
Exploiting Intermediate
Value Leakage in Dilithium:
A Template-Based Approach
Alexandre Berzati1, Andersson Calle Viera1,2,
Maya Chartouny1,3, Steven Madec1,
Damien Vergnaud2, David Vigilant1

Journées C2, 19 october 2023
1 Thales DIS, France
2 Sorbonne Université, France
3 Université Paris-Saclay, France

Outline

1 Introduction
Context
Dilithium

2 Our Profiling Attack on Dilithium
Exploited attack path
Template Attack

3 Countermeasures

4 Conclusion

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
1 / 23

Outline

1 Introduction
Context
Dilithium

2 Our Profiling Attack on Dilithium
Exploited attack path
Template Attack

3 Countermeasures

4 Conclusion

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
2 / 23

Introduction
Quantum threat: Shor’s quantum algorithm can break integer factorization and discrete

logarithm in polynomial time

PQC: Algorithms are currently under standardization with several international initiatives

Importance: These new algorithms will be implemented securely in a variety of use cases

Banking Personal Data Communication

ML-DSA draft specification is derived from Version 3.1 of CRYSTALS-Dilithium (Dilithium)

CRYSTALS-Dilithium is the main PQC signature algorithm, selected in 2022 by the NIST

Our Contribution: Template based exploitation of intermediate value on Dilithium

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
3 / 23

Introduction
Quantum threat: Shor’s quantum algorithm can break integer factorization and discrete

logarithm in polynomial time

PQC: Algorithms are currently under standardization with several international initiatives

Importance: These new algorithms will be implemented securely in a variety of use cases

Banking Personal Data Communication

ML-DSA draft specification is derived from Version 3.1 of CRYSTALS-Dilithium (Dilithium)

CRYSTALS-Dilithium is the main PQC signature algorithm, selected in 2022 by the NIST

Our Contribution: Template based exploitation of intermediate value on Dilithium

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
3 / 23

Introduction
Quantum threat: Shor’s quantum algorithm can break integer factorization and discrete

logarithm in polynomial time

PQC: Algorithms are currently under standardization with several international initiatives

Importance: These new algorithms will be implemented securely in a variety of use cases

Banking Personal Data Communication

ML-DSA draft specification is derived from Version 3.1 of CRYSTALS-Dilithium (Dilithium)

CRYSTALS-Dilithium is the main PQC signature algorithm, selected in 2022 by the NIST

Our Contribution: Template based exploitation of intermediate value on Dilithium

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
3 / 23

Dilithium
• Dilithium: public key signature algorithm

• Based on hard problems on Lattices
M-LWE

M-SIS

• Three security levels: Dilithium-2, Dilithium-3, Dilithium-5

• Two versions: deterministic and randomized

• Recommended as principal PQC signature scheme:
Adjusting security levels is simple
Minimal pk size + sign size
Already some constant time properties

• Advantage: No known efficient algorithm, classical or quantum, can solve these
problems in less than exponential time

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
4 / 23

KeyGen:

Rq = Zq[X]/(Xn + 1)
where n = 28 and
q = 223 − 213 + 1

1 A ∈ Rk×l
q := ExpandA(ρ)

2 (s1, s2) ∈ Sl
η × Sk

η

3 t := A s1 + s2 ∈ Rk
q

4 (t1, t0) := Power2Roundq(t, d)

5 return pk = (ρ, t1), sk = (ρ, s1, s2, t0, H(pk))

tk−1,0 tk−1,1 tk−1,n−2 tk−1,n−1· · ·

tk−2,0 tk−2,1 tk−2,n−2 tk−2,n−1· · ·

· · ·

t1,0 t1,1 t1,n−2 t1,n−1· · ·

t0,0 t0,1 t0,n−2 t0,n−1· · ·

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
5 / 23

KeyGen:

Rq = Zq[X]/(Xn + 1)
where n = 28 and
q = 223 − 213 + 1

1 A ∈ Rk×l
q := ExpandA(ρ)

2 (s1, s2) ∈ Sl
η × Sk

η

3 t := A s1 + s2 ∈ Rk
q

4 (t1, t0) := Power2Roundq(t, d)

5 return pk = (ρ, t1), sk = (ρ, s1, s2, t0, H(pk))

tk−1,0 tk−1,1 tk−1,n−2 tk−1,n−1· · ·

tk−2,0 tk−2,1 tk−2,n−2 tk−2,n−1· · ·

· · ·

t1,0 t1,1 t1,n−2 t1,n−1· · ·

t0,0 t0,1 t0,n−2 t0,n−1· · ·

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
5 / 23

Sign(M, sk):
1 A ∈ Rk×l

q := ExpandA(ρ)

2 µ := H(H(pk) ||M), (z, h) := ⊥
3 while (z, h) = ⊥ do
4 y ∈ S̃l

γ1

5 w := A y
6 w1, w0 := Decomposeq(w, 2 γ2)

7 c ∈ Bτ := H(µ ||w1)

8 z := y + c s1

9 r0 := w0 − c s2

10 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then (z, h) := ⊥
11 else
12 h := MakeHintq(w1, r0 + c t0, 2 γ2)

13 if ∥c t0∥∞ ≥ γ2, then (z, h) := ⊥
14 return σ = (c, z, h)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
6 / 23

Sign(M, sk):
1 A ∈ Rk×l

q := ExpandA(ρ)

2 µ := H(H(pk) ||M), (z, h) := ⊥
3 while (z, h) = ⊥ do
4 y ∈ S̃l

γ1

5 w := A y
6 w1, w0 := Decomposeq(w, 2 γ2)

7 c ∈ Bτ := H(µ ||w1)

8 z := y + c s1

9 r0 := w0 − c s2

10 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then (z, h) := ⊥
11 else
12 h := MakeHintq(w1, r0 + c t0, 2 γ2)

13 if ∥c t0∥∞ ≥ γ2, then (z, h) := ⊥
14 return σ = (c, z, h)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
6 / 23

Sign(M, sk):
1 A ∈ Rk×l

q := ExpandA(ρ)

2 µ := H(H(pk) ||M), (z, h) := ⊥
3 while (z, h) = ⊥ do
4 y ∈ S̃l

γ1

5 w := A y
6 w1, w0 := Decomposeq(w, 2 γ2)

7 c ∈ Bτ := H(µ ||w1)

8 z := y + c s1

9 r0 := w0 − c s2

10 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then (z, h) := ⊥
11 else
12 h := MakeHintq(w1, r0 + c t0, 2 γ2)

13 if ∥c t0∥∞ ≥ γ2, then (z, h) := ⊥
14 return σ = (c, z, h)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
6 / 23

Sign(M, sk):
1 A ∈ Rk×l

q := ExpandA(ρ)

2 µ := H(H(pk) ||M), (z, h) := ⊥
3 while (z, h) = ⊥ do
4 y ∈ S̃l

γ1

5 w := A y
6 w1, w0 := Decomposeq(w, 2 γ2)

7 c ∈ Bτ := H(µ ||w1)

8 z := y + c s1

9 r0 := w0 − c s2

10 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then (z, h) := ⊥
11 else
12 h := MakeHintq(w1, r0 + c t0, 2 γ2)

13 if ∥c t0∥∞ ≥ γ2, then (z, h) := ⊥
14 return σ = (c, z, h)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
6 / 23

Sign(M, sk):
1 A ∈ Rk×l

q := ExpandA(ρ)

2 µ := H(H(pk) ||M), (z, h) := ⊥
3 while (z, h) = ⊥ do
4 y ∈ S̃l

γ1

5 w := A y
6 w1, w0 := Decomposeq(w, 2 γ2)

7 c ∈ Bτ := H(µ ||w1)

8 z := y + c s1

9 r0 := w0 − c s2

10 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then (z, h) := ⊥
11 else
12 h := MakeHintq(w1, r0 + c t0, 2 γ2)

13 if ∥c t0∥∞ ≥ γ2, then (z, h) := ⊥
14 return σ = (c, z, h)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
6 / 23

Sign(M, sk):
1 A ∈ Rk×l

q := ExpandA(ρ)

2 µ := H(H(pk) ||M), (z, h) := ⊥
3 while (z, h) = ⊥ do
4 y ∈ S̃l

γ1

5 w := A y
6 w1, w0 := Decomposeq(w, 2 γ2)

7 c ∈ Bτ := H(µ ||w1)

8 z := y + c s1

9 r0 := w0 − c s2

10 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then (z, h) := ⊥
11 else
12 h := MakeHintq(w1, r0 + c t0, 2 γ2)

13 if ∥c t0∥∞ ≥ γ2, then (z, h) := ⊥
14 return σ = (c, z, h)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
6 / 23

Verify(pk,M, σ):

1 µ := H(H(pk) ||M)

2 w′
1 := UseHintq(h, A z − c t12d, 2 γ2)

3 if ||z||∞ < γ1 − β and c == H(µ || w′
1) and # 1’s in h ≤ ω then return True

4 else
5 return False

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
7 / 23

A (brief) Note on Side Channel Attacks

datain
datain

user

atk

dataout

• Instead of directly attacking a cryptosystem, we can infer secret data on an implementation

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
8 / 23

A (brief) Note on Side Channel Attacks

datain
datain

user

atk

dataout

• Instead of directly attacking a cryptosystem, we can infer secret data on an implementation

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
8 / 23

A (brief) Note on Side Channel Attacks

datain
datain

user

atk

dataout

• Instead of directly attacking a cryptosystem, we can infer secret data on an implementation

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
8 / 23

A (brief) Note on Side Channel Attacks

datain
datain

user

atk

dataout

• Instead of directly attacking a cryptosystem, we can infer secret data on an implementation

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
8 / 23

A (brief) Note on Side Channel Attacks

datain
datain

user

atk

dataout

• Instead of directly attacking a cryptosystem, we can infer secret data on an implementation

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
8 / 23

A (brief) Note on Side Channel Attacks

datain
datain

user

atk

dataout

• Instead of directly attacking a cryptosystem, we can infer secret data on an implementation

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
8 / 23

Outline

1 Introduction
Context
Dilithium

2 Our Profiling Attack on Dilithium
Exploited attack path
Template Attack

3 Countermeasures

4 Conclusion

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
9 / 23

Attack path

From the verification algorithm: 2 w′
1 := UseHintq(h, A z − c t12d, 2 γ2)

Suppose an attacker has access to several signatures σ = (c, z, h)

A z − c t1 2d = A (y + c s1)− c (A s1 + s2 − t0)

= A y︸︷︷︸
w

− cs2 + ct0

= w1 2 γ2 + w0 + c(t0 − s2)

• Assuming an attacker is able to distinguish when (w0)i = cst then

(A z − c t1 2d)i = (w1)i 2 γ2 + cst + (c (t0 − s2))i (1)

Repeat for all the k × n coefficients
Here, we consider exclusively the case

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
10 / 23

Attack path

From the verification algorithm: 2 w′
1 := UseHintq(h, A z − c t12d, 2 γ2)

Suppose an attacker has access to several signatures σ = (c, z, h)

A z − c t1 2d = A (y + c s1)− c (A s1 + s2 − t0)

= A y︸︷︷︸
w

− cs2 + ct0

= w1 2 γ2 + w0 + c(t0 − s2)

• Assuming an attacker is able to distinguish when (w0)i = 0 then

(A z − c t1 2d)i = (w1)i 2 γ2 + 0 + (c (t0 − s2))i (1)

Repeat for all the k × n coefficients
Here, we consider exclusively the case cst = 0

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
10 / 23

Attack path

• t0 − s2 allows us to find s1

A s1 + s2 = t1 2d + t0

A s1 = t1 2d + (t0 − s2)

A is not square, but (At A) is square and invertible with high probability

s1 = (At A)−1 At (t1 2d + (t0 − s2)) (2)

• Knowing s1 suffices to sign arbitrary messages

Remark: The attack’s efficiency depends on how well we can differentiate for (w0)i = 0

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
11 / 23

Highlighting potential leakage spots
1 A ∈ Rk×l

q := ExpandA(ρ)

2 µ := H(H(pk) ||M), (z, h) := ⊥
3 while (z, h) = ⊥ do
4 y ∈ S̃l

γ1

5 w := A y
6 w1, w0 := Decomposeq(w, 2 γ2)

7 c ∈ Bτ := H(µ ||w1)

8 z := y + c s1

9 r0 := w0 − c s2

10 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then (z, h) := ⊥
11 else
12 h := MakeHintq(w1, r0 + c t0, 2 γ2)

13 if ∥c t0∥∞ ≥ γ2, then (z, h) := ⊥
14 return σ = (c, z, h)

1 Inside the decomposition
• Direct use of w to produce w0

2 Subtraction
• Clear HW leakage

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
12 / 23

Highlighting potential leakage spots
1 A ∈ Rk×l

q := ExpandA(ρ)

2 µ := H(H(pk) ||M), (z, h) := ⊥
3 while (z, h) = ⊥ do
4 y ∈ S̃l

γ1

5 w := A y
6 w1, w0 := Decomposeq(w, 2 γ2)

7 c ∈ Bτ := H(µ ||w1)

8 z := y + c s1

9 r0 := w0 − c s2

10 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then (z, h) := ⊥
11 else
12 h := MakeHintq(w1, r0 + c t0, 2 γ2)

13 if ∥c t0∥∞ ≥ γ2, then (z, h) := ⊥
14 return σ = (c, z, h)

1 Inside the decomposition
• Direct use of w to produce w0

2 Subtraction
• Clear HW leakage

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
12 / 23

Highlighting potential leakage spots
1 A ∈ Rk×l

q := ExpandA(ρ)

2 µ := H(H(pk) ||M), (z, h) := ⊥
3 while (z, h) = ⊥ do
4 y ∈ S̃l

γ1

5 w := A y
6 w1, w0 := Decomposeq(w, 2 γ2)

7 c ∈ Bτ := H(µ ||w1)

8 z := y + c s1

9 r0 := w0 − c s2

10 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then (z, h) := ⊥
11 else
12 h := MakeHintq(w1, r0 + c t0, 2 γ2)

13 if ∥c t0∥∞ ≥ γ2, then (z, h) := ⊥
14 return σ = (c, z, h)

1 Inside the decomposition
• Direct use of w to produce w0

2 Subtraction
• Clear HW leakage

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
12 / 23

Template Attack (TPA) in theory

TPA are a powerful type of Side Channel Attacks

Step 1:

Record many power
traces using different
keys and inputs

Step 2:

Create a template
by selecting
points of interest

Step 3:

Record few power
traces using multiple
plaintexts

Step 4:

Apply the template
to the attack traces

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
13 / 23

TPA in practice

PQClean implem of Dilithium
Latest implem
Deterministic
Dilithium-2

ChipWhisperer

Arm Cortex M4
CPU: 32 bits
RAM: 48kB

Side Channel:
Leakage identification with power traces

Without loss of generality the template is made on the first (w0)0

Leakage model: HW of each of the 4 bytes of a (w0)i

Goal: Differentiate efficiently for a (w0)i = 0

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
14 / 23

TPA in practice

PQClean implem of Dilithium
Latest implem
Deterministic
Dilithium-2

ChipWhisperer

Arm Cortex M4
CPU: 32 bits
RAM: 48kB

Side Channel:
Leakage identification with power traces

Without loss of generality the template is made on the first (w0)0

Leakage model: HW of each of the 4 bytes of a (w0)i

Goal: Differentiate efficiently for a (w0)i = 0

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
14 / 23

TPA in practice

PQClean implem of Dilithium
Latest implem
Deterministic
Dilithium-2

ChipWhisperer

Arm Cortex M4
CPU: 32 bits
RAM: 48kB

Side Channel:
Leakage identification with power traces

Without loss of generality the template is made on the first (w0)0

Leakage model: HW of each of the 4 bytes of a (w0)i

Goal: Differentiate efficiently for a (w0)i = 0

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
14 / 23

Learning Phase (Step 1 and 2):
Target the Decompose operation
Collect suitable messages in C → 18 hours
700 000 power traces on the ChipWhisperer → 24 hours

Figure: CW traces for (w0)0

Figure: POIs selection for the two MSBs

Figure: POIs selection the two LSBs

ANOVA used to select the POIs and 5 peaks kept as POIs to build the template

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
15 / 23

Learning Phase (Step 1 and 2):
Target the Decompose operation
Collect suitable messages in C → 18 hours
700 000 power traces on the ChipWhisperer → 24 hours

Figure: CW traces for (w0)0

Figure: POIs selection for the two MSBs

Figure: POIs selection the two LSBs

ANOVA used to select the POIs and 5 peaks kept as POIs to build the template

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
15 / 23

Learning Phase (Step 1 and 2):
Target the Decompose operation
Collect suitable messages in C → 18 hours
700 000 power traces on the ChipWhisperer → 24 hours

Figure: CW traces for (w0)0

Figure: POIs selection for the two MSBs

Figure: POIs selection the two LSBs

ANOVA used to select the POIs and 5 peaks kept as POIs to build the template

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
15 / 23

Matching Phase (Step 3 and 4):

Figure: Matching value for LSB 0

• 0 value clearly distinguishable from the rest, even with 1 trace

Definition (False positives - False negatives)

False positives: predicting w0 = 0 while it’s not
False negatives: predicting w0 ̸= 0 while it’s not

• fp: 0.067% ⇒ ≤ 1 coeff from the k × n
• fn: 0.174% ⇒ more signatures to acquire

• Same results for ≈ 100 first coeffs

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
16 / 23

Filtering w0 for efficiency

SCA measurements might be imperfect:

False positives impact the success rate of the attack

False negatives impact only the number of signatures needed

• We propose a filter on public values to avoid introducing equations with false positives

|(A z − c t1 2d − w1 2γ2)i,j| ≤ 2

√
22d − 1

12
τ

Discard ≈ 70% of the k × n coeffs where we might not have (w0)i = 0 (impact on fp)
However ≈ 5% of true w0 = 0 are erroneously removed (impact on fn)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
17 / 23

Dilithium Secret Key Retrieval

Learning phase
700 K traces

Matching phase
min. 1 trace per msg

Detect if (w0)i = 0
min. 2.5 M signatures

Solve for t0 − s2

(LSM)
Error management

(Majority Vote)

Solve for s1

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
18 / 23

Dilithium Secret Key Retrieval

Learning phase
700 K traces

Matching phase
min. 1 trace per msg

Detect if (w0)i = 0
min. 2.5 M signatures

Solve for t0 − s2

(LSM)
Error management

(Majority Vote)

Solve for s1

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
18 / 23

Dilithium Secret Key Retrieval

Learning phase
700 K traces

Matching phase
min. 1 trace per msg

Detect if (w0)i = 0
min. 2.5 M signatures

Solve for t0 − s2

(LSM)
Error management

(Majority Vote)

Solve for s1

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
18 / 23

Dilithium Secret Key Retrieval

Learning phase
700 K traces

Matching phase
min. 1 trace per msg

Detect if (w0)i = 0
min. 2.5 M signatures

Solve for t0 − s2

(LSM)
Error management

(Majority Vote)

Solve for s1

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
18 / 23

Dilithium Secret Key Retrieval

Learning phase
700 K traces

Matching phase
min. 1 trace per msg

Detect if (w0)i = 0
min. 2.5 M signatures

Solve for t0 − s2

(LSM)
Error management

(Majority Vote)

Solve for s1

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
18 / 23

Outline

1 Introduction
Context
Dilithium

2 Our Profiling Attack on Dilithium
Exploited attack path
Template Attack

3 Countermeasures

4 Conclusion

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
19 / 23

Countermeasures

Goal: Reduce the potential leakage spots

Simple countermeasures are known and efficient against this attack

Shuffling of coefficient during sensitive steps (Decompose and Subtraction)

Secret sharing/ Masking when manipulating w0
• Masking design of the Decompose function discussed in [ACNS2019, CHES2023, CHES2023]

• For the Subtraction use masked r0 = LowBitsq(w − c s2, 2 γ2)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
20 / 23

Countermeasures

Goal: Reduce the potential leakage spots

Simple countermeasures are known and efficient against this attack

Shuffling of coefficient during sensitive steps (Decompose and Subtraction)

Secret sharing/ Masking when manipulating w0
• Masking design of the Decompose function discussed in [ACNS2019, CHES2023, CHES2023]

• For the Subtraction use masked r0 = LowBitsq(w − c s2, 2 γ2)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
20 / 23

Outline

1 Introduction
Context
Dilithium

2 Our Profiling Attack on Dilithium
Exploited attack path
Template Attack

3 Countermeasures

4 Conclusion

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
21 / 23

Conclusion

To summarize, this work on Dilithium:

First exploitation of a zero value leakage on w0 during signature execution

Allows to recover s1, and then forge signatures

Shows that the leakage can be exploited in practice through experimentations

Discusses Filtering, Resolution and Error Management steps for efficiency

Highlights simple known countermeasures

Future work on evaluating the impact of noise on error management tools

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
22 / 23

Thank you
Questions?

ia.cr/2023/050

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
23 / 23

ia.cr/2023/050

Bibliography

[ACNS2019] V. Migliore, B. Gérard, M. Tibouchi, and PA. Fouque, Masking Dilithium:
Efficient implementation and side-channel evaluation.

[CHES2023] M. Azouaoui, O. Bronchain, G. Cassiers, et al., Protecting Dilithium against
Leakage: Revisited Sensitivity Analysis and Improved Implementations.

[CHES2023] JS. Coron, F. Gérard, M. Trannoy, and R. Zeitoun, Improved Gadgets for the
High-Order Masking of Dilithium.

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
23 / 23

Least squares method (LSM)

If (w̃0)
m
i,j = 0 but (w0)i,j ̸= 0, (A z − c t1 2d)j − (w1)j 2 γ2︸ ︷︷ ︸

L

= cj︸︷︷︸
C̃

(t0 − s2)j + e

with ∥e∥ < ε thanks to the filter
∥c(t0 − s2) + e∥ < q =⇒ no modular reduction

We get a candidate by using the LSM

˜(t0 − s2) = (C̃T C̃)−1C̃T L

If ∥(t0 − s2)− ˜(t0 − s2)∥∞ <
1
2

then ⌈ ˜(t0 − s2)⌋ = (t0 − s2)

19 october 2023 Exploiting Intermediate, Value Leakage in Dilithium: A Template-Based Approach
23 / 23

	Introduction
	Context
	Dilithium

	Our Profiling Attack on Dilithium
	Exploited attack path
	Template Attack

	Countermeasures
	Conclusion

