Journées Codage et Cryptographie

Najac, 17/10/2023.

Introducing locality in some generalized AG codes

Bastien Pacifico ECo, LIRMM, Montpellier.

Plan

1. Background

Linear codes Locally Recoverable Codes Reed-Solomon Codes AG Codes Generalized AG Codes

2. Locality in generalized AG code Proposition An optimal example More examples

Linear codes

A linear code $\mathcal{C} \subset \mathbb{F}_q^n$ is a linear subspace.

We denote by [n, k, d] a code if

- n is its length,
- k is its dimension,
- *d* is its minimum distance.

Theorem (Singleton Bound)

 $d \leq n-k+1.$

Such a code can be defined by the image of an injective map $\mathbb{F}_q^k \longrightarrow \mathbb{F}_q^n$.

Locally Recoverable Codes (LRC)

Definition

Let $\mathcal{C} \subset \mathbb{F}_q^n$ be a \mathbb{F}_q -linear code. The code \mathcal{C} is locally recoverable with locality r if every symbol of a codeword $c = (c_1, \ldots, c_n) \in \mathcal{C}$ can be recovered using a subset of at most r other symbols. The smallest such r is called the locality of the code.

$$(c_1, \cdots, c_{i-1}, c_{i+1}, \ldots, c_{n-1}, c_n)$$

Theorem (Singleton Bound for LRC)

Let C be a q-ary linear code with parameters [n, k, d] with locality r. The minimum distance d of C verifies

$$d\leqslant n-k-\left\lceil\frac{k}{r}\right\rceil+2.$$

Reed-Solomon codes

A Reed-Solomon code RS(n, k) of length n and dimension k is defined by the image of an application

$$RS(n,k): \begin{array}{ccc} \mathbb{F}_{q}[x]_{< k} & \longrightarrow & \mathbb{F}_{q}^{n} \\ f & \longmapsto & (f(\alpha_{1}), \dots, f(\alpha_{n})) \end{array}$$

where $\alpha_1, \ldots, \alpha_n$ are distinct elements of \mathbb{F}_q .

The minimum distance of RS(n, k) veririfes

d=n-k+1.

Reed-Solomon codes

Background

A Reed-Solomon code RS(n, k) of length n and dimension k is defined by the image of an application

$$RS(n,k): \begin{array}{ccc} \mathbb{F}_q[x]_{< k} & \longrightarrow & \mathbb{F}_q^n \\ f & \longmapsto & (f(\alpha_1),\ldots,f(\alpha_n)) \end{array}$$

where $\alpha_1, \ldots, \alpha_n$ are distinct elements of \mathbb{F}_q .

The minimum distance of RS(n, k) veririfes

$$d=n-k+1.$$

This gives codes of length at most q, we need more evaluation points !

Locality in generalized AG code 00000

More evaluation points

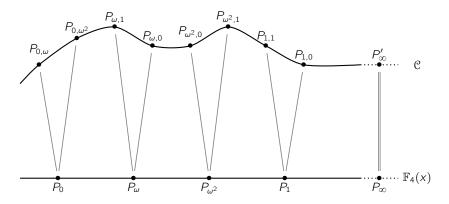


Figure: Decomposition of the rational places of $\mathbb{F}_4(x)$ in the Hermitian function field, associated to the curve defined by the equation $y^2 + y = x^3 + 1$.

Algebraic-Geometric (AG) codes

Background

Let F/\mathbb{F}_q be a function field of genus g. Let \mathcal{D} and G be divisors of F, with $\mathcal{D} = P_1 + \cdots + P_n$, where P_i, \ldots, P_n are distinct rational places of F.

An AG code $\mathcal{C}(\mathcal{D}, G)$ is defined by the image of an application

$$\mathcal{C}(\mathcal{D},G): \begin{array}{ccc} \mathcal{L}(G) & \longrightarrow & \mathbb{F}_q^n \\ f & \longmapsto & (f(P_1),\ldots,f(P_n)) \, . \end{array}$$

If $2g - 2 < \deg G < n$, the code $\mathcal{C}(\mathcal{D}, G)$ has dimension

$$k = \deg(G) - g + 1$$

and minimum distance

 $d \ge n - \deg(G)$.

Examples : RS codes are AG codes

Let $\mathbb{F}_q(x)$ be the rational function field over \mathbb{F}_q .

- Rational places are given by the elements of \mathbb{F}_q (+ P_{∞}).
- Set $G = (k-1)P_{\infty}$. Then $\mathcal{L}(G) = \mathbb{F}_q[x]_{\leq k-1}$.

Examples : RS codes are AG codes

Let $\mathbb{F}_q(x)$ be the rational function field over \mathbb{F}_q .

- Rational places are given by the elements of \mathbb{F}_q (+ P_{∞}).
- Set $G = (k-1)P_{\infty}$. Then $\mathcal{L}(G) = \mathbb{F}_q[x]_{\leq k-1}$.

Useful example : Let $\mathbb{F}_3(x)$ be the rational function field over \mathbb{F}_3 . Let $G = P_{\infty}$ and $\mathcal{D} = P_0 + P_1 + P_2$.

$$\begin{aligned} \mathcal{C}(\mathcal{D},G) &: \begin{array}{ccc} \mathcal{L}(P_{\infty}) & \longrightarrow & \mathbb{F}_{3}^{3} \\ f & \longmapsto & (f(P_{0}), f(P_{1}), f(P_{2})) \, . \\ & = \\ \\ RS(3,2) &: \begin{array}{cccc} \mathbb{F}_{3}[x]_{<2} & \longrightarrow & \mathbb{F}_{3}^{3} \\ f & \longmapsto & (f(0), f(1), f(2)) \, . \end{aligned}$$

Places of higher degrees of $\mathbb{F}_q(x)$ / Irreducible polynomials

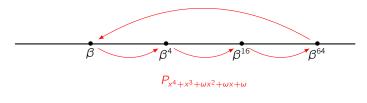


Figure: $P_{x^4+x^3+\omega x^2+\omega x+\omega}$ is a degree 4 place of $\mathbb{F}_4(x)$

Locality in generalized AG code

Places of higher degrees

Background

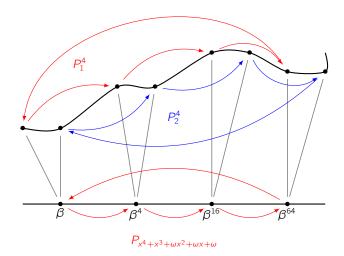


Figure: $\mathit{P}_{x^4+x^3+\omega x^2+\omega x+\omega}$ is totally decomposed in F/\mathbb{F}_4

Generalized AG codes¹

Let F/\mathbb{F}_q be an algebraic function field defined over \mathbb{F}_q of genus g, and

• P_1, \ldots, P_s are s distinct places of F,

• G is a divisor of F such that $Supp(G) \cap \{P_1, \ldots, P_s\} = \emptyset$,

and for $1 \leq i \leq s$:

• $k_i = \deg(P_i)$ the degree of P_i ,

- C_i is a $[n_i, k_i, d_i]_q$ linear code,
- π_i is a fixed \mathbb{F}_q -linear isomorphism mapping $\mathbb{F}_{a^{k_i}}$ to C_i .

Consider the application

$$\alpha : \begin{array}{ccc} \mathcal{L}(G) & \longrightarrow & \mathbb{F}_q^n \\ f & \longmapsto & (\pi_1(f(P_1)), \dots, \pi_s(f(P_s))) \end{array}$$

Definition

The image of α is called a generalized algebraic-geometric code, denoted by $C(P_1, \ldots, P_s : G : C_1, \ldots, C_s)$.

¹Xing, Niederreiter and Lam, A Generalization of Algebraic-Geometric Codes, 1999.

Proposition

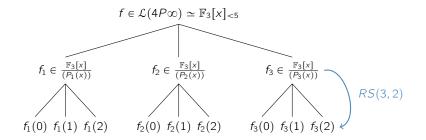
Observation : if $k_1 = \ldots = k_s =: k$, the code defined above has locality k. More formally,

Proposition

Let $\mathcal{C} = C(P_1, \ldots, P_s : G : C_1, \ldots, C_s)$ be a generalized AG-code as in the previous slide. If there exists $r \in \mathbb{N}$ such that for all $1 \leq i \leq s$, we have $1 < k_i \leq r$, $n_i > \deg(P_i)$, and C_i has locality k_i , then \mathcal{C} has locality r.

An optimal example

Let $\mathbb{F}_3(x)$ be the rational function field. Set $G = 4P_{\infty}$. Let $P_1(x) = x^2 + 2x + 2$, $P_2(x) = x^2 + 1$, and $P_3(x) = x^2 + x + 2$, and the Reed-Solomon code RS(3,2): $\begin{array}{ccc} \mathbb{F}_3[x]_{<2} & \longrightarrow & \mathbb{F}_q^3 \\ f & \longmapsto & (f(0), f(1), f(2)) \end{array}$.



The code $C(P_1, P_2, P_3 : 4P_\infty : RS(3, 2), RS(3, 2), RS(3, 2))$ is a [9, 5, 3] linear code with locality 2, reaching the Singleton Bound for LRC.

More examples : set-up

We constructed several codes over \mathbb{F}_3 using evaluation at (random) places of degree 2, then encoding the evaluations with RS(3, 2) as previously.

We use the following curves.

- The rational function field 𝔽₃(x), of genus 0, that contains 3 places of degree 2. Then one can construct codes of length at most 9.
- The elliptic curve defined by the equation $y^2 = x^3 + x$ of genus 1, that contains 6 places of degree 2. Then one can construct codes of length at most 18.
- The Klein quartic defined by the equation $x^4 + y^4 + 1 = 0$ of genus 3, that contains 12 places of degree 2. Then one can construct codes of length at most 36.

This gives [3s, k, d] linear code with locality 2, where s is the number of places of degree 2 used in the construction.

More examples : results

		$\mathbb{F}_3(x)$		$y^2 = x^3 + x$		$x^4 + y^4 + 1$					$x^4 + y^4 + 1$	
n	k	d	defect	d	defect	d	defect	1	n	k	d	defect
9	3	4	2	4	2	4	2	1		12	6	5
	4	4	1	4	1	4	1			13	6	3
	5	3	0	3	0	3	0		27	14	4	4
12	4	-	-	5	3	6	2	1		15	4	2
	5	-	-	4	2	4	2		16	3	2	
	6	-	-	3	2	4	1			10	10	7
15	5	-	-	6	3	6	3	1	30	11	8	7
	6	-	-	4	4	5	3			12	7	7
	7	-	-	4	2	4	2			13	7	5
	8	-	-	3	2	4	1			14	6	5
18	6	-	-	6	5	6	5			15	6	3
	7	-	-	6	3	6	3			16	4	4
	8	-	-	4	4	4	4			17	4	2
	9	-	-	4	2 3	4	2			18	3	2
	10	-	-	2	3	3	2			11	10	8
21	7	-	-	-	-	8	4			12	10	7
	8	-	-	-	-	6	5		33	13	8	7
	9	-	-	-	-	5	4			14	8	6
	10	-	-	-	-	4	4			15	6	6
	11	-	-	-	-	4	2			16	6	5
	12	-	-	-	-	4	1			17	5	4
24	8	-	-	-	-	8	6			18	4	4
	9	-	-	-	-	7	5			19	4	2
	10	-	-	-	-	6	5			12	10	10
	11	-	-	-	-	6	3			13	10	8
	12	-	-	-	-	4	4			14	8	9
	13	-	-	-	-	4	2		15	8	7	
	14	-	-	-	-	3	2		36	16	6	8
	15	-	-	-	-	3	1			17	6	6
	9	-	-	-	-	8	7			18	5	6
27	10	-	-	-	-	8	6			19	4	5
	11	-	-	-	-	7	5			20	4	4

Table: Parameters of obtained linear codes over \mathbb{F}_3 with locality 2.

Thanks for your attention!