, m = 67, q = 16, N = 256 \rightarrow sig = 4 758 bytes

New parameters for Biscuit

Actual parameters

biscuit128s : n = 64, m = 67, q = 16, N = 256 \rightarrow sig = 4 758 bytes

New parameters

R N	256	512	1024
16	n = 80, m = 94	n = 84, m = 104	n = 80, m = 104
	sign = <mark>5840</mark>	sign = <mark>5730</mark>	sign = 5420
32	n = 68, m = 77	n = 70, m = 77	n = 68, m = 77
	sign = <mark>5910</mark>	sign = <mark>5730</mark>	sign = 5470
256	n = 47, m = 51	n = 49, m = 55	n = 47, m = 51
	sign = 6080	sign = <mark>5890</mark>	sign = <mark>5610</mark>

Work in progress

LWE with binary error

- $A * \mathbf{s} + \mathbf{e} = b$ with
 - $s \in \mathbb{F}_q^n$ the secret.
 - $e \in \{0,1\}^m$ an unknown error vector.
 - $A \in \mathbb{F}_q^{m \times n}$ and $b \in \mathbb{F}_q^m$ public.

Work in progress

LWE with binary error

 $A * \mathbf{s} + \mathbf{e} = b$ with

- $s \in \mathbb{F}_q^n$ the secret.
- $e \in \{0,1\}^m$ an unknown error vector.

•
$$A \in \mathbb{F}_q^{m imes n}$$
 and $b \in \mathbb{F}_q^m$ public

Attack idea

- We have : (⟨A_i, s⟩ − b_i)(⟨A_i, s⟩ − b_i − 1) = 0 → Quadratic polynomial in n variables over F_q.
- We guess an optimal k e_i and solve m − k polynomials of n − k variables over F_q.

Thank you !