Benchmarking Quantum-Resistant Authentication in IoT

Clémentine Gritti
Postdoc Research Fellow at Eurecom

Journées C2

19 October 2023
Who I am

- Currently a research fellow at Eurecom in France:
 - Fault-tolerant and asynchronous Secure Aggregation for privacy-preserving Federated Learning
- Previously a senior lecturer (maîtresse de conférences) at the University of Canterbury in New Zealand:
 - Research project between NZ and Australia on Post-Quantum Cryptography (PQC)
Ongoing research from my NZ-based PhD student:

▶ **Personal context:**
 ▶ Research on PQC initiated in NZ from trans-Tasman project
 ▶ Still the main supervisor

▶ **International context:**
 ▶ PQC has attracted attention over the past few years
 ▶ NIST standardisation
Plan

Post-Quantum Cryptography in IoT

Implementation and Experiments

Results and Discussion
Quantum computing: a real threat?

► In 2 or 3 decades?
► IBM’s 433-qubit Osprey Quantum Computer
► IBM has promised a 1,121-qubit processor in a near future
Challenges

- Cryptographic algorithms built from maths problems seen as hard to solve:
 - Integer factorisation problem
 - Discrete log problem
- Those problems would be solved by a quantum computer:
 - Shor’s algorithm
- Need for cryptographic algorithms considered as quantum resistant:
 - **NIST standards**: CRYSTALS-Kyber and -Dilithium, FALCON and SPHINCS+
PQC vs IoT

▶ Internet of Things:
 ▶ Constrained resources (computation, communication and storage)
 ▶ Low security
 ▶ Simple design and heterogeneity
 ▶ More and more devices and more and more manufacturers

▶ Post-Quantum Cryptography:
 ▶ Bigger component sizes
 ▶ Heavier computations

▶ Could we deploy PQC in IoT straightforwardly?
IoT use case

▸ Sensors sign their collected data
▸ The gateway verifies sensors’ signatures
▸ The server manages the framework (e.g. key management)
Plan

Post-Quantum Cryptography in IoT

Implementation and Experiments

Results and Discussion
Our choice: CRYSTALS-Dilithium

- Based on lattices
- Being standardized
- Small components
- Good performance
- Why not FALCON?
 - Smaller parameter sizes but complex (floating-point) calculations
 - Error occurrence and floating-point arithmetic implemented in software
Model of interaction

3-layer model:

- Device–gateway communication
- Gateway–server (cloud) communication
Implementation details

- **Device and machine specification:**
 - **Device:** Arduino Due
 - **Gateway:** Raspberry Pi 4 Model B
 - **Server:** computer Apple MacBook Pro

- **Optimization specification:**
 - **Arduino Due:** cortex-M
 - **Raspberry Pi:** Neon
 - **Computer:** Advanced Vector eXtensions 2 (AVX2)

https://github.com/dilithium-cortexm/dilithium-cortexm
https://github.com/neon-ntt/neon-ntt
https://github.com/pq-crystals/dilithium.git
Experiment details

- **Raspberry Pi and computer:**
 - Optimizations + reference implementation
 - Running time and RAM usage
 - All security levels (i.e. 2, 3 and 5)
 - 100 times

- **Arduino Due:**
 - Only optimization
 - Running time and RAM usage
 - Security levels 2 and 3 (level 5 is too resource-intensive)
 - 1000 times
Plan

Post-Quantum Cryptography in IoT

Implementation and Experiments

Results and Discussion
Running time: key generation

Higher security level → longer running times
 In particular for the Raspberry Pi
Results and Discussion

Running time: signature generation

- Signing takes more time with the Arduino Due than other device/machine
- But still under 5 ms
Running time: signature verification

- Timing results similar to key generation
Results and Discussion

RAM usage

- Limited RAM on Arduino Due (96 KB)
- Optimization stack size at about 1/3 of the RAM
Summary

- Running times and RAM usages increase with security levels and depend on type of device/machine as expected
- Optimizations offer better results than reference implementation as expected
- CRYSTALS-Dilithium can be run on Arduino Due but not great yet?
 - Since GPU and CPU double every 3-4 years, focusing on the Raspberry Pi instead?
 - Expecting better optimizations?

Thank you!
Questions?

Summarizing CPU and GPU design trends with product data, Y. Sun et al., arXiv:1911.11313, 2019