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Masked Implementation

Leakage detection 
using statistical 

analysis

Mounting well-
known attacks from 

the literature

Infer security 
level

How to have formal security guarantees ?
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Memory

execute op. 1

read ⃗x1

write ⃗y1

execute op. k

read ⃗xk

write ⃗yk

⋮

Leaks f1( ⃗x1)

Leaks fk( ⃗xk)

 is a -noisy functionfi δdeterministic leakage 
of each variable + 

physical noise

High δ High leakage
Low δ Low leakage
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⃗x1 ⃗x2 ⃗x3 ⃗x4

op. 1 op. 2 op. 3 op. 4

Sequential execution 
of operations

Leakage only 
on ⃗x1

Leakage only 
on ⃗x2

Leakage only 
on ⃗x3

Leakage only 
on ⃗x4

Each operation leaks 
during execution

Data Isolation Assumption: each operation 
leakage only depends on its inputs
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CPU 
register ⃗x1

write ⃗x1 write ⃗x2 ⃗x2

Transition 
effect

Leakage depends 
on ⃗x1 ⊕ ⃗x2

Physical effects break the 
data isolation assumption

Physical Assumptions & Issues
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⃗x1 ⃗x2 ⃗x3 ⃗x4

op. 1 op. 2 op. 3 op. 4

Noise 1

Physical noise occurs during 
side-channel acquisitions

Noise Independence Assumption: each 
noise is independent of the others

Noise 2 Noise 3 Noise 4

Physical Assumptions & Issues

Sequential execution 
of operations
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deterministic leakage⃗d ( ⃗x ) = (d1, …, d400)
+

Noise drawn from multivariate Gaussian 
distribution 


.
𝒩( ⃗0 , Σ)

⃗z = (z1, …, z400)

Multivariate noise breaks 
the noise independence 

assumption

Physical Assumptions & Issues
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Abstract 
circuit C

Noisy Leakage 
Model

 bits of 
theoretical security

λ Implementation 
on a device

Methodology to preserve the 
security level for an 

implementation on a device

Implement abstract 
gates on a device

Enforce / Relax 
data isolation

Characterize the 
leakage distribution

Enforce / Relax noise 
indepencence

Estimate the noisy 
leakage parameter  

tolerated by the device
δCompile the 

implementation
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Leakage of an operation must 
only depend on its inputs use data whitening

operation_1(a1, b1)

operation_2(a2, b2)

whitening()

whitening()

clean data path 
and registers from 

previous calls Effectiveness depends on 
CPU micro-architecture

Example: call same operation 
with random inputs

How to check if it works ? we propose a novel statistical test to 
(in)validate the assumption on a device
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Extensively studied in the literature

Operation with input ⃗x
Leakage 

⃗y = ⃗d ( ⃗x ) + 𝒩( ⃗0 , Σ)

Infer  for each time sample di( ⋅ ) i1

2

Linear Regression

Machine Learning


…

Compute the covariance matrix Σ
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operation_1
operation_2
operation_3

start

end

Leakage 
trace
⃗Y

 =  +  +  + ⃗Y ⃗S1
⃗S2

⃗S3
⃗N

Split 

instead of having time-separated noises

⃗N = ⃗N1 + ⃗N2 + ⃗N3 Trivial: ⃗Ni =
1
3

⃗N

Drawback: more operations  less noise on each operation  more 
leakage  lower security level in the leakage models

⟹ ⟹
⟹

Optimization problem: how to rewrite , such as to 
minimize the information leakage of the different operations ?

⃗N = ⃗N1 + ⃗N2 + ⃗N3
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Efficient way to compute  on a deviceδ

random probing security(p, ε)− noisy leakage securityδ−⟹

Infer tolerated leakage probability  by the devicep

Which random probing secure gadgets from the literature can be 
used on the device

Best gadgets from the 
literature tolerate p ≈ 2−7
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Thank you !

Any questions ?

https://eprint.iacr.org/2023/1198


