
Complexity estimator for masking gadgets

Laurent Imbert1, Camille Mutschler1,2 & Thomas Roche2

1LIRMM, Univ. Montpellier, CNRS, France
2NinjaLab, Montpellier, France

October 19, 2023

Journées C2

Complexity estimator for masking gadgets / C. Mutschler 1/ 18



Summary

Introduction to Kyber
The NIST PQC Standardization Process and Kyber

Masking Kyber
Introduction to Masking
Masking Kyber
The compression function

Complexity of the masked algorithms
The problem of current gadget estimates
Our Gadget Estimation Tool
Some results

Complexity estimator for masking gadgets / C. Mutschler 2/ 18



The NIST PQC Standardization Process
I 2016: NIST Post-Quantum Standardization Process

I July 2022: Kyber chosen to be standardized

Kyber is:
I A Key Encapsulation Mechanism
I It’s security is based on the lattice problem Learning With Errors (LWE)
I It works with polynomials with 256 coefficients in Fq, with q = 3329, a prime

number

Focus on Kyber’s decapsulation.
Information leaks⇒must be protected against side channel attacks

Complexity estimator for masking gadgets / C. Mutschler 3/ 18



The NIST PQC Standardization Process
I 2016: NIST Post-Quantum Standardization Process
I July 2022: Kyber chosen to be standardized

Kyber is:
I A Key Encapsulation Mechanism
I It’s security is based on the lattice problem Learning With Errors (LWE)
I It works with polynomials with 256 coefficients in Fq, with q = 3329, a prime

number

Focus on Kyber’s decapsulation.
Information leaks⇒must be protected against side channel attacks

Complexity estimator for masking gadgets / C. Mutschler 3/ 18



The NIST PQC Standardization Process
I 2016: NIST Post-Quantum Standardization Process
I July 2022: Kyber chosen to be standardized

Kyber is:

I A Key Encapsulation Mechanism
I It’s security is based on the lattice problem Learning With Errors (LWE)
I It works with polynomials with 256 coefficients in Fq, with q = 3329, a prime

number

Focus on Kyber’s decapsulation.
Information leaks⇒must be protected against side channel attacks

Complexity estimator for masking gadgets / C. Mutschler 3/ 18



The NIST PQC Standardization Process
I 2016: NIST Post-Quantum Standardization Process
I July 2022: Kyber chosen to be standardized

Kyber is:
I A Key Encapsulation Mechanism

I It’s security is based on the lattice problem Learning With Errors (LWE)
I It works with polynomials with 256 coefficients in Fq, with q = 3329, a prime

number

Focus on Kyber’s decapsulation.
Information leaks⇒must be protected against side channel attacks

Complexity estimator for masking gadgets / C. Mutschler 3/ 18



The NIST PQC Standardization Process
I 2016: NIST Post-Quantum Standardization Process
I July 2022: Kyber chosen to be standardized

Kyber is:
I A Key Encapsulation Mechanism
I It’s security is based on the lattice problem Learning With Errors (LWE)

I It works with polynomials with 256 coefficients in Fq, with q = 3329, a prime
number

Focus on Kyber’s decapsulation.
Information leaks⇒must be protected against side channel attacks

Complexity estimator for masking gadgets / C. Mutschler 3/ 18



The NIST PQC Standardization Process
I 2016: NIST Post-Quantum Standardization Process
I July 2022: Kyber chosen to be standardized

Kyber is:
I A Key Encapsulation Mechanism
I It’s security is based on the lattice problem Learning With Errors (LWE)
I It works with polynomials with 256 coefficients in Fq, with q = 3329, a prime

number

Focus on Kyber’s decapsulation.
Information leaks⇒must be protected against side channel attacks

Complexity estimator for masking gadgets / C. Mutschler 3/ 18



The NIST PQC Standardization Process
I 2016: NIST Post-Quantum Standardization Process
I July 2022: Kyber chosen to be standardized

Kyber is:
I A Key Encapsulation Mechanism
I It’s security is based on the lattice problem Learning With Errors (LWE)
I It works with polynomials with 256 coefficients in Fq, with q = 3329, a prime

number

Focus on Kyber’s decapsulation.
Information leaks⇒must be protected against side channel attacks

Complexity estimator for masking gadgets / C. Mutschler 3/ 18



Masking

Masking consist on splitting a value into multiple shares and transform the
underlying circuit to process these shared variables securely.

Let x ∈ Fq. Here is an example of first-order masking (n=2 shares):

Boolean masking: x = x1 ⊕ x2

Arithmetic masking: x ≡ x1 + x2 (mod q)

We represent a masked value x as the n-tuple (x1, x2, . . . , xn).

Complexity estimator for masking gadgets / C. Mutschler 4/ 18



Masking

Masking consist on splitting a value into multiple shares and transform the
underlying circuit to process these shared variables securely.

Let x ∈ Fq. Here is an example of first-order masking (n=2 shares):

Boolean masking: x = x1 ⊕ x2

Arithmetic masking: x ≡ x1 + x2 (mod q)

We represent a masked value x as the n-tuple (x1, x2, . . . , xn).

Complexity estimator for masking gadgets / C. Mutschler 4/ 18



Masking gadgets

The masked variant of the circuits is called a masking gadget. Their complexity
depends on the masking order.

We have masking gadgets that allow us to compute the addition (O(n)) and the
multiplication (O(n2)) in a secure way.

There exists masking gadgets for mask conversion: (x1, x2)⇒ (x ′1, x
′
2), such that:

Boolean to arithmetic (B2A): x1⊕ x2 = x ⇒ x ′1 + x ′2 ≡ x (mod q)

Arithmetic to boolean (A2B): x1 + x2 ≡ x (mod q) ⇒ x ′1 ⊕ x ′2 = x

⇒ Conversions are very expensive, more than the multiplication.

Complexity estimator for masking gadgets / C. Mutschler 5/ 18



Masking gadgets

The masked variant of the circuits is called a masking gadget. Their complexity
depends on the masking order.

We have masking gadgets that allow us to compute the addition (O(n)) and the
multiplication (O(n2)) in a secure way.

There exists masking gadgets for mask conversion: (x1, x2)⇒ (x ′1, x
′
2), such that:

Boolean to arithmetic (B2A): x1⊕ x2 = x ⇒ x ′1 + x ′2 ≡ x (mod q)

Arithmetic to boolean (A2B): x1 + x2 ≡ x (mod q) ⇒ x ′1 ⊕ x ′2 = x

⇒ Conversions are very expensive, more than the multiplication.

Complexity estimator for masking gadgets / C. Mutschler 5/ 18



Masking gadgets

The masked variant of the circuits is called a masking gadget. Their complexity
depends on the masking order.

We have masking gadgets that allow us to compute the addition (O(n)) and the
multiplication (O(n2)) in a secure way.

There exists masking gadgets for mask conversion: (x1, x2)⇒ (x ′1, x
′
2), such that:

Boolean to arithmetic (B2A): x1⊕ x2 = x ⇒ x ′1 + x ′2 ≡ x (mod q)

Arithmetic to boolean (A2B): x1 + x2 ≡ x (mod q) ⇒ x ′1 ⊕ x ′2 = x

⇒ Conversions are very expensive, more than the multiplication.

Complexity estimator for masking gadgets / C. Mutschler 5/ 18



Masking Kyber

c Decompress

NTT
u

v − sTu
−

v

◦

ŝ

NTT−1

Compressq,1 G
m′

Decompressq,1

PRFr ′

PRF

PRF

CBDη1

CBDη2

CBDη2

NTT
r′ ◦r̂′

Â

◦t̂

NTT−1

NTT−1

+
e′1

+
e′2

+

u′

v ′
Comparison

c

KDF

1 (if c = c′)

HK̄ ′
c

KDF

0 (if c 6= c′)

H

c

z

K

K

Public value

Masked value

No masking

Arithmetic masking

Boolean masking

One of the most expensive parts is the compression as
it requires doing mask conversion.

Complexity estimator for masking gadgets / C. Mutschler 6/ 18



Masking Kyber

c Decompress

NTT
u

v − sTu
−

v

◦

ŝ

NTT−1

Compressq,1 G
m′

Decompressq,1

PRFr ′

PRF

PRF

CBDη1

CBDη2

CBDη2

NTT
r′ ◦r̂′

Â

◦t̂

NTT−1

NTT−1

+
e′1

+
e′2

+

u′

v ′
Comparison

c

KDF

1 (if c = c′)

HK̄ ′
c

KDF

0 (if c 6= c′)

H

c

z

K

K

Public value

Masked value

No masking

Arithmetic masking

Boolean masking

One of the most expensive parts is the compression as
it requires doing mask conversion.

Complexity estimator for masking gadgets / C. Mutschler 6/ 18



The compression function

Let x ∈ Fq:

Compressq,d(x) =
⌊

2d · x
q

⌉
mod 2d

For d = 1 bit:

Compressq,1(x) =
⌊

2 · x
q

⌉
mod 2 =

{
1 if q

4 < x < 3q
4 ,

0 otherwise.

I Hard to mask: we don’t know how to perform a comparison in arithmetic
masking

I Possible to do comparisons in boolean masking with some tricks

Complexity estimator for masking gadgets / C. Mutschler 7/ 18



The compression function

Let x ∈ Fq:

Compressq,d(x) =
⌊

2d · x
q

⌉
mod 2d

For d = 1 bit:

Compressq,1(x) =
⌊

2 · x
q

⌉
mod 2 =

{
1 if q

4 < x < 3q
4 ,

0 otherwise.

I Hard to mask: we don’t know how to perform a comparison in arithmetic
masking

I Possible to do comparisons in boolean masking with some tricks

Complexity estimator for masking gadgets / C. Mutschler 7/ 18



Compression masking gadgets

A number of masking gadgets have been proposed for masked compression.
Each has its own characteristics:

I Some gadgets work only with n = 2 shares, while others work with any value of
n

I Some gadgets have been designed to do compression only to 1 bit, while
others have been designed to do compression to d bits, for all d ∈ N

I Some gadgets use optimizations:
I Table-based optimizations
I Bitslicing

This wide variety of gadgets performing masked compression can make
comparison difficult.

Complexity estimator for masking gadgets / C. Mutschler 8/ 18



Complexity of the masked algorithms

There’s a large heterogeneity of complexity estimates in the literature.

These estimates are either:

I Too high-level: asymptotic complexity, complexity in number of operations
I Too low-level: implementations on specific chips

Too high-level⇒ Do not give very interesting information in practice

Exemple: Complexity of the masked compression in O(n2 log logq)
→ n = number of shares (in practice 2 or 3 !)
→ logq = 12 for Kyber

Too low-level⇒ Not very comparable from one work to another

Complexity estimator for masking gadgets / C. Mutschler 9/ 18



Complexity of the masked algorithms

There’s a large heterogeneity of complexity estimates in the literature.

These estimates are either:
I Too high-level: asymptotic complexity, complexity in number of operations

I Too low-level: implementations on specific chips

Too high-level⇒ Do not give very interesting information in practice

Exemple: Complexity of the masked compression in O(n2 log logq)
→ n = number of shares (in practice 2 or 3 !)
→ logq = 12 for Kyber

Too low-level⇒ Not very comparable from one work to another

Complexity estimator for masking gadgets / C. Mutschler 9/ 18



Complexity of the masked algorithms

There’s a large heterogeneity of complexity estimates in the literature.

These estimates are either:
I Too high-level: asymptotic complexity, complexity in number of operations
I Too low-level: implementations on specific chips

Too high-level⇒ Do not give very interesting information in practice

Exemple: Complexity of the masked compression in O(n2 log logq)
→ n = number of shares (in practice 2 or 3 !)
→ logq = 12 for Kyber

Too low-level⇒ Not very comparable from one work to another

Complexity estimator for masking gadgets / C. Mutschler 9/ 18



Complexity of the masked algorithms

There’s a large heterogeneity of complexity estimates in the literature.

These estimates are either:
I Too high-level: asymptotic complexity, complexity in number of operations
I Too low-level: implementations on specific chips

Too high-level⇒ Do not give very interesting information in practice

Exemple: Complexity of the masked compression in O(n2 log logq)
→ n = number of shares (in practice 2 or 3 !)
→ logq = 12 for Kyber

Too low-level⇒ Not very comparable from one work to another

Complexity estimator for masking gadgets / C. Mutschler 9/ 18



Complexity of the masked algorithms

There’s a large heterogeneity of complexity estimates in the literature.

These estimates are either:
I Too high-level: asymptotic complexity, complexity in number of operations
I Too low-level: implementations on specific chips

Too high-level⇒ Do not give very interesting information in practice

Exemple: Complexity of the masked compression in O(n2 log logq)
→ n = number of shares (in practice 2 or 3 !)
→ logq = 12 for Kyber

Too low-level⇒ Not very comparable from one work to another

Complexity estimator for masking gadgets / C. Mutschler 9/ 18



Complexity of the masked algorithms

There’s a large heterogeneity of complexity estimates in the literature.

These estimates are either:
I Too high-level: asymptotic complexity, complexity in number of operations
I Too low-level: implementations on specific chips

Too high-level⇒ Do not give very interesting information in practice

Exemple: Complexity of the masked compression in O(n2 log logq)
→ n = number of shares (in practice 2 or 3 !)
→ logq = 12 for Kyber

Too low-level⇒ Not very comparable from one work to another

Complexity estimator for masking gadgets / C. Mutschler 9/ 18



Our idea for a better complexity estimation

Idea: Find the right level of abstraction to estimate the complexity of these
algorithms, in order to:

I Take into account the constraints of a component like:
I Size of registers
I Size of memory
I Etc,...

I Remaining sufficiently simple for a ”high-level” comparison of the proposals

For all the existing proposals in the literature, we want to:
I Estimate the complexities of the algorithms with our new methods.

Goal: develop a tool that estimates the complexities of all existing proposals
with respect to a “simple” model of microcontroller.

I Provide a comparison of the existing masking methods on different “standard
microcontroller”

Complexity estimator for masking gadgets / C. Mutschler 10/ 18



Our idea for a better complexity estimation

Idea: Find the right level of abstraction to estimate the complexity of these
algorithms, in order to:
I Take into account the constraints of a component like:

I Size of registers
I Size of memory
I Etc,...

I Remaining sufficiently simple for a ”high-level” comparison of the proposals

For all the existing proposals in the literature, we want to:
I Estimate the complexities of the algorithms with our new methods.

Goal: develop a tool that estimates the complexities of all existing proposals
with respect to a “simple” model of microcontroller.

I Provide a comparison of the existing masking methods on different “standard
microcontroller”

Complexity estimator for masking gadgets / C. Mutschler 10/ 18



Our idea for a better complexity estimation

Idea: Find the right level of abstraction to estimate the complexity of these
algorithms, in order to:
I Take into account the constraints of a component like:

I Size of registers
I Size of memory
I Etc,...

I Remaining sufficiently simple for a ”high-level” comparison of the proposals

For all the existing proposals in the literature, we want to:
I Estimate the complexities of the algorithms with our new methods.

Goal: develop a tool that estimates the complexities of all existing proposals
with respect to a “simple” model of microcontroller.

I Provide a comparison of the existing masking methods on different “standard
microcontroller”

Complexity estimator for masking gadgets / C. Mutschler 10/ 18



Our idea for a better complexity estimation

Idea: Find the right level of abstraction to estimate the complexity of these
algorithms, in order to:
I Take into account the constraints of a component like:

I Size of registers
I Size of memory
I Etc,...

I Remaining sufficiently simple for a ”high-level” comparison of the proposals

For all the existing proposals in the literature, we want to:

I Estimate the complexities of the algorithms with our new methods.
Goal: develop a tool that estimates the complexities of all existing proposals
with respect to a “simple” model of microcontroller.

I Provide a comparison of the existing masking methods on different “standard
microcontroller”

Complexity estimator for masking gadgets / C. Mutschler 10/ 18



Our idea for a better complexity estimation

Idea: Find the right level of abstraction to estimate the complexity of these
algorithms, in order to:
I Take into account the constraints of a component like:

I Size of registers
I Size of memory
I Etc,...

I Remaining sufficiently simple for a ”high-level” comparison of the proposals

For all the existing proposals in the literature, we want to:
I Estimate the complexities of the algorithms with our new methods.

Goal: develop a tool that estimates the complexities of all existing proposals
with respect to a “simple” model of microcontroller.

I Provide a comparison of the existing masking methods on different “standard
microcontroller”

Complexity estimator for masking gadgets / C. Mutschler 10/ 18



Our idea for a better complexity estimation

Idea: Find the right level of abstraction to estimate the complexity of these
algorithms, in order to:
I Take into account the constraints of a component like:

I Size of registers
I Size of memory
I Etc,...

I Remaining sufficiently simple for a ”high-level” comparison of the proposals

For all the existing proposals in the literature, we want to:
I Estimate the complexities of the algorithms with our new methods.

Goal: develop a tool that estimates the complexities of all existing proposals
with respect to a “simple” model of microcontroller.

I Provide a comparison of the existing masking methods on different “standard
microcontroller”

Complexity estimator for masking gadgets / C. Mutschler 10/ 18



Our Estimation Tool

To build our gadget estimation tool, we worked on:

I The representation of the gadgets
I Defining the masking parameters

I Number of shares
I Size of the shares (in bits)

I Modeling a ”microcontroller”
I Memory space (in bits)
I Sum of register space (in bits)
I Cost of atomic operations in CPU cycles (Assembly instructions, random value

generation, etc.)

We have associated 2 types of estimation functions with each gadget:
I a memory cost estimation function
I a performance estimation function

Complexity estimator for masking gadgets / C. Mutschler 11/ 18



Our Estimation Tool

To build our gadget estimation tool, we worked on:
I The representation of the gadgets

I Defining the masking parameters
I Number of shares
I Size of the shares (in bits)

I Modeling a ”microcontroller”
I Memory space (in bits)
I Sum of register space (in bits)
I Cost of atomic operations in CPU cycles (Assembly instructions, random value

generation, etc.)

We have associated 2 types of estimation functions with each gadget:
I a memory cost estimation function
I a performance estimation function

Complexity estimator for masking gadgets / C. Mutschler 11/ 18



Our Estimation Tool

To build our gadget estimation tool, we worked on:
I The representation of the gadgets
I Defining the masking parameters

I Number of shares
I Size of the shares (in bits)

I Modeling a ”microcontroller”
I Memory space (in bits)
I Sum of register space (in bits)
I Cost of atomic operations in CPU cycles (Assembly instructions, random value

generation, etc.)

We have associated 2 types of estimation functions with each gadget:
I a memory cost estimation function
I a performance estimation function

Complexity estimator for masking gadgets / C. Mutschler 11/ 18



Our Estimation Tool

To build our gadget estimation tool, we worked on:
I The representation of the gadgets
I Defining the masking parameters

I Number of shares
I Size of the shares (in bits)

I Modeling a ”microcontroller”
I Memory space (in bits)
I Sum of register space (in bits)
I Cost of atomic operations in CPU cycles (Assembly instructions, random value

generation, etc.)

We have associated 2 types of estimation functions with each gadget:
I a memory cost estimation function
I a performance estimation function

Complexity estimator for masking gadgets / C. Mutschler 11/ 18



Our Estimation Tool

To build our gadget estimation tool, we worked on:
I The representation of the gadgets
I Defining the masking parameters

I Number of shares
I Size of the shares (in bits)

I Modeling a ”microcontroller”
I Memory space (in bits)
I Sum of register space (in bits)
I Cost of atomic operations in CPU cycles (Assembly instructions, random value

generation, etc.)

We have associated 2 types of estimation functions with each gadget:
I a memory cost estimation function
I a performance estimation function

Complexity estimator for masking gadgets / C. Mutschler 11/ 18



Memory cost estimation function

Aim:
I Take into account the critical memory path of the memory to estimate the

maximum memory space the gadget will need to run

This function is used to:
I Check that the microcontroller we’ve modeled has enough memory to run

the gadget
I Check whether the data manipulated in the gadget can be stored in registers

or whether they must be stored in memory

If data has to be stored in memory, this can mean additional performance costs
due the use of load and store operations.

Complexity estimator for masking gadgets / C. Mutschler 12/ 18



Performance estimation functions

Aim:
I Estimate the cost of a gadget based on the CPU cycles assigned to each

atomic operation performed by the gadget and linked to the microcontroller
on which it is to be estimated

The particularity of this estimation:
I Some negligible costs are not included in our estimations

I Ex: Loop operations such as incrementing a counter

I We’ve built all our performance estimation functions in the same way to
ensure consistency and comparability between our gadgets

Since we don’t take into account all operations, we say that our estimations are
calculated in CPU cycle equivalent (CCE).

Complexity estimator for masking gadgets / C. Mutschler 13/ 18



Performance estimation functions

Aim:
I Estimate the cost of a gadget based on the CPU cycles assigned to each

atomic operation performed by the gadget and linked to the microcontroller
on which it is to be estimated

The particularity of this estimation:
I Some negligible costs are not included in our estimations

I Ex: Loop operations such as incrementing a counter

I We’ve built all our performance estimation functions in the same way to
ensure consistency and comparability between our gadgets

Since we don’t take into account all operations, we say that our estimations are
calculated in CPU cycle equivalent (CCE).

Complexity estimator for masking gadgets / C. Mutschler 13/ 18



Performance estimation functions

Aim:
I Estimate the cost of a gadget based on the CPU cycles assigned to each

atomic operation performed by the gadget and linked to the microcontroller
on which it is to be estimated

The particularity of this estimation:
I Some negligible costs are not included in our estimations

I Ex: Loop operations such as incrementing a counter

I We’ve built all our performance estimation functions in the same way to
ensure consistency and comparability between our gadgets

Since we don’t take into account all operations, we say that our estimations are
calculated in CPU cycle equivalent (CCE).

Complexity estimator for masking gadgets / C. Mutschler 13/ 18



Example: Table-based A2B conversion
Gadget: Secure A2B-1bit conversion from [CGMZ22], on 6-bit inputs.
Sum of register space: 416 bits.

Figure: Memory cost estimation Figure: Performance estimation

Complexity estimator for masking gadgets / C. Mutschler 14/ 18



Comparison of several compression gadgets

Figure: Performance estimation of various Masked
Compression (with rand generation = 32, for 256
coefficients), on a modelled Cortex M3

Complexity:
I BosGRSV21: O(n2 log2(log2 q))

I CoronGMZ22 13: O(n2)

I BronchainC22: O(dlog2(q · n)en2)

Complexity estimator for masking gadgets / C. Mutschler 15/ 18



Comparison of several compression gadgets

Figure: A closer look at the two most effective masked compression gadgets in the literature

Complexity estimator for masking gadgets / C. Mutschler 16/ 18



Conclusion

This tool will be publicly available.
I It will be possible for everyone to work on it, and give us feedback on things

that could be improved

Limitations and idea for future improvements:
I It’s difficult to make our estimates homogeneous for all gadgets with the way

we’ve chosen to model a microcontroller and build our estimation functions
I Take into account gadget security (NI, SNI, PINI) to estimate the security of a

gadget and evaluate gadget composability

Last but not least:
I We’re currently looking for a name for our estimating tool, so if you have any

ideas, please let us know! :)

Complexity estimator for masking gadgets / C. Mutschler 17/ 18



Conclusion

This tool will be publicly available.
I It will be possible for everyone to work on it, and give us feedback on things

that could be improved

Limitations and idea for future improvements:
I It’s difficult to make our estimates homogeneous for all gadgets with the way

we’ve chosen to model a microcontroller and build our estimation functions
I Take into account gadget security (NI, SNI, PINI) to estimate the security of a

gadget and evaluate gadget composability

Last but not least:
I We’re currently looking for a name for our estimating tool, so if you have any

ideas, please let us know! :)

Complexity estimator for masking gadgets / C. Mutschler 17/ 18



Conclusion

This tool will be publicly available.
I It will be possible for everyone to work on it, and give us feedback on things

that could be improved

Limitations and idea for future improvements:
I It’s difficult to make our estimates homogeneous for all gadgets with the way

we’ve chosen to model a microcontroller and build our estimation functions
I Take into account gadget security (NI, SNI, PINI) to estimate the security of a

gadget and evaluate gadget composability

Last but not least:
I We’re currently looking for a name for our estimating tool, so if you have any

ideas, please let us know! :)

Complexity estimator for masking gadgets / C. Mutschler 17/ 18



Conclusion

This tool will be publicly available.
I It will be possible for everyone to work on it, and give us feedback on things

that could be improved

Limitations and idea for future improvements:
I It’s difficult to make our estimates homogeneous for all gadgets with the way

we’ve chosen to model a microcontroller and build our estimation functions
I Take into account gadget security (NI, SNI, PINI) to estimate the security of a

gadget and evaluate gadget composability

Last but not least:
I We’re currently looking for a name for our estimating tool, so if you have any

ideas, please let us know! :)

Complexity estimator for masking gadgets / C. Mutschler 17/ 18



Thank you for your attention !

Complexity estimator for masking gadgets / C. Mutschler 18/ 18



Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order table-based conversion algorithms and masking lattice-based
encryption.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(2):1–40, 2022.

Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu.
Efficiently masking binomial sampling at arbitrary orders for lattice-based
crypto.
In Dongdai Lin and Kazue Sako, editors, Public-Key Cryptography - PKC 2019 -
22nd IACR International Conference on Practice and Theory of Public-Key
Cryptography, Beijing, China, April 14-17, 2019, Proceedings, Part II, volume
11443 of Lecture Notes in Computer Science, pages 534–564. Springer, 2019.

Complexity estimator for masking gadgets / C. Mutschler 18/ 18


	Introduction to Kyber
	The NIST PQC Standardization Process and Kyber

	Masking Kyber
	Introduction to Masking
	Masking Kyber
	The compression function

	Complexity of the masked algorithms
	The problem of current gadget estimates
	Our Gadget Estimation Tool
	Some results


