Ternary representation for large distance decoding in \mathbb{F}_3

Valerian HATEY and Kévin CARRIER

CY Cergy Paris Université ENSEA (École Nationale Supérieure de l'Électronique et de ses Applications)

19 octobre 2023

Innin

A new operator to decode large weights in \mathbb{F}_3 Adaptation of BM18 to & (.) Nearest Neighbor with & (.) Perspective

The Wave signature

Digital signature submitted to new NIST competition [Debris,Sendrier,Tillich,Asiacrypt2019]
Code based signature in P₃

A new operator to decode large weights in \mathbb{P}_3 Adaptation of BM18 to & (.) Nearest Neighbor with & (.) Perspective

Wave security

Problem (Syndrom decoding problem)

Given

- $\mathbf{H} \in \mathbb{F}_{3}^{(n-k) imes n}$ following a uniform distribution
- $\mathbf{s} \in \mathbb{F}_3^{n-k}$ following a uniform distribution
- $t \in \llbracket 0, n \rrbracket$

Find $\mathbf{e} \in \mathbb{F}_3^n$ such that $\mathbf{H} \mathbf{e}^T = \mathbf{s}$ and $\Delta(\mathbf{e}) = t$.

Security (see [Sendrier, PQCrypto2023])

- Large weight decoding \Rightarrow Forgery Attack
- Small weight decoding \Rightarrow Key Recovery Attack

Best large/small weight decoding algorithms

ISD (Information Set Decoding introduced by [Prange,1962]).

Motivation A new operator to decode large weights in F3 Adaptation of BM18 to & (.) Nearest Neighbor with & (.) Perspective

Usual representation technique in Hamming weight

Definition (Representation in Hamming weight)

Let $\mathbf{z} \in \mathbb{F}_q^n$ such that $\Delta(\mathbf{z}) = t$. A (u, v)-representation of \mathbf{z} is a pair (\mathbf{x}, \mathbf{y}) such that

• $\Delta(\mathbf{x}) = u$

•
$$\Delta(\mathbf{y}) = v$$

•
$$\mathbf{z} = \mathbf{x} + \mathbf{y}$$

Motivation A new operator to decode large weights in F3 Adaptation of BM18 to & (.) Nearest Neighbor with & (.) Perspective

A more precise operator than the Hamming weight

In \mathbb{F}_3 , the Hamming weight gives us :

- number of 0
- $\bullet\,$ The sum of the number of 1 and 2

We can be more precise

Definition : Symbol counter operator \blacktriangle (.)

Let $\mathbf{x} \in \mathbb{F}_q^n$, we define

(x) := $(t_0, \cdots, t_{q-1}) \in [[0, n]]^q$

With $t_i := Card(\{j \in [\![1,n]\!] : \mathbf{x}(j) = i\})$

Motivation A new operator to decode large weights in F3 Adaptation of BM18 to ↓ (.) Nearest Neighbor with ↓ (.) Perspective

Idea to improve the state of the art of decoding in \mathbb{F}_3 with \blacktriangle (.)

\blacktriangle (.) tool idea for large weight decodings

- Small weight : small quantity of 1 and $2 \Rightarrow$ negligible precision gain
- Large weight : large quantity of 1 and $2 \Rightarrow$ interesting precision gain

Idea to improve the state of the art of large weight decoding in \mathbb{F}_3

In \mathbb{F}_2 , \blacktriangle (.) $\Leftrightarrow \Delta$ (.)

 \Rightarrow Adapting the best current ISDs in \mathbb{F}_2 in Hamming weight [Both,May,2018] to \blacktriangle (.) in \mathbb{F}_3

Motivation A new operator to decode large weights in F₃ Adaptation of BM18 to 4 (.) Nearest Neighbor with 4 (.) Perspective

Adaptation of the concept of representation to \blacktriangle (.)

Definition (Representation with \blacktriangle (.))

Let $\mathbf{z} \in \mathbb{F}_q^n$ such that $\mathbf{A}(\mathbf{z}) = (t_0, t_1, t_2)$. A (u_1, u_2, v_1, v_2) -representation of \mathbf{z} is a pair (\mathbf{x}, \mathbf{y}) such that

•
$$\blacktriangle (\mathbf{x}) = (u_0, u_1, u_2)$$

•
$$\mathbf{A}(\mathbf{y}) = (v_0, v_1, v_2)$$

•
$$\mathbf{z} = \mathbf{x} + \mathbf{y}$$

$$\begin{array}{c} (t_0, t_1, t_2) \\ z \end{array} = \begin{array}{c} (u_0, u_1, u_2) \\ x \end{array} + \begin{array}{c} (v_0, v_1, v_2) \\ y \end{array}$$

A new operator to decode large weights in \mathbb{F}_3

Adaptation of BM18 to \blacktriangle (.)

Nearest Neighbor with ▲ (.)

Perspective

Two stages [Both, May, 2018] with \blacktriangle (.)

Motivation A new operator to decode large weights in E₃ Adaptation of BM18 to & (.) Nearest Neighbor with ▲ (.) Perspective

Adaptation of the definition

What we need?

- Adapt the Nearest Neighbor search to \blacktriangle (.)
- Ount the number of representations

NNH Problem (Nearest Neighbor with Hamming weight)

Let two lists \mathcal{L}_1 and \mathcal{L}_2 of random elements of \mathbb{F}_3^n , and $t\in\mathbb{N}$, find :

 $\{(\mathbf{x}, \mathbf{y}) \in \mathcal{L}_1 \times \mathcal{L}_2 \text{ such that } \Delta(\mathbf{x} + \mathbf{y}) = t\}$

NNSC Problem (Nearest Neighbor with Symbol Counter \blacktriangle (.))

Let two lists \mathcal{L}_1 and \mathcal{L}_2 of random elements in \mathbb{F}_3^n , and $t_0, t_1, t_2 \in \mathbb{N}$ such that $t_0 + t_1 + t_2 = n$, find :

 $\{(\mathbf{x}, \mathbf{y}) \in \mathcal{L}_1 \times \mathcal{L}_2 \text{ such that } \blacktriangle (\mathbf{x} + \mathbf{y}) = (t_0, t_1, t_2)\}$

Solving NNSC with Hamming weight

Let (t_0, t_1, t_2) be fixed.

Three ways to get back to Hamming's weight problem :

The algorithm

At (t_0, t_1, t_2) fixed :

- Solve the Nearest Neighbor in Hamming weight which is the most efficient among the 3 previous ones using [Carrier,2020] optimal method.
- Filter the solutions $(\mathbf{x}, \mathbf{y}) \in \mathcal{L}_1 \times \mathcal{L}_2$ such that $\blacktriangle (\mathbf{x} + \mathbf{y}) = (t_0, t_1, t_2)$

Motivation A new operator to decode large weights in Eg Adaptation of BM18 to ▲ (.) Nearest Neighbor with ▲ (.) Perspective

Solving NNSC with \blacktriangle (.)

Adaptation of the Nearest Neighbor algorithm with random codes of [Carrier,2020] to \blacktriangle (.)

Principle

- \bullet We use hash functions that are the decoder of a random code $\mathcal{C}.$
- We use a hash table T indexed by C.
- **9** $\forall \mathbf{x} \in \mathcal{L}_1$, $\forall \mathbf{c} \in \mathcal{C}$ such that $\blacktriangle (\mathbf{x} + \mathbf{c}) = (u_0, u_1, u_2)$, append \mathbf{x} to T[c].
- ② $\forall y \in \mathcal{L}_2$, $\forall c \in \mathcal{C}$, such that ▲ $(y c) = (v_0, v_1, v_2)$, test the candidate (pairs hashed to the same value).
- $\textcircled{\textbf{3} Iterate with new code } \mathcal{C}$

About $u_i's$ and $v_i's$

Parameters that are chosen to optimize complexity

Motivation A new operator to decode large weights in F₃ Adaptation of BM18 to ▲ (.) Nearest Neighbor with ▲ (.) Perspective

Algorithm complexity

Complexity

$$C = \min_{u_1, u_2, v_1, v_2} \left(\frac{C_{iter}}{P_{succ}} \right)$$

- C_{iter} the complexity of an iteration can be computed efficiently
- P_{succ} the success probability can be computed efficiently using Gröebner basis techniques

Calculation

We can compute efficiently the number of representation of a fixed vector (same technique with Gröebner basis)

One problem

To get C, we must optimize the parameters $(u_i, v_i) \Rightarrow$ numerical optimization \Rightarrow expensive (We start to better understand these parameters).

Motivation A new operator to decode large weights in F₃ Adaptation of BM18 to ↓ (.) Nearest Neighbor with ↓ (.) Perspective

Comparison of complexities

Red curve :complexity for solving NNSC problem using ▲ (.)Blue curve :complexity for solving NNSC problem using Hamming weightGreen curve :complexity lower bound

Motivation A new operator to decode large weights in F₃ Adaptation of BM18 to & (.) Nearest Neighbor with ▲ (.) Perspective

Result

Comparison of the complexity of several algorithms for ternary decoding with high weight t = 0.98n and rate k = n/2.

Algorithm	Complexity
[Prange,1962]	0.12072
[Dumer,1991]	0.09091
[Stern,1988],[May,Ozerov,2015]	0.08491
[Bricout, Chailloux, Debris, Lequesne, 2019]	0.06535
This work	0.07239

A new operator to decode large weights in \mathbb{F}_3

Adaptation of BM18 to \blacktriangle (.)

Nearest Neighbor with 🛦 (.)

Perspective

Increase the depth of [Both,May,2018]

- [Both,May,2018] uses 4 stages. [Bricout,Chailloux,Debris,Lequesne,2019] uses 7 stages. Our work 2 stages.
- The number of parameters to optimize explode.
- We are better understanding the intern parameters of our Nearest Neighbor by getting inspiration from **[Carrier,2020]**.