Ternary representation for large distance decoding in \mathbb{F}_{3}

Valerian HATEY and Kévin CARRIER
CY Cergy Paris Université
ENSEA (École Nationale Supérieure de l'Électronique et de ses Applications)

19 octobre 2023

W/Ve ?

© Digital signature submitted to new NIST competition [Debris,Sendrier,Tillich,Asiacrypt2019]
(c) Code based signature in \mathbb{F}_{3}

Wave security

Problem (Syndrom decoding problem)

Given

- $\boldsymbol{H} \in \mathbb{F}_{3}^{(n-k) \times n}$ following a uniform distribution
- $\mathbf{s} \in \mathbb{F}_{3}^{n-k}$ following a uniform distribution
- $t \in \llbracket 0, n \rrbracket$

$$
\text { Find } \mathbf{e} \in \mathbb{F}_{3}^{n} \text { such that } \mathrm{He}^{T}=\mathbf{s} \text { and } \Delta(\mathbf{e})=t
$$

Security (see [Sendrier,PQCrypto2023])

- Large weight decoding \Rightarrow Forgery Attack
- Small weight decoding \Rightarrow Key Recovery Attack

Best large/small weight decoding algorithms

ISD (Information Set Decoding introduced by [Prange,1962]).

Usual representation technique in Hamming weight

Definition (Representation in Hamming weight)
Let $\mathbf{z} \in \mathbb{F}_{q}^{n}$ such that $\Delta(\mathbf{z})=t$.
$A(u, v)$-representation of \mathbf{z} is a pair (\mathbf{x}, \mathbf{y}) such that

- $\Delta(\mathrm{x})=u$
- $\Delta(\mathbf{y})=v$
- $\mathrm{z}=\mathrm{x}+\mathrm{y}$

A more precise operator than the Hamming weight

In \mathbb{F}_{3}, the Hamming weight gives us:

- number of 0
- The sum of the number of 1 and 2

We can be more precise
Definition : Symbol counter operator $\boldsymbol{\Delta}$ (.)
Let $\mathbf{x} \in \mathbb{F}_{q}^{n}$, we define

$$
\mathbf{\Delta}(\mathbf{x}):=\left(t_{0}, \cdots, t_{q-1}\right) \in \llbracket 0, n \rrbracket^{q}
$$

With $t_{i}:=\operatorname{Card}(\{j \in \llbracket 1, n \rrbracket: \mathbf{x}(j)=i\})$
$\boldsymbol{\Delta}$ (.) tool idea for large weight decodings

- Small weight : small quantity of 1 and $2 \Rightarrow$ negligible precision gain
- Large weight : large quantity of 1 and $2 \Rightarrow$ interesting precision gain

Idea to improve the state of the art of large weight decoding in \mathbb{F}_{3}
$\ln \mathbb{F}_{2}, \boldsymbol{\Delta}(.) \Leftrightarrow \Delta($.
\Rightarrow Adapting the best current ISDs in \mathbb{F}_{2} in Hamming weight [Both,May,2018] to $\boldsymbol{\Delta}($.$) in \mathbb{F}_{3}$

Adaptation of the concept of representation to $\boldsymbol{\Delta}$ (.)

Definition (Representation with $\boldsymbol{\Delta}($.$))$

Let $\mathbf{z} \in \mathbb{F}_{q}^{n}$ such that $\mathbf{\Delta}(\mathbf{z})=\left(t_{0}, t_{1}, t_{2}\right)$.
$\boldsymbol{A}\left(u_{1}, u_{2}, v_{1}, v_{2}\right)$-representation of \mathbf{z} is a pair (\mathbf{x}, \mathbf{y}) such that

- $\boldsymbol{\Delta}(\mathbf{x})=\left(u_{0}, u_{1}, u_{2}\right)$
- $\boldsymbol{\Delta}(\mathbf{y})=\left(v_{0}, v_{1}, v_{2}\right)$
- $\mathrm{z}=\mathrm{x}+\mathrm{y}$

$$
\frac{\left(t_{0}, t_{1}, t_{2}\right)}{\mathbf{z}}=\frac{\left(u_{0}, u_{1}, u_{2}\right)}{\mathbf{x}}+\frac{\left(v_{0}, v_{1}, v_{2}\right)}{\mathbf{y}}
$$

Two stages [Both,May,2018] with $\boldsymbol{\Delta}$ (.)

Legend:

where $\overline{\mathbf{H}} \mid \mathbf{I d}=\mathbf{S H P}$ and $\overline{\mathbf{s}}=\mathbf{S s}^{\top}$

Adaptation of the definition

What we need?

(1) Adapt the Nearest Neighbor search to $\boldsymbol{\Delta}$ (.)
(2) Count the number of representations

NNH Problem (Nearest Neighbor with Hamming weight)

Let two lists \mathcal{L}_{1} and \mathcal{L}_{2} of random elements of \mathbb{F}_{3}^{n}, and $t \in \mathbb{N}$, find :

$$
\left\{(\mathbf{x}, \mathbf{y}) \in \mathcal{L}_{1} \times \mathcal{L}_{2} \text { such that } \Delta(\mathbf{x}+\mathbf{y})=t\right\}
$$

NNSC Problem (Nearest Neighbor with Symbol Counter $\boldsymbol{\Delta}$ (.))

Let two lists \mathcal{L}_{1} and \mathcal{L}_{2} of random elements in \mathbb{F}_{3}^{n}, and $t_{0}, t_{1}, t_{2} \in \mathbb{N}$ such that $t_{0}+t_{1}+t_{2}=n$, find :

$$
\left\{(\mathbf{x}, \mathbf{y}) \in \mathcal{L}_{1} \times \mathcal{L}_{2} \text { such that } \mathbf{\Delta}(\mathbf{x}+\mathbf{y})=\left(t_{0}, t_{1}, t_{2}\right)\right\}
$$

Solving NNSC with Hamming weight

Let $\left(t_{0}, t_{1}, t_{2}\right)$ be fixed.
Three ways to get back to Hamming's weight problem :
(1) $\mathcal{L}_{1} \times \mathcal{L}_{2} \rightarrow\left(t_{0}, t_{1}, t_{2}\right) \rightarrow$ Hamming weight $t_{1}+t_{2}$
(2) $\mathcal{L}_{1} \times\left(\mathcal{L}_{2}+\mathbf{1}\right) \rightarrow\left(t_{2}, t_{0}, t_{1}\right) \rightarrow$ Hamming weight $t_{0}+t_{1}$
(3) $\mathcal{L}_{1} \times\left(\mathcal{L}_{2}+\mathbf{2}\right) \rightarrow\left(t_{1}, t_{2}, t_{0}\right) \rightarrow$ Hamming weight $t_{0}+t_{2}$

The algorithm

At $\left(t_{0}, t_{1}, t_{2}\right)$ fixed:

- Solve the Nearest Neighbor in Hamming weight which is the most efficient among the 3 previous ones using [Carrier,2020] optimal method.
- Filter the solutions $(\mathbf{x}, \mathbf{y}) \in \mathcal{L}_{1} \times \mathcal{L}_{2}$ such that $\boldsymbol{\Delta}(\mathbf{x}+\mathbf{y})=\left(t_{0}, t_{1}, t_{2}\right)$

Solving NNSC with $\boldsymbol{\Delta}$ (.)

Adaptation of the Nearest Neighbor algorithm with random codes of [Carrier, 2020] to $\boldsymbol{\Delta}$ (.)

Principle

- We use hash functions that are the decoder of a random code \mathcal{C}.
- We use a hash table T indexed by \mathcal{C}.
(1) $\forall \mathbf{x} \in \mathcal{L}_{1}, \forall \mathbf{c} \in \mathcal{C}$ such that $\boldsymbol{\Delta}(\mathbf{x}+\mathbf{c})=\left(u_{0}, u_{1}, u_{2}\right)$, append \mathbf{x} to $T[c]$.
(2) $\forall \mathbf{y} \in \mathcal{L}_{2}, \forall \mathbf{c} \in \mathcal{C}$, such that $\mathbf{\Delta}(\mathbf{y}-\mathbf{c})=\left(v_{0}, v_{1}, v_{2}\right)$, test the candidate (pairs hashed to the same value).
(3) Iterate with new code \mathcal{C}

About $u_{i}^{\prime} s$ and $v_{i}^{\prime} s$

Parameters that are chosen to optimize complexity

Algorithm complexity

Complexity

$$
C=\min _{u_{1}, u_{2}, v_{1}, v_{2}}\left(\frac{C_{\text {iter }}}{P_{\text {succ }}}\right)
$$

- $C_{i t e r}$ the complexity of an iteration can be computed efficiently
- $P_{s u c c}$ the success probability can be computed efficiently using Gröebner basis techniques

Calculation

We can compute efficiently the number of representation of a fixed vector (same technique with Gröebner basis)

One problem

To get C, we must optimize the parameters $\left(u_{i}, v_{i}\right) \Rightarrow$ numerical optimization \Rightarrow expensive (We start to better understand these parameters).

Comparison of complexities

Red curve : complexity for solving NNSC problem using $\boldsymbol{\Delta}$ (.)
Blue curve : complexity for solving NNSC problem using Hamming weight Green curve: complexity lower bound

Result

Comparison of the complexity of several algorithms for ternary decoding with high weight $t=0.98 n$ and rate $k=n / 2$.

Algorithm	Complexity
[Prange,1962]	0.12072
[Dumer,1991]	0.09091
[Stern,1988],[May,Ozerov,2015]	0.08491
[Bricout,Chailloux,Debris,Lequesne,2019]	$\mathbf{0 . 0 6 5 3 5}$
This work	0.07239

Increase the depth of [Both,May, 2018]

- [Both,May,2018] uses 4 stages. [Bricout,Chailloux,Debris,Lequesne,2019] uses 7 stages. Our work 2 stages.
- The number of parameters to optimize explode.
- We are better understanding the intern parameters of our Nearest Neighbor by getting inspiration from [Carrier, 2020].

