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Differential cryptanalysis

• Cryptanalysis technique introduced by Biham and Shamir in 1990.
• Based on the existence of a high-probability differential (δin,δout).

• If the probability of (δin,δout) is (much) higher than 2−n, where n is the block size,
then we have a differential distinguisher.
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Differential attacks

• A differential distinguisher can be used to mount a key recovery attack.

• This technique broke many of the cryptosystems of the 70s-80s, e.g. DES, FEAL,
Snefru, Khafre, REDOC-II, LOKI, etc.

• New cryptosystems should come with arguments of resistance by design against this
technique.
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Propagation of differences
• Linear operation L

δout = L(x+δin)+L(x) = L(δin) =⇒ δin
L−→ δout with probability 1

• S-box S : Fm
2 → Fm

2

DDT[δin][δout] = #{x ∈ Fm
2 : S(x)+S(x+δin) = δout}.

0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . 2 2 . 2 . . 2
2 . 2 2 . 2 . . 2
3 . . . . . 4 4 .
4 . . . 4 . . 4 .
5 . 2 2 . 2 . . 2
6 . 2 2 . 2 . . 2
7 . . . 4 . 4 . .

Probability of a differential transition:

Pr(δin
S−→ δout) = DDT[δin][δout]

2m

For example, Pr(3
S−→ 6) = 2−1.
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Ensure resistance against differential
cryptanalysis

Goal
Guarantee that there is no differential of probability > 2−n after r rounds.

Work with differential characteristics instead : δin =β0 →β1 →···→βr = δout .

• The smallest the number of active S-boxes the highest the probability can be.
• Strategy: Guarantee that all r-round differential characteristics have a high number

of active S-boxes.
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Bound on the probability of a diff. characteristic

• Let pmax = max
δin,δout

Pr(δin
S−→ δout).

• Suppose there are at least na active S-boxes in each differential characteristic after r
rounds.

Then, each differential characteristic has a probability of at most pna
max.

Example on the AES: There are at least 25 active S-boxes in each 4-round differential
characteristic.

4-round differential characteristics of AES
Each such characteristic has a probability at most 2−6·25 = 2−150,

as pmax = 2−6 for the AES S-box.
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Use MILP for the search

In 2011, Mouha et al. proposed to use a Mixed Integer Linear Programming (MILP) solver
to find the minimum number of active S-boxes for the AES.

• Write the propagation constraints by using linear inequalities.

Objectif: Minimize
16r−1∑

i=0
xi.
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Search for distinguishers: state of the art
Today, a lot of the research on differential-like distinguishers is generic-solver-based
(MILP, SAT, CP).

• Very useful for ciphers with weaker components (e.g. non-MDS linear layers).
• Facilitates the search for related-key characteristics.
• Possible for ciphers with a relatively-small state.

Still open problems remain:

• Weakly-aligned designs cannot be treated this way and need dedicated algorithms and
tools.

• The clustering effect is difficult to evaluate.
• The Markov independency assumption does not always apply.
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The key recovery problem

Main question
Once a differential distinguisher is discovered, how to use it for key recovery?

• Very technical, tedious and error-prone procedure.
• Not clear how to mount optimal attacks.

If this step is not fully understood, designers can take bad choices for their algorithm.
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The case of the SPEEDY block cipher
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The case of SPEEDY
The SPEEDY family of block ciphers was designed by Leander, Moos, Moradi and
Rasoolzadeh and published at CHES 2021.

Target: ultra-low latency.

Main variant: SPEEDY-7-192

• Block size: n = 192 bits
• Key size: k = 192 bits
• 6-bit S-box, specially designed to ensure low latency.
• Linear layer of branch number 8.
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Resistance of SPEEDY to differential cryptanalysis

The designers of SPEEDY presented security arguments on the resistance of the cipher to
differential attacks:

• The probability of any differential characteristic over 6 rounds is ≤ 2−192.
• Not possible to add more than one key recovery round to any differential

distinguisher.

Joint work with N. David, R. Heim and M. Naya-Plasencia (EUROCRYPT 2023)
Full break of SPEEDY-7-192 with a differential attack.
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Key recovery problem
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Overview of the key recovery procedure

First step: Construct 2p+din plaintext pairs (with din = log2(Din)).

• Use 2s plaintext structures of size 2din

=⇒ 22din−1 pairs from a structure.

• As 2s+2din−1 = 2p+din =⇒ s = p−din +1 structures.

Data complexity: 2p+1, Memory complexity: 2din
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Not all pairs are useful

Idea: Discard pairs that will not follow the differential.

• Keep only those plaintext pairs for which the difference of the corresponding output
pairs belongs to Dout .

• Order the list of structures with respect to the values of the non-active bits in the
ciphertext.

Number of pairs for the attack

N = 2p+din−(n−dout ).
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Goal of the key recovery

Goal
Determine the pairs for which there exists an associated key that leads to the differential.

A candidate is a triplet (P,P′,k), i.e. a pair (P,P′) and a (partial) key k that
encrypts/decrypts the pair to the differential.

What is the complexity of this procedure?

• Upper bound: min(2κ,N ·2|Kin∪Kout |),
where κ is the bit-size of the secret key.

• Lower bound: N +N ·2|Kin∪Kout |−din−dout ,
where N ·2|Kin∪Kout |−din−dout is the number of expected candidates.
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Efficient key recovery
A key recovery is efficient, if its complexity is as close as possible to the lower bound.

Solving an active S-box S in the key recovery rounds
For a given pair, determine whether this pair can respect the differential constraints, and,
if yes, under which conditions on the key.

A solution to S is any tuple (x,x′,S(x),S(x′)) such that
x+x′ = νin and S(x)+S(x′) = νout .

Objectif: Reduce the earliest possible the number of pairs while maximizing the number
of fixed key bits in Kin ∪Kout .
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Why is this difficult?

Potentially too many active S-boxes and key guesses.
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An algorithm for efficient key recovery
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Automating the key recovery

• The key recovery for the attack on SPEEDY was very tedious and complex.
• Same issue for other differential attacks (e.g. GIFT-64, RECTANGLE).

Research goal
Propose an efficient algorithm together with an automated tool for this procedure.

• Hard to treat this problem for all kind of block cipher designs.
• A first target: SPN ciphers with a bit-permutation layer and an (almost) linear key

schedule.

Joint work with David, Derbez, Heim and Naya-Plasencia (under submission).
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Modeling the key recovery as a graph

Order is important!
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Algorithm - high level description

First step: Add the key recovery rounds, detect the active S-boxes and build the graph.

Strategy SX for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

Parameters of a strategy SX :
• number of solutions
• online time complexity

A strategy can be further refined with extra information: e.g. memory, offline time.
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Compare two strategies

Objectif: Build an efficient strategy for the whole graph.

• Based on basic strategies, i.e. strategies for a single S-box.

Output of the tool
An efficient order to combine all basic subgraphs, aiming to minimize the complexity of
the resulting strategy.

Compare two strategies S 1
X and S 2

X for the same subgraph X

1. Choose the one with the best time complexity.
2. If same time complexity, choose the one with the best memory complexity.
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Merging two strategies

Let SX and SY two strategies for the graphs X and Y respectively.

• The number of solutions of S (X ∪Y ) only depends on X ∪Y :

Number of solutions of SX∪Y

Sol(X ∪Y ) = Sol(X)+Sol(Y )−# bit-relations between the nodes of X and Y

Time and memory associated to SX∪Y

• T(SX∪Y ) ≈ max(T(SX ),T(SY ),Sol(SX∪Y ))

• M(SX∪Y ) ≈ max(M(SX ),M(SY ),min(Sol(SX ),Sol(SY )))
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A dynamic programming approach

• The online time complexity of SX∪Y only depends on the time complexities of SX

and SY .
• An optimal strategy for X ∪Y can always be obtained by merging two optimal

strategies for X and Y .
• Use a bottom-up approach, merging first the strategies with the smallest time

complexity to reach a graph strategy with a minimal time complexity.

Dynamic programming approach
Ensure that, for any subgraph X , we only keep one optimal strategy to enumerate it.
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Pre-sieving

Idea behind the pre-sieving
Reduce the number of pairs as quickly as possible to only keep the N ′ ≤ N pairs that
satisfy the differential constraints.

How: Use the differential constraints of the S-boxes of the external rounds.

Advantage
The key recovery is performed on less pairs.

26 / 35



Pre-sieving in practice

Offline step: Per active S-box, build a sieving list
L with the solutions to the S-box:

• Bits without key addition: store the pair.
• Bits with key addition: store the difference.

Online step: For each pair and each S-box, check
whether the pair is consistent with the sieving list.

Filter:
|L|
2s , where s is the size of the tuples in L.

(x3,x′3,x2,x′2,x1⊕x′1,x0⊕x′0)

Filter:
36

26 = 2−0.83.

After this step: N ′ = 2−5.63N .
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Precomputing partial solutions

Idea
Precompute the partial solutions to some subgraph.

• Impact on the memory complexity and the offline time of the attack.

• The optimal key recovery strategy depends on how much memory and offline time are
allowed.
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Applications
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Application to the toy cipher (1)
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Application to the toy cipher (2)
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Application to RECTANGLE

RECTANGLE is a block cipher designed by Zhang, Bao, Lin, Rijmen, Yang and Verbauwhede
in 2015.

• The designers proposed a differential attack on 18 rounds of RECTANGLE-80 and
RECTANGLE-128.

• Broll et al. improved the time complexity of this attack with advanced techniques.

The tool found an optimal attack on 19 rounds of RECTANGLE-128 without any extra
effort.
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Application to other ciphers

Start from an existing distinguisher that led to the best key recovery attack against the
target cipher.

• PRESENT-80: Extended by two rounds the previous best differential attack.

• GIFT-64 and SPEEDY-7-192: Best key recovery strategy without additional
techniques.
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Extensions and improvements

• Handle ciphers with more complex linear layers.

• Handle ciphers with non-linear key schedules.

• Incorporate tree-based key recovery techniques by exploiting the structure of the
involved S-boxes.

The best distinguisher does not always lead to the best key recovery!

Ultimate goal
Combine the tool with a distinguisher-search algorithm to find the best possible attacks.
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Other open problems

• Prove optimality.

• Apply a similar approach to other attacks.

Thanks for your attention!
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