Faster scalar multiplication on elliptic curves

Nicolas Sarkis, 2nd year PhD student
Advisors: Razvan Barbulescu, Damien Robert
Institut de Mathématiques de Bordeaux

October 19, 2023 - Journées C2, Najac

Elliptic curves and Kummer lines

Motivation

On an elliptic curve, we can compute $n \cdot P=P+\cdots+P$.
Leads to elliptic curve cryptography:

- Signature (ECDSA)
- Key exchange (ECDH)

Goal
Compute $n \cdot P$ efficiently.

Elliptic curves (char $k \neq 2,3$)

- Short Weierstrass (general case):

$$
E: y^{2}=x^{3}+a x+b
$$

- Montgomery:

$$
E: B y^{2}=x\left(x^{2}+A x+1\right)
$$

- Twisted Edwards (singularities!):

$$
E: a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

Elliptic curves (char $k \neq 2,3$)

- Short Weierstrass (general case):

$$
E: y^{2}=x^{3}+a x+b
$$

- Montgomery:

$$
E: B y^{2}=x\left(x^{2}+A x+1\right)
$$

- Twisted Edwards (singularities!):

$$
E: a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

Kummer lines

We will focus on Montgomery curves:

$$
E: B y^{2}=x\left(x^{2}+A x+1\right)
$$

If we know x, we can recover y with a square root up to a sign.
On Kummer lines, we forget about it. This amounts to setting $\mathcal{K}=E /\{ \pm 1\}$ because $-P=(x:-y: z)$ if $P=(x: y: z)$:

$$
(x: y: z) \mapsto \begin{cases}\infty:=(1: 0) & \text { if }(x: y: z)=(0: 1: 0) \\ \frac{x}{z}:=(x: z) & \text { else }\end{cases}
$$

Notation: $[P]=(x: z)$ if $P=(x: y: z)$.

What do we gain lose?

Problem: no addition law anymore on a Kummer line!

Figure: Two possible choices

What do we gain lose?

Problem: no addition law anymore on a Kummer line!

Figure: Two possible choices

However, if you know $[P],[Q],[P-Q]$, you can compute $[P+Q]$

Differential addition and doubling [Mon87]

- M is the cost of a multiplication in k, S the cost of a square in k.
- m_{0} is the cost of a multiplication by a small constant in k.

Differential addition $\left(2 M+2 S+2 m, m=M\right.$ or $\left.m_{0}\right)$

$$
\begin{gathered}
u:=\left(x_{P}+z_{P}\right)\left(x_{Q}-z_{Q}\right) ; v:=\left(x_{P}-z_{P}\right)\left(x_{Q}+z_{Q}\right) ; \\
w:=(u+v)^{2} ; t:=(u-v)^{2} ; \\
x_{P+Q}:=z_{P-Q} w ; z_{P+Q}:=x_{P-Q} t ;
\end{gathered}
$$

Doubling $\left(2 M+2 S+1 m_{0}, d=\frac{A+2}{4}\right)$

$$
\begin{gathered}
u:=\left(x_{P}+z_{P}\right)^{2} ; v:=\left(x_{P}-z_{P}\right)^{2} ; t:=u-v \\
x_{2 P}:=u v ; z_{2 P}:=t(v+d t)
\end{gathered}
$$

Why counting M, S and m_{0} differently?

Squaring $S\left(\right.$ in $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}[i]$ with $\left.i^{2}=-1\right)$

$$
\begin{aligned}
& M(a+i b)(c+i d)=a c-b d+i(a c+b d-(a-b)(c-d)) \quad\left(3 M\left(\mathbb{F}_{p}\right)\right) \\
& S(a+i b)^{2}=(a-b)(a+b)+2 i a b \quad\left(2 M\left(\mathbb{F}_{p}\right)\right)
\end{aligned}
$$

So $S / M \approx 2 / 3$, it is better to have squares.

Why counting M, S and m_{0} differently?

Squaring $S\left(\right.$ in $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}[i]$ with $\left.i^{2}=-1\right)$

$$
\begin{aligned}
& M(a+i b)(c+i d)=a c-b d+i(a c+b d-(a-b)(c-d)) \quad\left(3 M\left(\mathbb{F}_{p}\right)\right) \\
& S(a+i b)^{2}=(a-b)(a+b)+2 i a b \quad\left(2 M\left(\mathbb{F}_{p}\right)\right)
\end{aligned}
$$

So $S / M \approx 2 / 3$, it is better to have squares.

Small constant m_{0}
Represent numbers as polynomials in $r=2^{64}$:

$$
n, m=P(r), Q(r)
$$

Then $n m=P Q(r)$, not linear in general.
But if P is monomial (e.g. n fits in 1 computer word), then $n m$ is linear.

Algorithm 1: Montgomery ladder
Input: $[R]=[m \cdot P],[S]=[(m+1) \cdot P], b$ a bit
Output: $([2 \cdot R],[R+S])$ if $b=0([R+S],[2 \cdot S])$ if $b=1$
Data: The point $[P]$
Function MontgomeryLadder ($[R],[S], b)$:
if $b=0$ then
$[S] \leftarrow \operatorname{DiffAdd}([R],[S],[P]) ;$
$[R] \leftarrow \operatorname{Doubling}([R]) ;$
else if $b=1$ then
$[R] \leftarrow \operatorname{DiffAdd}([R],[S],[P])$;
$[S] \leftarrow$ Doubling $([S])$;
end
return ([R], [S]);

$$
n=22=\overline{10110}^{2}
$$

Figure: Chaining ladder

Our results

New assumption and faster formulas

Assume we have complete 2-torsion on the curve.

$$
E: B y^{2}=x(x-\alpha)\left(x-\alpha^{-1}\right)
$$

$[T]=(\alpha: 1)$, we have faster (in some context) formulas for a "quasi-doubling":
Quasi-doubling $\left(4 S+3 m_{0}\right)$

$$
\begin{aligned}
& u:=(\alpha-1)\left(x_{P}+z_{P}\right)^{2} ; v:=(\alpha+1)\left(x_{P}-z_{P}\right)^{2} \\
& x_{2 \cdot P+T}:=(u+v)^{2} ; z_{2 \cdot P+T}:=\alpha(u-v)^{2}
\end{aligned}
$$

We can retrieve $[2 \cdot P+T]=[2 \cdot P-T]$ (because $2 \cdot T=\mathcal{O}$).

```
Algorithm 2: Hybrid ladder
Input: \([R],[S]\) with \([R-S] \in\{[P],[P+T]\}\) and \(b\) a bit
Output: \(([2 \cdot R+T],[R+S])\) if \(b=0([R+S],[2 \cdot S+T])\) if
        \(b=1\)
Data: The points \([P],[Q]=[P+T]\)
Function HybridLadder \(([R],[S], b)\) :
    \([D] \leftarrow[R-S] ; \quad / /\) pre-computed
    if \(b=0\) then
        \([S] \leftarrow \operatorname{DiffAdd}([R],[S],[D])\);
        \([R] \leftarrow\) QuasiDoubling \(([R])\);
    else if \(b=1\) then
        \([R] \leftarrow \operatorname{DiffAdd}([R],[S],[D])\);
        \([S] \leftarrow\) QuasiDoubling \(([S])\);
    end
    return \(([R],[S])\);
```

$$
n=22=\overline{10110}^{2}
$$

0

0

Figure: Chaining hybrid ladder

Complexities

We will consider $S=\frac{2}{3} M, m_{0}=\frac{1}{10} M, m=m_{0}$ or M.

	Montgomery ladder	Hybrid ladder
Diff. add.	$2 M+2 S+2 m$	
(Quasi)-doubling	$2 M+2 S+1 m_{0}$	$4 S+3 m_{0}$
Total	$4 M+4 S+2 m+1 m_{0}$	$2 M+6 S+2 m+3 m_{0}$
$m=M$	$8.77 M$	$8.3 M(5.4 \%)$
$m=m_{0}$	$6.97 M$	$6.5 M(6.7 \%)$

Table: Comparison between Montgomery and hybrid ladder

Proof of concept

Context

- $\mathbb{F}_{p^{10}}=\mathbb{F}_{p^{5}}[i]$ and $\mathbb{F}_{p^{5}}=\mathbb{F}_{p}[u]$ with $i^{2}=-1, u^{5}=2$.
- Small multiplications are elements of \mathbb{F}_{p} times elements of $\mathbb{F}_{p^{10}}$.
- Curve constants: $\alpha=1+\mu i, d=\frac{2-\alpha-\alpha^{-1}}{4}=\nu+i, \mu, \nu \in \mathbb{F}_{p}$
- $x_{P}, z_{P} \in \mathbb{F}_{p^{10}}$, i.e. $m=M$.
- 100 random scalar multiplications, repeated 100 times.

	Montgomery ladder	Hybrid ladder
Average (s)	2.502 ± 0.039	$2.348 \pm 0.017(6.2 \%)$

Table: Timings on Intel Core i5-1145G7 @ 2.60 GHz

Conclusion

Future work and research direction

Work in progress:

- Application: Elliptic Curve Method.
- Where does it come from? General framework to compute 2-isogenies between Kummer lines.
- More generally, classification of Kummer lines using their Galois representation and how they relate to different models of elliptic curves.

Research direction:

- Implementation of ECDSA.
- Comparison to Curve25519.
[Mon87] Peter L. Montgomery. "Speeding the Pollard and elliptic curve methods of factorization". English. In: Mathematics of Computation 48 (1987), pp. 243-264. ISSN: 0025-5718. DOI: $10.2307 / 2007888$.

