Faster scalar multiplication on elliptic curves

Nicolas Sarkis, 2nd year PhD student Advisors: Razvan Barbulescu, Damien Robert

Institut de Mathématiques de Bordeaux

October 19, 2023 - Journées C2, Najac

Elliptic curves and Kummer lines

Motivation

- On an elliptic curve, we can compute $n \cdot P = P + \cdots + P$. Leads to elliptic curve cryptography:
 - Signature (ECDSA)
 - Key exchange (ECDH)

Goal

Compute $n \cdot P$ efficiently.

Elliptic curves (char
$$k
eq 2, 3)$$

• Short Weierstrass (general case):

$$E: y^2 = x^3 + ax + b$$

• Montgomery:

 $E: By^2 = x(x^2 + Ax + 1)$

• Twisted Edwards (singularities!):

$$E: ax^2 + y^2 = 1 + dx^2y^2$$

Elliptic curves (char $k \neq 2, 3$)

• Short Weierstrass (general case):

 $E: y^2 = x^3 + ax + b$

• Montgomery:

 $E: By^2 = x(x^2 + Ax + 1)$

• Twisted Edwards (singularities!):

$$E: ax^2 + y^2 = 1 + dx^2y^2$$

Kummer lines

We will focus on Montgomery curves:

$$E: By^2 = x(x^2 + Ax + 1)$$

If we know x, we can recover y with a square root up to a sign. On Kummer lines, we forget about it. This amounts to setting $\mathcal{K} = E/\{\pm 1\}$ because -P = (x : -y : z) if P = (x : y : z):

$$(x:y:z) \mapsto \begin{cases} \infty := (1:0) & \text{if } (x:y:z) = (0:1:0) \\ \frac{x}{z} := (x:z) & \text{else} \end{cases}$$

Notation: [P] = (x : z) if P = (x : y : z).

What do we gain lose?

Problem: no addition law anymore on a Kummer line!

Figure: Two possible choices

What do we gain lose?

Problem: no addition law anymore on a Kummer line!

Figure: Two possible choices

However, if you know [P], [Q], [P - Q], you can compute [P + Q]

Differential addition and doubling [Mon87]

- M is the cost of a multiplication in k, S the cost of a square in k.
- m_0 is the cost of a multiplication by a small constant in k.

Differential addition $(2M + 2S + 2m, m = M \text{ or } m_0)$

$$egin{aligned} u &:= (x_P + z_P)(x_Q - z_Q); v &:= (x_P - z_P)(x_Q + z_Q); \ w &:= (u + v)^2; t &:= (u - v)^2; \ x_{P+Q} &:= z_{P-Q}w; z_{P+Q} &:= x_{P-Q}t; \end{aligned}$$

Doubling $(2M + 2S + 1m_0, d = \frac{A+2}{4})$

$$u := (x_P + z_P)^2; v := (x_P - z_P)^2; t := u - v;$$

 $x_{2P} := uv; z_{2P} := t(v + dt);$

Why counting M, S and m_0 differently?

Squaring S (in $\mathbb{F}_{p^2} = \mathbb{F}_p[i]$ with $i^2 = -1$)

$$M (a+ib)(c+id) = ac - bd + i(ac + bd - (a - b)(c - d)) (3M(\mathbb{F}_p))$$

$$S (a+ib)^2 = (a - b)(a + b) + 2iab (2M(\mathbb{F}_p))$$

So $S/M \approx 2/3$, it is better to have squares.

Why counting M, S and m_0 differently?

Squaring *S* (in $\mathbb{F}_{p^2} = \mathbb{F}_p[i]$ with $i^2 = -1$)

$$M (a+ib)(c+id) = ac - bd + i(ac + bd - (a - b)(c - d)) (3M(\mathbb{F}_p))$$

$$S (a+ib)^2 = (a - b)(a + b) + 2iab (2M(\mathbb{F}_p))$$

So $S/M \approx 2/3$, it is better to have squares.

Small constant m_0

Represent numbers as polynomials in $r = 2^{64}$:

$$n, m = P(r), Q(r)$$

Then nm = PQ(r), not linear in general. But if P is monomial (e.g. n fits in 1 computer word), then nm is linear.

Algorithm 1: Montgomery ladder

Input: $[R] = [m \cdot P]$, $[S] = [(m+1) \cdot P]$, *b* a bit **Output:** $([2 \cdot R], [R+S])$ if b = 0 $([R+S], [2 \cdot S])$ if b = 1**Data:** The point [P]

1 **Function** MontgomeryLadder([*R*], [*S*], *b*):

2 if
$$b = 0$$
 then
3 $| [S] \leftarrow \text{DiffAdd}([R], [S], [P]);$
4 $| [R] \leftarrow \text{Doubling}([R]);$
5 else if $b = 1$ then
6 $| [R] \leftarrow \text{DiffAdd}([R], [S], [P]);$
7 $| [S] \leftarrow \text{Doubling}([S]);$
8 end

9 **return** ([*R*], [*S*]);

Figure: Chaining ladder

Our results

New assumption and faster formulas

Assume we have complete 2-torsion on the curve.

$$E: By^2 = x(x - \alpha)(x - \alpha^{-1})$$

 $[T] = (\alpha : 1)$, we have faster (in some context) formulas for a "quasi-doubling": Quasi-doubling $(4S + 3m_0)$

$$egin{aligned} u &:= (lpha - 1)(x_P + z_P)^2; \ v &:= (lpha + 1)(x_P - z_P)^2; \ x_{2 \cdot P + T} &:= (u + v)^2; \ z_{2 \cdot P + T} &:= lpha (u - v)^2; \end{aligned}$$

We can retrieve $[2 \cdot P + T] = [2 \cdot P - T]$ (because $2 \cdot T = O$).

Our results

Algorithm 2: Hybrid ladder

Input:
$$[R]$$
, $[S]$ with $[R - S] \in \{[P], [P + T]\}$ and b a bit
Output: $([2 \cdot R + T], [R + S])$ if $b = 0$ $([R + S], [2 \cdot S + T])$ if $b = 1$

Data: The points [P], [Q] = [P + T]

Function HybridLadder([R], [S], b):

2 $[D] \leftarrow [R - S];$ // pre-computed 3 if b = 0 then 4 $[S] \leftarrow DiffAdd([R], [S], [D]);$ 5 $[R] \leftarrow QuasiDoubling([R]);$ 6 else if b = 1 then

- 7 $[R] \leftarrow \text{DiffAdd}([R], [S], [D]);$ 8 $[S] \leftarrow \text{QuasiDoubling}([S]);$
- 9 end
- 10 **return** ([*R*], [*S*]);

Figure: Chaining hybrid ladder

Complexities

We will consider $S = \frac{2}{3}M$, $m_0 = \frac{1}{10}M$, $m = m_0$ or M.

	Montgomery ladder	Hybrid ladder
Diff. add.	2M + 2S + 2m	
(Quasi)-doubling	$2M + 2S + 1m_0$	$4S + 3m_0$
Total	$4M + 4S + 2m + 1m_0$	$2M + 6S + 2m + 3m_0$
m = M	8.77 <i>M</i>	8.3M (5.4%)
$m = m_0$	6.97 <i>M</i>	6.5 <i>M</i> (6.7%)

Table: Comparison between Montgomery and hybrid ladder

Our results

Proof of concept

Context

- $\mathbb{F}_{p^{10}} = \mathbb{F}_{p^5}[i]$ and $\mathbb{F}_{p^5} = \mathbb{F}_p[u]$ with $i^2 = -1$, $u^5 = 2$.
- Small multiplications are elements of \mathbb{F}_p times elements of $\mathbb{F}_{p^{10}}$.
- Curve constants: $\alpha = 1 + \mu i$, $d = \frac{2 \alpha \alpha^{-1}}{4} = \nu + i$, $\mu, \nu \in \mathbb{F}_p$

•
$$x_P, z_P \in \mathbb{F}_{p^{10}}$$
, i.e. $m = M$.

• 100 random scalar multiplications, repeated 100 times.

	Montgomery ladder	Hybrid ladder
Average (s)	2.502 ± 0.039	$2.348 \pm 0.017 \; \textbf{(6.2\%)}$

Table: Timings on Intel Core i5-1145G7 @ 2.60GHz

Conclusion

Future work and research direction

Work in progress:

- Application: Elliptic Curve Method.
- Where does it come from? General framework to compute 2-isogenies between Kummer lines.
- More generally, classification of Kummer lines using their Galois representation and how they relate to different models of elliptic curves.

Research direction:

- Implementation of ECDSA.
- Comparison to Curve25519.
- [Mon87] Peter L. Montgomery. "Speeding the Pollard and elliptic curve methods of factorization". English. In: *Mathematics of Computation* 48 (1987), pp. 243–264. ISSN: 0025-5718. DOI: 10.2307/2007888.