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Preliminaries

Linear Codes: A Quick Review

Let q be a prime power and Fq be the finite field with q elements.

An [n, k ]q q-ary linear code C of length n and dimension k is a
k -dimensional Fq-subspace of Fn

q.

The Hamming support and the Hamming weight of a codeword
c = (c1, . . . , cn) ∈ Fn

q is:
Supp(c) = {i : ci ̸= 0} and wtH(c) = |Supp(c)|.

The support and support weight of a subcode D of C is
Supp(D) = {i : ∃d = (d1, . . . , dn) ∈ D, di ̸= 0}, wt(D) = |Supp(D)|.

The r th generalized Hamming weight of C is
dr (C) := min{wt(D) : D subcode of C with dim(D) = r}.
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Preliminaries

Linear Codes: Basic Notions

For an [n, k ,d ]q-linear code C,

G ∈ Mk×n(Fq) is a generator matrix of C if C = {xG : x ∈ Fk
q}.

Thus rank(G) = k and C = rowspFq
(G).

H ∈ Mn−k×n(Fq) is a parity check matrix of C if HcT = 0∀c ∈ G.
Thus rank(H) = n − k and C is the null space of H.

its weight enumerator polynomial is

WC(X ,Y ) =
n∑

i=0
Ai(C)X n−iY i where Ai(C) := |{c ∈ C : wtH(c) = i|.

the generalized weight enumerator polynomial is

W (r)
C (X ,Y ) =

n∑
i=0

A(r)
i (C)X n−iY i

where A(r)
i (C) := |{D subcode of C : wt(D) = i, dim(D) = r}|.
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Preliminaries

Matroids Associated to Linear Codes

A matroid (via independent sets) is an ordered pair (E , I) consisting of
E = [n] := {1, . . . ,n} and a collection I of subsets of E satisfying:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I′ ⊆ I, then I′ ∈ I.

(I3) If I1, I2 ∈ I with |I1| < |I2|, then there is an element x ∈ I2\I1, such
that I1 ∪ x ∈ I.

Let C be an [n, k ]q-linear code with a parity check matrix
H = [H1, · · · ,Hn], Hi ’s are the columns of H.

The matroid associated to C is MC = ([n], I) where

I = {σ ⊆ [n] : {Hi : i ∈ σ} are Fq-linearly independent}.
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Preliminaries

Basic Properties of the Associated Matroid

For any σ ⊆ [n], its rank and nullity is defined as

r(σ) = max{|τ | : τ ∈ I and τ ⊆ σ} and n(σ) = n − r(σ).

Thus r(MC) = n − k and n(MC) = k .

The dual matroid is the matroid M∗ = (E = [n],r∗), where

r∗(σ) = |σ|+ r(E \ σ)− r(E).

The matroid complex ∆M is the simplicial complex on the vertex
set [n] whose faces are the independent sets of MC .
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Preliminaries

Lattices of Flats and Cycles of a Matroid

Flats are subsets σ ⊆ E such that
r(σ ∪ {x}) = r(σ) + 1 for all x ∈ E\σ.
Cycles of nullity i are the minimal (w.r.t. inclusion) elements of Ni ,
where

Ni = {σ ⊆ [n] : n(σ) = i}.

Lemma
The cycles (resp. flats) of a matroid M form a lattice. We denote
these lattices by LC(M) and LF (M), respectively.

(Duality) σ is a flat of M of rank r if and only if E \ σ is of a cycle of
the dual matroid M∗ of nullity n − r .

J. Oxley, Matroid Theory, 2014.
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Betti Numbers of matroids

Stanley-Reisner Ring Associated to a Matroid

To the matroid complex ∆M = ([n], I) corresponding to MC , one can
associate the Stanley-Reisner ideal

I∆ := the ideal of R := Fq[X1, . . . ,Xn] generated by {
∏
i∈τ

Xi : τ /∈ I},

and R∆ := R/I∆ is the Stanley-Reisner ring of ∆ or more generally, of
MC .
R∆ is a finitely generated Fq-algebra of dimension n − k . Since
matroid complexes are shellable, R∆ is Cohen-Macaulay. Thus R∆

has a minimal free resolution

Fk → · · · → Fi → F0 → R∆ → 0, where

F0 = R = Fq[X1, . . . ,Xn] and Fi =
⊕
j∈Z

R(−j)βi,j for i = 0,1, . . . , k .
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Betti numbers of matroids

Generalized Hamming Weights and Betti numbers

Let βi,j ’s are N-graded Betti numbers of the Stanley-Reisner ring of MC .

Lemma (Johnsen - Verdure, 2013)

βi,j ̸= 0 if and only if ∃ a cycle σ of MC of nullity i and |σ| = j .

Theorem (Johnsen - Verdure, 2013)

The generalized weights of C are given by

di = min{j : βi,j ̸= 0}, 0 ≤ i ≤ n − r(MC).

T. Johnsen, H. Verdure, Hamming weights and Betti numbers of
Stanley–Reisner rings associated to matroids, Appl. Algebra Engg.
Commun. Comput., 2013.
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Moral of the story

Concluding the case of Hamming metric codes

The Möbius function of a finite poset (partially ordered set) (P,⪯) is

µ(x , x) = 1 for all x ∈ P, and µ(x , z) = −
∑

x⪯y≺z

µ(x , y)∀ x ≺ z in P.

Theorem (Stanley, 1977)

For a matroid M = (E ,r) and a subset X ⊆ E,

βn(X),X = (−1)n(X)µLF (M∗)(E\X ,E) = (−1)n(X)µLC(M)(∅,X ),

LF (M∗) and LC(M) are the lattices of flats of M∗ and cycles of M, resp.

{
Cycles of the associated
parity-check matroid MC

}
⇒


Generalized Hamming
weights, higher weight
spectra of C
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Rank metric codes and q-matroids

Vector rank metric codes

An [n, k ] vector rank metric code C over Fqm/Fq of length n and
dimension k is a k -dimensional Fqm -subspace of Fn

qm .

The rank distance between two codewords f ,g ∈ C
rank(f ,g) = dimFq ⟨fi − gi : i ∈ [n]⟩Fq

,.

Let MB(c) be the coordinate matrix of a codeword c ∈ C w.r.t. a
fixed Fq-basis B of Fqm .

Rsupp(c) :=Fq-row space of MB(c), wtR(c) := dimFq Rsupp(c).

For D ⊆ C, Rsupp(D) := Fq-linear span of {Rsupp(d) : d ∈ D}.

The r th generalized rank weight of C

dr = min{dimFq Rsupp(D),D ⊆ C with dimFqm (D) = r}.
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Rank metric codes and q-matroids

q-Matroids via Rank Functions

E = Fn
q, L(E) = {Fq- linear subspaces of E}

A q-matroid M is a pair (E , ρ) consisting of E = Fn
q and ρ : L(E) → Z

satisfying the following axioms: for any U,V ∈ L(E)
(R1) (Boundedness) 0 ≤ ρ(U) ≤ dimU.

(R2) (Monotonicity) If U ⊆ V , then ρ(U) ≤ ρ(V ).

(R3) (Submodularity) ρ(U+V ) + ρ(U ∩ V ) ≤ ρ(U) + ρ(V ).

For a q-matroid M = (E , ρ),
independent spaces : Iρ := {U ∈ L(E) : ρ(U) = dimU}.
dual q-matroid : M∗ = (E , ρ∗), ρ∗(U) = dimU + ρ(U⊥)− ρ(E).
nullity function: η : L(E) → Z given by η(U) = dimFq U − ρ(U).

R. Jurrius and R. Pellikaan, Defining the q-analogue of a matroid, Electron. J. Combin.,

2018.
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independent spaces : Iρ := {U ∈ L(E) : ρ(U) = dimU}.
dual q-matroid : M∗ = (E , ρ∗), ρ∗(U) = dimU + ρ(U⊥)− ρ(E).

nullity function: η : L(E) → Z given by η(U) = dimFq U − ρ(U).

R. Jurrius and R. Pellikaan, Defining the q-analogue of a matroid, Electron. J. Combin.,

2018.

R. Pratihar Generalized rank weights and Betti numbers Oct 17, ’23



11/21

Rank metric codes and q-matroids

q-Matroids via Rank Functions

E = Fn
q, L(E) = {Fq- linear subspaces of E}

A q-matroid M is a pair (E , ρ) consisting of E = Fn
q and ρ : L(E) → Z

satisfying the following axioms: for any U,V ∈ L(E)
(R1) (Boundedness) 0 ≤ ρ(U) ≤ dimU.

(R2) (Monotonicity) If U ⊆ V , then ρ(U) ≤ ρ(V ).

(R3) (Submodularity) ρ(U+V ) + ρ(U ∩ V ) ≤ ρ(U) + ρ(V ).

For a q-matroid M = (E , ρ),
independent spaces : Iρ := {U ∈ L(E) : ρ(U) = dimU}.
dual q-matroid : M∗ = (E , ρ∗), ρ∗(U) = dimU + ρ(U⊥)− ρ(E).
nullity function: η : L(E) → Z given by η(U) = dimFq U − ρ(U).

R. Jurrius and R. Pellikaan, Defining the q-analogue of a matroid, Electron. J. Combin.,

2018.

R. Pratihar Generalized rank weights and Betti numbers Oct 17, ’23



12/21

Rank metric codes and q-matroids

q-Matroids Associated to Rank Metric Codes

Definition (Jurrius - Pellikaan, 2018)

Let C ≤ Fn
qm be a vector rank metric code over Fqm/Fq with a generator

matrix G ∈ Fk×n
qm . The q-matroid associated to C is MC = (E = Fn

q, ρC),
ρC(J) := rank(GY T ) for J ≤ Fn

q,
where Y is a generator matrix of J.

Lemma
Let C be a Gabidulin rank metric code. For any X ≤ E , define

ρC(X ) := dimFqm (C)− dimFqm (C(X⊥)),

where C(X⊥) = {c ∈ C : Rsupp(c) ≤ X⊥}. Then (E , ρC) is a q-matroid.
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Rank metric codes and q-matroids

Question

Can something like Betti numbers be defined in the context of rank
metric codes, or more generally, for q-matroids that can be related to
the generalized rank weights?
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Rank metric codes and q-matroids

Classical Matroid associated to a q-Matroid

Definition

To a q-matroid M = (E , ρ), we associate a pair Cl(M) := (P(E), rρ),
P(E) is the set of all 1-dimensional subspaces of E ,

rρ(S) := ρ(⟨S⟩), for S ⊆ P(E), where ⟨S⟩ ⊆ E is the linear
Fq-space spanned by elements in S.

Lemma
Cl(M) = (P(E), rρ) is a matroid.

Cl(M) is called the classical matroid associated to M or
projectivization matroid of the q-matroid M.

T. Johnsen, R. Pratihar, and H. Verdure, Weight spectra of Gabidulin rank metric codes and Betti numbers, São Paulo J.
Math. Sci., 2022.
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Rank metric codes and q-matroids

Cycles of the associated classical matroid

q-Cycles of M of nullity i : minimal elements (w.r.t. inclusion) of
Ni = {U ⊆ E : η(U) = i} for 0 ≤ i ≤ η(E).

q-flats: subspaces U ⊆ E such that ρ(U ⊕ ⟨e⟩) > ρ(U) ∀ e ∈ E\U.

Theorem (Johnsen, P., Verdure, 2022)

The lattice of q-flats of M is isomorphic to the lattice of flats of Cl(M).
Dually,

LC(M∗) ∼= LC(Cl(M)∗)

U 7−→ R(U) = P(E) \ P(U⊥)
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Generalized rank weights and Betti numbers

Generalized rank weights and Betti numbers

Lemma (Shiromoto, 2016, Johnsen - Ghorpade, 2020)

For a Gabidulin rank metric code C over Fqm/Fq,

dr (C) = min{dimFq X : X ⊆ Fn
q with η∗C(X ) = r}.

where η∗C is the nullity function of the dual q-matroid MC
∗.

Theorem (Johnsen, P., Verdure, 2022)

The r th generalized rank weight of a Gabidulin rank metric code is

dr = min{j |βr ,(j)q
̸= 0}, where (j)q = qn−1 + . . .+ qn−j

and βi,(j)q
’s are the N−graded Betti numbers of the Stanley-Reisner

ring associated to Cl(MC)
∗.
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Generalized rank weights and Betti numbers

Weight spectra in terms of Betti numbers

Let Q = qm, Q̃ = Qr and C̃ = C ⊗FQ FQ̃.
AC,s(Q̃) - the number of codewords of rank weight s in C̃.
A(i)
C,s(Q̃) - the number of subcodes D ⊆ C̃ of dimension i with rank

support weight s.

Theorem (Johnsen, P., Verdure, 2022)

Let N = Cl(M)∗. Then
AC,s(Q̃) =

∑k
l=0

∑k
i=0(−1)i(β

(l)
i,(s)q

(N)− β
(l−1)
i,(s)q

(N))Q̃l .

The higher weight spectra can be determined from the following
relation

AC,s(Q̃) =
k∑

i=0
[r , i]qmA(i)

C,s(Q),

where [r , i]qm is the number of Fqm -linear subspaces of dimension i
contained in F r

qm .
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Generalized rank weights and Betti numbers

Virtual Betti numbers of a q-matroid

Definition (Virtual Betti numbers)

Vi,U(M∗) := βi,R(U)(Cl(M)∗) = (−1)η
∗(U)µLC(M∗)(0,U), where

µLC(M∗) is the Möbius function on the lattice of q-cycles LC(M∗).

(l th elongated virtual N-graded Betti numbers)

V (l)
i,j (M

∗) :=
∑

η∗(U)=l+i,
dimU=j

V (l)
i,U and thus β(l)

i,(j)q
(Cl(M)∗) = V (l)

i,j .

{
q-Cycles of the
dual q-matroid M∗

C

}
⇒


Generalized rank weights,
higher weight spectra
of the rank metric code C
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Some comments and open questions

Concluding Remarks

A topological approach to define Betti numbers for q-matroids ...

S. R. Ghorpade, R. Pratihar, and T. H. Randrianarisoa, Shellability and
homology of q-complexes and q-matroids, J. Alg. Combin., 2022.

S. R. Ghorpade, R. Pratihar, T. H. Randrianarisoa, H. Verdure, G. Wilson,
The homotopy and homology of q-matroid complexes, manuscript under
preparation.

Is there any relation between singular homology of a q-matroid
equipped with the order topology and the virtual Betti numbers or the
Möbius numbers?

T. Johnsen, R. Pratihar, and T. H. Randrianarisoa, The Euler
characteristic, q-matroids, and a Möbius function, arXiv preprint, 2023.
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Some comments and open questions

Open Questions

Stanley-Reisner like ring associated to a q-matroid complex in a
way that it reveals the some structural properties of a vector
(Gabidulin) rank metric code.

In connection with matrix rank metric codes, the study of
q-polymatroids are of current interest. Can Betti numbers can be
defined for q-polymatroids?

Generalizing the notion of higher weight spectra of a linear code to
matroids.
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Some comments and open questions

Thank you!
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