Benchmarking Quantum-Resistant Authenti nation in IoT

Clémentine Gritti
Postdoe Research Fellow at Eurecom

Journées C2

19 October 2023

Who I am

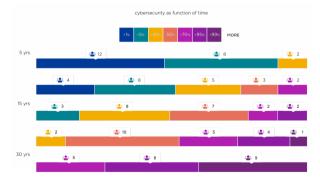
- Currently a research fellow at Eurecom in France:
 - ► Fault-tolerant and asynchronous Secure Aggregation for privacy-preserving Federated Learning
- Previously a senior lecturer (maîtresse de conférences) at the University of Canterbury in New Zealand:
 - Research project between NZ and Australia on Post-Quantum Cryptography (PQC)

Today presentation

Ongoing research from my NZ-based PhD student:

- Personal context:
 - Research on PQC initiated in NZ from trans-Tasman project
 - Still the main supervisor
- International context:
 - PQC has attracted attention over the past few years
 - NIST standardisation

Plan


Post-Quantum Cryptography in IoT

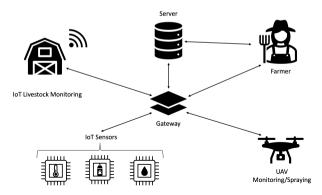
Implementation and Experiments

Results and Discussion

Quantum computing: a real threat?

- ▶ In 2 or 3 decades?
- IBM's 433-qubit Osprey Quantum Computer
- ▶ IBM has promised a 1,121-qubit processor in a near future

Challenges


- Cryptographic algorithms built from maths problems seen as hard to solve:
 - Integer factorisation problem
 - Discrete log problem
- ▶ Those problems would be solved by a quantum computer:
 - ► Shor's algorithm
- ▶ Need for cryptographic algorithms considered as quantum resistant:
 - ▶ NIST standards: CRYSTALS-Kyber and -Dilithium, FALCON and SPHINCS+

PQC vs IoT

- ► Internet of Things:
 - ► Constrained resources (computation, communication and storage)
 - Low security
 - Simple design and heterogeneity
 - More and more devices and more and more manufacturers
- ► Post-Quantum Cryptography:
 - Bigger component sizes
 - ► Heavier computations
 - ricavici computations
- Could we deploy PQC in IoT straightforwardly?

IoT use case

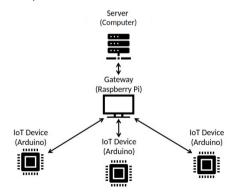
- Sensors sign their collected data
- ▶ The gateway verifies sensors' signatures
- ► The server manages the framework (e.g. key management)

Plan

Post-Quantum Cryptography in IoT

Implementation and Experiments

Results and Discussion


Our choice: CRYSTALS-Dilithium

- Based on lattices
- Being standardized
- Small components
- Good performance
- ▶ Why not FALCON?
 - Smaller parameter sizes but complex (floating-point) calculations
 - ▶ Error occurence and floating-point arithmetic implemented in software

Model of interaction

3-layer model:

- ▶ Device—gateway communication
- Gateway—server (cloud) communication

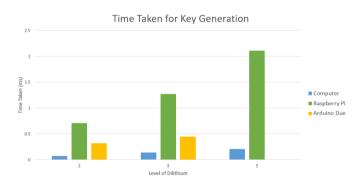
Implementation details

- Device and machine specification:
 - ► Device: Arduino Due
 - Gateway: Raspberry Pi 4 Model B
 - Server: computer Apple MacBook Pro
- Optimization specification:
 - Arduino Due: cortex-M
 - Raspberry Pi: Neon
 - Computer: Advanced Vector eXtensions 2 (AVX2)

https://github.com/dilithium-cortexm/dilithium-cortexm https://github.com/neon-ntt/neon-ntt https://github.com/pq-crystals/dilithium.git

Experiment details

- ► Raspberry Pi and computer:
 - ► Optimizations + reference implementation
 - Running time and RAM usage
 - All security levels (i.e. 2, 3 and 5)
 - 100 times
- Arduino Due:
 - Only optimization
 - Running time and RAM usage
 - ► Security levels 2 and 3 (level 5 is too resource-intensive)
 - 1000 times


Plan

Post-Quantum Cryptography in IoT

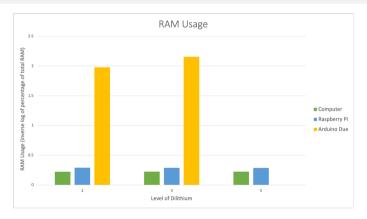
Implementation and Experiments

Results and Discussion

Running time: key generation

- ► Higher security level → longer running times
 - ▶ In particular for the Raspberry Pi

Running time: signature generation


- ▶ Signing takes more time with the Arduino Due than other device/machine
- But still under 5 ms

Running time: signature verification

► Timing results similar to key generation

RAM usage

- ► Limited RAM on Arduino Due (96 KB)
- ▶ Optimization stack size at about 1/3 of the RAM

Summary

- ► Running times and RAM usages increase with security levels and depend on type of device/machine as expected
- Optimizations offer better results than reference implementation as expected
- CRYSTALS-Dilithium can be run on Arduino Due but not great yet?
 - Since GPU et CPU double every 3-4 years, focusing on the Raspberry Pi instead?
 - Expecting better optimizations?

Thank you! Questions?