
A Methodology to Achieve Provable Side-
Channel Security in Real-World

Implementations
Sonia Belaïd1, Gaëtan Cassiers4, Camille Mutschler2,5, Matthieu Rivain1,
Thomas Roche2, François-Xavier Standaert3, Abdel Rahman Taleb1,6

Journées C2

19/10/2023

1CryptoExperts, France

2NinjaLab, France

3UCLouvain, ICTEAM, Crypto Group, Louvain-la-Neuve, Belgium

4TU Graz

5LIRMM, Univ. Montpellier, CNRS, Montpellier, France

6Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Side-Channel Attacks

Plaintext Ciphertext Encryption
Algorithm

Secret Key

Device (e.g. Smartcard)
Side-Channel « Eavesdropping »

Power Consumtion

Execution Time

Electromagnetic Radiation

Memory Cache

…2

(late 1990s)

Black box oracle

Countermeasure
Masking Chari et al. [CRYPTO’99], Goubin and Patarin [CHES’99]

3

Countermeasure
Masking Chari et al. [CRYPTO’99], Goubin and Patarin [CHES’99]

Secret Variable x ∈ 𝔽2 (field)

3

Countermeasure
Masking Chari et al. [CRYPTO’99], Goubin and Patarin [CHES’99]

Secret Variable x ∈ 𝔽2 (field)
En

co
de

Secret Vector ⃗x = (x1, …, xn) ∈ 𝔽n
2

3

shares

Countermeasure
Masking Chari et al. [CRYPTO’99], Goubin and Patarin [CHES’99]

Secret Variable x ∈ 𝔽2 (field)
En

co
de

Secret Vector ⃗x = (x1, …, xn) ∈ 𝔽n
2

s.t.

x1
$ 𝔽2

xn−1
$ 𝔽2

…

3

shares

Countermeasure
Masking Chari et al. [CRYPTO’99], Goubin and Patarin [CHES’99]

Secret Variable x ∈ 𝔽2 (field)
En

co
de

Secret Vector ⃗x = (x1, …, xn) ∈ 𝔽n
2

s.t.

x1
$ 𝔽2

xn−1
$ 𝔽2

…
n − 1 random values

3

shares

Countermeasure
Masking Chari et al. [CRYPTO’99], Goubin and Patarin [CHES’99]

Secret Variable x ∈ 𝔽2 (field)
En

co
de

Secret Vector ⃗x = (x1, …, xn) ∈ 𝔽n
2

s.t.

x1
$ 𝔽2

xn−1
$ 𝔽2

xn ← x − x1… − xn−1

…
n − 1 random values

3

shares

secret recombination

Countermeasure
Masking Chari et al. [CRYPTO’99], Goubin and Patarin [CHES’99]

Secret Variable x ∈ 𝔽2 (field)
En

co
de

Secret Vector ⃗x = (x1, …, xn) ∈ 𝔽n
2

s.t.

x1
$ 𝔽2

xn−1
$ 𝔽2

xn ← x − x1… − xn−1

…
n − 1 random values

3

shares

Operations over variables 𝔽2

a + b

a × b

a, b

a, b ×

+

secret recombination

Countermeasure
Masking Chari et al. [CRYPTO’99], Goubin and Patarin [CHES’99]

Secret Variable x ∈ 𝔽2 (field)
En

co
de

Secret Vector ⃗x = (x1, …, xn) ∈ 𝔽n
2

s.t.

x1
$ 𝔽2

xn−1
$ 𝔽2

xn ← x − x1… − xn−1

…
n − 1 random values

3

shares

Operations over variables 𝔽2

a + b

a × b

a, b

a, b

Gadgets over masked variables in 𝔽n
2

×

+

secret recombination

Countermeasure
Masking Chari et al. [CRYPTO’99], Goubin and Patarin [CHES’99]

Secret Variable x ∈ 𝔽2 (field)
En

co
de

Secret Vector ⃗x = (x1, …, xn) ∈ 𝔽n
2

s.t.

x1
$ 𝔽2

xn−1
$ 𝔽2

xn ← x − x1… − xn−1

…
n − 1 random values

3

shares

Operations over variables 𝔽2

a + b

a × b

a, b

a, b

Gadgets over masked variables in 𝔽n
2

G+

×

+

, (a1, …, an)
(b1, …, bn)

 s.t. (c1, …, cn)
c1 + … + cn = a + b

G×
, (a1, …, an)

(b1, …, bn)
 s.t. (c1, …, cn)

c1 + … + cn = a × b
secret recombination

Security of Masked Implementations
Empirical Approach

4

Security of Masked Implementations
Empirical Approach

4

Masked Implementation

Security of Masked Implementations
Empirical Approach

4

Masked Implementation

Leakage detection
using statistical

analysis

Mounting well-
known attacks from

the literature

Security of Masked Implementations
Empirical Approach

4

Masked Implementation

Leakage detection
using statistical

analysis

Mounting well-
known attacks from

the literature

Infer security
level

Security of Masked Implementations
Empirical Approach

4

Masked Implementation

Leakage detection
using statistical

analysis

Mounting well-
known attacks from

the literature

Infer security
level

How to have formal security guarantees ?

Security of Masked Implementations
Leakage Models

5

Security of Masked Implementations
Leakage Models

5

Formally define
side-channel

attackers’
capabilities

Security of Masked Implementations
Leakage Models

5

Formally define
side-channel

attackers’
capabilities

Easy to use

Close to reality of
physical leakage

Security of Masked Implementations
Leakage Models

5

Formally define
side-channel

attackers’
capabilities

-Probing Modelt

Easy to use

Close to reality of
physical leakage

 intermediate variables
leak their values

t

Security of Masked Implementations
Leakage Models

5

Formally define
side-channel

attackers’
capabilities

-Probing Modelt

-Random Probing Modelp

Easy to use

Close to reality of
physical leakage

 intermediate variables
leak their values

t

each intermediate variable
leaks with probability p

Security of Masked Implementations
Leakage Models

5

Formally define
side-channel

attackers’
capabilities

-Probing Modelt

-Random Probing Modelp

-Noisy Leakage Modelδ

Easy to use

Close to reality of
physical leakage

 intermediate variables
leak their values

t

each intermediate variable
leaks with probability p

each intermediate variable
leaks a -noisy function of

its value
δ

Security of Masked Implementations
Leakage Models

5

Formally define
side-channel

attackers’
capabilities

-Probing Modelt

-Random Probing Modelp

-Noisy Leakage Modelδ

Easy to use

Close to reality of
physical leakage

 intermediate variables
leak their values

t

each intermediate variable
leaks with probability p

each intermediate variable
leaks a -noisy function of

its value
δ

Security Reduction

Duc et al. [EUROCRYPT14]

Security of Masked Implementations
Leakage Models

5

Formally define
side-channel

attackers’
capabilities

-Probing Modelt

-Random Probing Modelp

-Noisy Leakage Modelδ

Easy to use

Close to reality of
physical leakage

 intermediate variables
leak their values

t

each intermediate variable
leaks with probability p

each intermediate variable
leaks a -noisy function of

its value
δ

Security Reduction

Duc et al. [EUROCRYPT14]

Noisy Leakage Model

6

Memory

execute op. 1

read ⃗x1

write ⃗y1

execute op. k

read ⃗xk

write ⃗yk

⋮

Noisy Leakage Model

6

Memory

execute op. 1

read ⃗x1

write ⃗y1

execute op. k

read ⃗xk

write ⃗yk

⋮

Leaks f1(⃗x1)

Leaks fk(⃗xk)

deterministic leakage
of each variable +

physical noise

Noisy Leakage Model

6

Memory

execute op. 1

read ⃗x1

write ⃗y1

execute op. k

read ⃗xk

write ⃗yk

⋮

Leaks f1(⃗x1)

Leaks fk(⃗xk)

 is a -noisy functionfi δdeterministic leakage
of each variable +

physical noise

High δ High leakage
Low δ Low leakage

Leakage Models
Physical Assumptions & Issues

7

⃗x1 ⃗x2 ⃗x3 ⃗x4

op. 1 op. 2 op. 3 op. 4

Sequential execution
of operations

Leakage Models
Physical Assumptions & Issues

7

⃗x1 ⃗x2 ⃗x3 ⃗x4

op. 1 op. 2 op. 3 op. 4

Sequential execution
of operations

Each operation leaks
during execution

Leakage Models
Physical Assumptions & Issues

7

⃗x1 ⃗x2 ⃗x3 ⃗x4

op. 1 op. 2 op. 3 op. 4

Sequential execution
of operations

Leakage only
on ⃗x1

Leakage only
on ⃗x2

Leakage only
on ⃗x3

Leakage only
on ⃗x4

Each operation leaks
during execution

Data Isolation Assumption: each operation
leakage only depends on its inputs

Leakage Models

8

CPU
register ⃗x1

write ⃗x1 write ⃗x2 ⃗x2

Physical Assumptions & Issues

Leakage Models

8

CPU
register ⃗x1

write ⃗x1 write ⃗x2 ⃗x2

Transition
effect

Physical Assumptions & Issues

Leakage Models

8

CPU
register ⃗x1

write ⃗x1 write ⃗x2 ⃗x2

Transition
effect

Leakage depends
on ⃗x1 ⊕ ⃗x2

Physical Assumptions & Issues

Leakage Models

8

CPU
register ⃗x1

write ⃗x1 write ⃗x2 ⃗x2

Transition
effect

Leakage depends
on ⃗x1 ⊕ ⃗x2

Physical effects break the
data isolation assumption

Physical Assumptions & Issues

Leakage Models

9

⃗x1 ⃗x2 ⃗x3 ⃗x4

op. 1 op. 2 op. 3 op. 4

Physical Assumptions & Issues

Sequential execution
of operations

Leakage Models

9

⃗x1 ⃗x2 ⃗x3 ⃗x4

op. 1 op. 2 op. 3 op. 4

Physical noise occurs during
side-channel acquisitions

Physical Assumptions & Issues

Sequential execution
of operations

Leakage Models

9

⃗x1 ⃗x2 ⃗x3 ⃗x4

op. 1 op. 2 op. 3 op. 4

Noise 1

Physical noise occurs during
side-channel acquisitions

Noise Independence Assumption: each
noise is independent of the others

Noise 2 Noise 3 Noise 4

Physical Assumptions & Issues

Sequential execution
of operations

Leakage Models

10

Physical Assumptions & Issues

Leakage Models

10

Physical Assumptions & Issues

Leakage Models

10

deterministic leakage⃗d (⃗x) = (d1, …, d400)

Physical Assumptions & Issues

Leakage Models

10

deterministic leakage⃗d (⃗x) = (d1, …, d400)
+

Noise drawn from multivariate Gaussian
distribution

.
𝒩(⃗0 , Σ)

⃗z = (z1, …, z400)

Physical Assumptions & Issues

Leakage Models

10

deterministic leakage⃗d (⃗x) = (d1, …, d400)
+

Noise drawn from multivariate Gaussian
distribution

.
𝒩(⃗0 , Σ)

⃗z = (z1, …, z400)

Multivariate noise breaks
the noise independence

assumption

Physical Assumptions & Issues

Overview

11

Overview

11

Abstract
circuit C

Overview

11

Abstract
circuit C

Noisy Leakage
Model

 bits of
theoretical security

λ

Overview

11

Abstract
circuit C

Noisy Leakage
Model

 bits of
theoretical security

λ Implementation
on a device

Loss of theoretical
security level

Overview

11

Abstract
circuit C

Noisy Leakage
Model

 bits of
theoretical security

λ Implementation
on a device

Methodology to preserve the
security level for an

implementation on a device

Overview

11

Abstract
circuit C

Noisy Leakage
Model

 bits of
theoretical security

λ Implementation
on a device

Methodology to preserve the
security level for an

implementation on a device

Implement abstract
gates on a device

Overview

11

Abstract
circuit C

Noisy Leakage
Model

 bits of
theoretical security

λ Implementation
on a device

Methodology to preserve the
security level for an

implementation on a device

Implement abstract
gates on a device

Enforce / Relax
data isolation

Overview

11

Abstract
circuit C

Noisy Leakage
Model

 bits of
theoretical security

λ Implementation
on a device

Methodology to preserve the
security level for an

implementation on a device

Implement abstract
gates on a device

Enforce / Relax
data isolation

Characterize the
leakage distribution

Overview

11

Abstract
circuit C

Noisy Leakage
Model

 bits of
theoretical security

λ Implementation
on a device

Methodology to preserve the
security level for an

implementation on a device

Implement abstract
gates on a device

Enforce / Relax
data isolation

Characterize the
leakage distribution

Enforce / Relax noise
indepencence

Overview

11

Abstract
circuit C

Noisy Leakage
Model

 bits of
theoretical security

λ Implementation
on a device

Methodology to preserve the
security level for an

implementation on a device

Implement abstract
gates on a device

Enforce / Relax
data isolation

Characterize the
leakage distribution

Enforce / Relax noise
indepencence

Estimate the noisy
leakage parameter

tolerated by the device
δ

Overview

11

Abstract
circuit C

Noisy Leakage
Model

 bits of
theoretical security

λ Implementation
on a device

Methodology to preserve the
security level for an

implementation on a device

Implement abstract
gates on a device

Enforce / Relax
data isolation

Characterize the
leakage distribution

Enforce / Relax noise
indepencence

Estimate the noisy
leakage parameter

tolerated by the device
δCompile the

implementation

Methodology
Step 1: Implement abstract gates

12

Methodology
Step 1: Implement abstract gates

12

respect the format from the leakage models

Methodology
Step 1: Implement abstract gates

12

respect the format from the leakage models

Methodology
Step 2: Enforce / Relax data isolation

13

Methodology
Step 2: Enforce / Relax data isolation

13

Leakage of an operation must
only depend on its inputs

Methodology
Step 2: Enforce / Relax data isolation

13

Leakage of an operation must
only depend on its inputs use data whitening

Methodology
Step 2: Enforce / Relax data isolation

13

Leakage of an operation must
only depend on its inputs use data whitening

operation_1(a1, b1)

operation_2(a2, b2)

Methodology
Step 2: Enforce / Relax data isolation

13

Leakage of an operation must
only depend on its inputs use data whitening

operation_1(a1, b1)

operation_2(a2, b2)

whitening()

whitening()

Methodology
Step 2: Enforce / Relax data isolation

13

Leakage of an operation must
only depend on its inputs use data whitening

operation_1(a1, b1)

operation_2(a2, b2)

whitening()

whitening()

clean data path
and registers from

previous calls

Methodology
Step 2: Enforce / Relax data isolation

13

Leakage of an operation must
only depend on its inputs use data whitening

operation_1(a1, b1)

operation_2(a2, b2)

whitening()

whitening()

clean data path
and registers from

previous calls

Example: call same operation
with random inputs

Methodology
Step 2: Enforce / Relax data isolation

13

Leakage of an operation must
only depend on its inputs use data whitening

operation_1(a1, b1)

operation_2(a2, b2)

whitening()

whitening()

clean data path
and registers from

previous calls Effectiveness depends on
CPU micro-architecture

Example: call same operation
with random inputs

Methodology
Step 2: Enforce / Relax data isolation

13

Leakage of an operation must
only depend on its inputs use data whitening

operation_1(a1, b1)

operation_2(a2, b2)

whitening()

whitening()

clean data path
and registers from

previous calls Effectiveness depends on
CPU micro-architecture

Example: call same operation
with random inputs

How to check if it works ?

Methodology
Step 2: Enforce / Relax data isolation

13

Leakage of an operation must
only depend on its inputs use data whitening

operation_1(a1, b1)

operation_2(a2, b2)

whitening()

whitening()

clean data path
and registers from

previous calls Effectiveness depends on
CPU micro-architecture

Example: call same operation
with random inputs

How to check if it works ? we propose a novel statistical test to
(in)validate the assumption on a device

Methodology
Step 3: Characterize the Leakage Distribution

14

Methodology
Step 3: Characterize the Leakage Distribution

14

Extensively studied in the literature

Methodology
Step 3: Characterize the Leakage Distribution

14

Extensively studied in the literature

Operation with input ⃗x
Leakage

⃗y = ⃗d (⃗x) + 𝒩(⃗0 , Σ)

Methodology
Step 3: Characterize the Leakage Distribution

14

Extensively studied in the literature

Operation with input ⃗x
Leakage

⃗y = ⃗d (⃗x) + 𝒩(⃗0 , Σ)

Infer for each time sample di(⋅) i1

Methodology
Step 3: Characterize the Leakage Distribution

14

Extensively studied in the literature

Operation with input ⃗x
Leakage

⃗y = ⃗d (⃗x) + 𝒩(⃗0 , Σ)

Infer for each time sample di(⋅) i1

2 Compute the covariance matrix Σ

Methodology
Step 3: Characterize the Leakage Distribution

14

Extensively studied in the literature

Operation with input ⃗x
Leakage

⃗y = ⃗d (⃗x) + 𝒩(⃗0 , Σ)

Infer for each time sample di(⋅) i1

2

Linear Regression

Machine Learning

…

Compute the covariance matrix Σ

Methodology
Step 4: Enforce / Relax Noise Independence

15

Methodology
Step 4: Enforce / Relax Noise Independence

15

Difficult to ensure in practice We propose to relax it

Methodology
Step 4: Enforce / Relax Noise Independence

15

Difficult to ensure in practice We propose to relax it

operation_1
operation_2
operation_3

start

end

Leakage
trace
⃗Y

Methodology
Step 4: Enforce / Relax Noise Independence

15

Difficult to ensure in practice We propose to relax it

operation_1
operation_2
operation_3

start

end

Leakage
trace
⃗Y

 = + + + ⃗Y ⃗S1
⃗S2

⃗S3
⃗N

data isolation assumption

each is only the leakage of Si operation_i

Methodology
Step 4: Enforce / Relax Noise Independence

15

Difficult to ensure in practice We propose to relax it

operation_1
operation_2
operation_3

start

end

Leakage
trace
⃗Y

 = + + + ⃗Y ⃗S1
⃗S2

⃗S3
⃗N

Split

instead of having time-separated noises

⃗N = ⃗N1 + ⃗N2 + ⃗N3

data isolation assumption

each is only the leakage of Si operation_i

Methodology
Step 4: Enforce / Relax Noise Independence

15

Difficult to ensure in practice We propose to relax it

operation_1
operation_2
operation_3

start

end

Leakage
trace
⃗Y

 = + + + ⃗Y ⃗S1
⃗S2

⃗S3
⃗N

Split

instead of having time-separated noises

⃗N = ⃗N1 + ⃗N2 + ⃗N3

data isolation assumption

each is only the leakage of Si operation_i

Then the leakage is split into
{ ⃗Yi = ⃗Si + ⃗Ni}i=1,2,3

Methodology
Step 4: Enforce / Relax Noise Independence

15

Difficult to ensure in practice We propose to relax it

operation_1
operation_2
operation_3

start

end

Leakage
trace
⃗Y

 = + + + ⃗Y ⃗S1
⃗S2

⃗S3
⃗N

Split

instead of having time-separated noises

⃗N = ⃗N1 + ⃗N2 + ⃗N3 Trivial: ⃗Ni =
1
3

⃗N

Methodology
Step 4: Enforce / Relax Noise Independence

15

Difficult to ensure in practice We propose to relax it

operation_1
operation_2
operation_3

start

end

Leakage
trace
⃗Y

 = + + + ⃗Y ⃗S1
⃗S2

⃗S3
⃗N

Split

instead of having time-separated noises

⃗N = ⃗N1 + ⃗N2 + ⃗N3 Trivial: ⃗Ni =
1
3

⃗N

Drawback: more operations less noise on each operation more
leakage lower security level in the leakage models

⟹ ⟹
⟹

Methodology
Step 4: Enforce / Relax Noise Independence

15

Difficult to ensure in practice We propose to relax it

operation_1
operation_2
operation_3

start

end

Leakage
trace
⃗Y

 = + + + ⃗Y ⃗S1
⃗S2

⃗S3
⃗N

Split

instead of having time-separated noises

⃗N = ⃗N1 + ⃗N2 + ⃗N3 Trivial: ⃗Ni =
1
3

⃗N

Drawback: more operations less noise on each operation more
leakage lower security level in the leakage models

⟹ ⟹
⟹

Optimization problem: how to rewrite , such as to
minimize the information leakage of the different operations ?

⃗N = ⃗N1 + ⃗N2 + ⃗N3

Methodology
Step 5: Estimate the noisy leakage parameter δ

16

Methodology
Step 5: Estimate the noisy leakage parameter δ

16

random probing security(p, ε)− noisy leakage securityδ−⟹

Methodology
Step 5: Estimate the noisy leakage parameter δ

16

Efficient way to compute on a deviceδ

random probing security(p, ε)− noisy leakage securityδ−⟹

Methodology
Step 5: Estimate the noisy leakage parameter δ

16

Efficient way to compute on a deviceδ

random probing security(p, ε)− noisy leakage securityδ−⟹

Infer tolerated leakage probability by the devicep

Methodology
Step 5: Estimate the noisy leakage parameter δ

16

Efficient way to compute on a deviceδ

random probing security(p, ε)− noisy leakage securityδ−⟹

Infer tolerated leakage probability by the devicep

Which random probing secure gadgets from the literature can be
used on the device

Methodology
Step 5: Estimate the noisy leakage parameter δ

16

Efficient way to compute on a deviceδ

random probing security(p, ε)− noisy leakage securityδ−⟹

Infer tolerated leakage probability by the devicep

Which random probing secure gadgets from the literature can be
used on the device

Best gadgets from the
literature tolerate p ≈ 2−7

Methodology
Wrap-up

17

Methodology
Wrap-up

17

Characterization

Device

Methodology
Wrap-up

17

Characterization

①
Implementing

elementary
operations

Device

Methodology
Wrap-up

17

Characterization
② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gatesDevice

Methodology
Wrap-up

17

Characterization

Test of data
isolation for

each pair

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gatesDevice

Side-channel
acquisition tool

Methodology
Wrap-up

17

Characterization

Test of data
isolation for

each pair

Addition of
whitening Nok

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gatesDevice

Side-channel
acquisition tool

Methodology
Wrap-up

17

Characterization

Test of data
isolation for

each pair

Ok

Addition of
whitening Nok

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gatesDevice Gates

Side-channel
acquisition tool

Methodology
Wrap-up

17

Characterization

Test of data
isolation for

each pair

Ok

Addition of
whitening Nok

③ Characterizing
the leakage

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gatesDevice Gates

Side-channel
acquisition tool

Methodology
Wrap-up

17

Characterization

Test of data
isolation for

each pair

Ok

Addition of
whitening Nok

③ Characterizing
the leakage

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gatesDevice Gates

Side-channel
acquisition tool

④ Enforcing /
relaxing noise
independence

Methodology
Wrap-up

17

Characterization

Test of data
isolation for

each pair

Ok

Addition of
whitening Nok

③ Characterizing
the leakage

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gates ⑤ Estimating the
noisy leakage

parameter
Device Gates

Side-channel
acquisition tool

④ Enforcing /
relaxing noise
independence

Methodology
Wrap-up

17

Characterization

⑥ Compilation

Test of data
isolation for

each pair

Ok

Addition of
whitening Nok

③ Characterizing
the leakage

Probability
p

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gates ⑤ Estimating the
noisy leakage

parameter
Device Gates

Side-channel
acquisition tool

④ Enforcing /
relaxing noise
independence

Methodology
Wrap-up

17

Characterization

⑥ Compilation

Circuit C

Test of data
isolation for

each pair

Ok

Addition of
whitening Nok

③ Characterizing
the leakage

Security level λ

Probability
p

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gates ⑤ Estimating the
noisy leakage

parameter
Device Gates

Side-channel
acquisition tool

④ Enforcing /
relaxing noise
independence

Methodology
Wrap-up

17

Characterization

⑥ Compilation

Random
probing
compiler

Circuit C

Test of data
isolation for

each pair

Ok

Addition of
whitening Nok

③ Characterizing
the leakage

Security level λ

Probability
p

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gates ⑤ Estimating the
noisy leakage

parameter
Device Gates

Side-channel
acquisition tool

④ Enforcing /
relaxing noise
independence

Random probing compiler: replaces each gate by a -share
random probing secure gadget

n
(p, ε)−

Methodology
Wrap-up

17

Characterization

⑥ Compilation

Random
probing
compiler

Implementation
on device

Circuit C

Test of data
isolation for

each pair

Ok

Addition of
whitening Nok

③ Characterizing
the leakage

Security level λ

Probability
p

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gates ⑤ Estimating the
noisy leakage

parameter
Device Gates

Side-channel
acquisition tool

̂C

④ Enforcing /
relaxing noise
independence

Random probing compiler: replaces each gate by a -share
random probing secure gadget

n
(p, ε)−

Methodology
Wrap-up

17

Characterization

⑥ Compilation

Random
probing
compiler

Implementation
on device

Circuit C Practically
secure

implementation

Test of data
isolation for

each pair

Ok

Addition of
whitening Nok

③ Characterizing
the leakage

Security level λ

Probability
p

② Enforcing / relaxing data isolation

①
Implementing

elementary
operations

Implemented gates ⑤ Estimating the
noisy leakage

parameter
Device Gates

Side-channel
acquisition tool

̂C

④ Enforcing /
relaxing noise
independence

Random probing compiler: replaces each gate by a -share
random probing secure gadget

n
(p, ε)−

Limitations / Questions

18

Limitations / Questions

18

• Noise levels are critical for security levels we test a component and show that it is not
suited for the use-case

→

Limitations / Questions

18

• Noise levels are critical for security levels we test a component and show that it is not
suited for the use-case

→

• How to achieve high physical noise when designing hardware?

Limitations / Questions

18

• Noise levels are critical for security levels we test a component and show that it is not
suited for the use-case

→

• How to achieve high physical noise when designing hardware?

• Can we make leakage models and security proofs tighter?

Limitations / Questions

18

• Noise levels are critical for security levels we test a component and show that it is not
suited for the use-case

→

• How to achieve high physical noise when designing hardware?

• Can we make leakage models and security proofs tighter?

• Can we solve the remaining limitations of the approach ?

Limitations / Questions

18

• Noise levels are critical for security levels we test a component and show that it is not
suited for the use-case

→

• How to achieve high physical noise when designing hardware?

• Can we make leakage models and security proofs tighter?

• Can we solve the remaining limitations of the approach ?

• …

19

Thank you !

Any questions ?

https://eprint.iacr.org/2023/1198

