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Overview

Asymmetric cryptography allows for a wide variety of schemes with interesting
features :

Threshold signatures

Fully Homomorphic
Encryption

Zero-knowledge proofs

Oblivious transfer

Verifiable Delay Functions

etc...

Lattices

Codes

Isogenies

Multivariates polynomials

Hash functions
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Generic NP statements ZK proofs

Proofs of knowledge, but... knowledge of what ?
of everything !

How ?

1. Construct a proof of knowledge for a NP-complete statement.

2. Reduce any other NP problem to this.
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Arithmetic Circuits

An arithmetic circuit encodes a polynomial.

x1 x2 x3

+ ×

+

≃ (x1 + x2) + x2 + x2x3

The SAT problem for arithmetic circuit :
Given a polynomial f and an output value s, are there input values x1, · · · , xn
such that f (x1, · · · , xn) = s ?

Theorem

The satisfiability problem for arithmetic circuits is NP-complete.
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Commitment Schemes

Definition (Commitment Scheme)

A commitment scheme is a tuple (M,R, C,Commit,Verify) where
Commit :M×R→ C and Verify :M×R× C → {0, 1} are PPTA algorithms

Related security notions :

Hiding

An attacker cannot retrieve m or r from c .

Binding

It’s hard to find (m, r) ̸= (m′, r ′) that give the same commitment.
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Homomorphism and malleability

Efficient solutions use homomophic property :

∀m,m′, r , r ′, Commit(m +m′, r + r ′) = Commit(m, r) · Commit(m′, r ′)

Too restrictive for isogenies ⇝ Relaxed notion : malleability.

Definition (Malleable commitment)

A commitment scheme is malleable if :
Given a single commitment, we can derive a related second one.

We assume no structure a priori.
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Group Action Malleable Commitment

An GAMC is a commitment scheme exploiting additional structure forM and R.

Definition

A GAMC is a commitment scheme satisfying :

M and R are groups. C is a set.

We have a group action ⋆ : (M×R)× C → C
C0 := Commit(0M, 0R)

Commit(m, r) := (m, r) ⋆ C0.

(m′, r ′) ⋆ Commit(m, r) = Commit(m +m′, r + r ′)

In our case :

M and R are groups of isogenies (with composition).

C is a set of elliptic curves (up to isomorphism).

more
structure

generic
malleability GAMC

homomorphism
property

less
structure
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How to use GAMC

Several GAMC ⇝
Proof systems for
additions and
multiplications

⇝ Proof system for
arithmetic circuits
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Interlude : CSIDH

CSIDH (for Commutative Supersingular Isogeny Diffie-Hellman) is a key
agreement protocol.

Analog of the Diffie-Hellman for isogenies.

Diffie-Hellman CSIDH

ga

−→ a·E0−→
gb

←− b·E0←−

g ab = gba ab · E0 = ba · E0

a and b are ideals in Cℓ(O) : the ideal class group (of Z[π]).
E0 is a curve in SSp : the set of supersingular curves “over Fp”.
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An instance of an GAMC

In the CSIDH setting :

M = R := Cℓ(O) are groups (of ideals).

C := SSp × SSp.

C0 := (E0,E1)

Malleability is given by

(m, r) ⋆ (E ,E ′) := (r · E ,mr · E ′)
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Conclusion

Contributions :

New framework for generic NP statements ZK proofs.

Proof-of-concept construction.

Performances :

Strong security assumptions and no trusted setup.

Proof system for an arithmetic circuit = O(|M|) malleability computations.

Size of the proof = O(λ|M|) bits.

Future work :

Cannot use higher security parameters than CSIDH-512.

The size of the message space is limited.
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