CUCKOO COMMITMENTS: REGISTRATION-BASED ENCRYPTION & KEY-VALUE MAP COMMITMENTS FOR LARGE SPACES

WORK BY DARIO FIORE¹, DIMITRIS KOLONELOS^{1, 2}& PAOLA DE PERTHUIS^{3,4} FULL VERSION: HTTPS://EPRINT.IACR.ORG/2023/1389 PUBLISHED AT ASIACRYPT 2023 PRESENTATION BY PAOLA DE PERTHUIS

cosmian

MOTIVATIONS

Stemming from [TCC:Garg-Hajiabadi-Mahmoody-Ral Like Identity-Based Encryption (IBE), but without the key curator holding secrets.

RBE

 \rightarrow

Like Identity-Based Encryption (IBE), but without the key curator holding secrets.

Like Identity-Based Encryption (IBE), but without the key curator holding secrets.

REGISTRATION-BASED ENCRYPTION (RBE)

State-of-the-art:

- first constructions were very inefficient;
- efficient black-box constructions in [Glaeser-Kolonelos-Malavolta-Rahimi-22] but identity-space of polynomial size
- and [EC:Döttling-Kolonelos-Lai-Lin-Malavolta-Rahimi-23] with lattices, but ciphertexts in GB

REGISTRATION-BASED ENCRYPTION (RBE)

State-of-the-art:

- first constructions were very inefficient;
- efficient black-box constructions in [Glaeser-Kolonelos-Malavolta-Rahimi-22] but identity-space of polynomial size
- and [EC:Döttling-Kolonelos-Lai-Lin-Malavolta-Rahimi-23] with lattices, but ciphertexts in GB

	Setting	\mathcal{ID}	Compactness	ct	#updates	pp + crs
[HLWW23]	Pairings (C)	$\{0,1\}^*$	Adaptive	$O(\lambda \log n)$	$\log n$	$O(\lambda n^{2/3}\log n)$
[GKMR22]	Pairings (P)	[1,n]	Adaptive	$4\log n$	$\log n$	$O(\sqrt{n}\log n)$
Ours P1	Pairings (P)	$\{0,1\}^*$	Adaptive	$6\lambda \log n$	$\log n$	$O(\sqrt{\lambda n}\log n)$
Ours P2	Pairings (P)	$\{0,1\}^*$	Selective	$12\log n$	$\log n$	$O(\sqrt{n}\log n)$
$[DKL^+23]$	Lattices	$\{0,1\}^*$	Adaptive	$(2\lambda + 1)\log n$	$\log n$	$O(\log n)$
Ours L	Lattices	$\{0,1\}^*$	Selective	$4\log^2 n$	$\log n$	$O(\log n)$

Table 1: Comparison of the schemes resulting from different instantiations of our compiler. n is the maximum number of users to be registered. Parings (P) indicates prime order groups and Pairings (C) composite order groups respectively. |ct| in the pairing construction is measured in group elements and in the Lattice constructions LWE ciphertexts.

A NEW SETTING FOR CUCKOO HASHING

A powerful technique

A powerful technique

A powerful technique

Performance

Performance, for negligible failure (in λ):

- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals:

average constant insertion time, worst-case log(n) stash.

Performance, for negligible failure (in λ):

- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals:

average constant insertion time, worst-case log(n) stash.

Security against adversaries wanting to fill the stash? (choosing animals maliciously)

Performance, for negligible failure (in λ):

- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals:
 - average constant insertion time, worst-case log(n) stash.
- Security against adversaries wanting to fill the stash? (choosing animals maliciously)
- h = 2, N = 2kn nests: average constant insertion, worst-case n stash

ne, to store n animals: orst-case log(n) stash. n? iciously)

Performance, for negligible failure (in λ):

- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals: average constant insertion time, worst-case log(n) stash.
- Security against adversaries wanting to fill the stash? (choosing animals maliciously)
- h = 2, N = 2kn nests: average constant insertion, worst-case n stash
- h = λ , N = 2λ n nests: average λ time insertion, worst-case empty stash

Performance, for negligible failure (in λ):

- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals: average constant insertion time, worst-case log(n) stash.
- Security against adversaries wanting to fill the stash? (choosing animals maliciously)
- h = 2, N = 2kn nests: average constant insertion, worst-case n stash
- h = λ , N = 2λ n nests: average λ time insertion, worst-case empty stash

reference for parameters in cryptography: [C:Yeo23]

USING CUCKOO HASHING WITH VECTOR COMMITMENTS (VC),

AND WITNESS ENCRYPTION FOR VC (VCWE)

 $crs = g_1, g_2, g_3, g_5, g_6$

 g_3, g_5

 g_1, g_2, g_3, g_5, g_6

 g_2, g_3 g_3, g_5

 g_1, g_2, g_3, g_5, g_6

 g_2, g_3

g_1, g_2, g_3, g_5, g_6

 g_2, g_3

also to know

Updates

Updates

 g_1, g_2, g_3, g_5, g_6

= 2

 $\mathbf{\hat{e}} = 1$

Updates

THE GLAESER-KOLONELOS-MALAVOLTA-RAHIMI (GKMR) RBE, USING LIBERT-YUNG VECTOR COMMITMENTS [TCC:LY10]

Updates

 g_1, g_2, g_3, g_5, g_6

 $\leftarrow g_2 \cdot g_3$ $\leftarrow \circ g_5$ $\leftarrow \circ g_6$

THE GLAESER-KOLONELOS-MALAVOLTA-RAHIMI (GKMR) RBE, USING LIBERT-YUNG VECTOR COMMITMENTS [TCC:LY10]

Updates

= 2

THE GLAESER-KOLONELOS-MALAVOLTA-RAHIMI (GKMR) RBE, USING LIBERT-YUNG VECTOR COMMITMENTS [TCC:LY10]

Updates

SALEME G GKMR WITH CUCKOO HASHING

 $\mathbf{2}$

WITH CUCKOO HASHING

 g_1, g_2, g_3, g_5, g_6

[|]|;[,] GKMR WITH CUCKOO HASHING

 $\overline{g_1}, \overline{g_2}, \overline{g_3}, \overline{g_5}, \overline{g_6}$

→2

cuckoo hashing

2

etc. for ids 2 and 1

etc. for ids 1 and 3

GKMR WITH CUCKOO HASHING

2

SAHEME OUR G GKNR WITH CUCKOO HASHING

SCHEME OUR G GKNR WITH CUCKOO HASHING

 $\mathbf{2}$

3

GKMR WITH CUCKOO HASHING

Problem

SCHEM GKMR WITH CUCKOO HASHING H

Problem: what if encryptors use the wrong hash function?

OUR SCHEME GKMR WITH CUCKOO HASHING

Encryption needs to be not only with respect to the position, but also the identity.

SCHEVE GKMR WITH CUCKOO HASHING

commitment of o-n o-n

GKMR WITH CUCKOO HASHING

commitment of o-

commitment of

GKMR WITH CUCKOO HASHING

commitment of on on

commitment of

SCHEME, OUR G GKMR WITH CUCKOO HASHING HI

SCHEME, OUR NG GKMR WITH CUCKOO HASHING **H**I

OUR SCHEME, G GKNR WITH CUCKOO HASHING

0-1

OUR SCHEME, G GKNR WITH CUCKOO HASHING

SCHEME, OUR NG GKMR WITH CUCKOO HASHING

OUR SCHEME, NING GKMR WITH CUCKOO HASHING

 $\xrightarrow{\sim} 2$

OUR SCHEME, NING GKMR WITH CUCKOO HASHING $(\mathsf{H}(\mathsf{I}))$

OUR SCHEME GKMR WITH CUCKOO HASHING

Without both openings for position 1, without **O** committed to in **(**) in position 1, without **made for this cuckoo hashing**, nothing could be inferred.

OUR SCHEME, GKNR WITH CUCKOO HASHING

updatable as before

OUR SCHEME, GKMR WITH CUCKOO HASHING H

updatable as before if the cuckoo hashing changes, the commitments and opening change.

OUR SCHEME, COMBINING GKMR WITH CUCKOO HASHING

	Setting	\mathcal{ID}	Compactness	ct	#updates	
• J	9 (/	$\{0,1\}^*$	Adaptive	$O(\lambda \log n)$	$\log n$	$O(\lambda n^{2/3}\log n)$
[GKMR22]	Pairings (P)	[1,n]	Adaptive	$4\log n$	$\log n$	$O(\sqrt{n}\log n)$
Ours P1	Pairings (P)	$\{0,1\}^*$	Adaptive	$6\lambda \log n$	$\log n$	$O(\sqrt{\lambda n}\log n)$
Ours P2	Pairings (P)	$\{0,1\}^*$	Selective	$12\log n$	$\log n$	$O(\sqrt{n}\log n)$
$[DKL^+23]$	Lattices	$\{0,1\}^*$	Adaptive	$(2\lambda + 1)\log n$	$\log n$	$O(\log n)$
Ours L	Lattices	$\{0,1\}^*$	Selective	$4\log^2 n$	$\log n$	$O(\log n)$

Table 1: Comparison of the schemes resulting from different instantiations of our compiler. n is the maximum number of users to be registered. Parings (P) indicates prime order groups and Pairings (C) composite order groups respectively. |ct| in the pairing construction is measured in group elements and in the Lattice constructions LWE ciphertexts.

OTHER CONTRIBUTION KEY-VALUE MAP COMMITMENTS for large keys, with updates, using pairings

OTHER CONTRIBUTION KEY-VALUE MAP COMMITMENTS for large keys, with updates, using pairings

equivalence of vector commitments and universal accumulators

WORK BY DARIO FIORE¹, DIMITRIS KOLONELOS^{1, 2} & PAOLA DE PERTHUIS^{3,4} FULL VERSION: HTTPS://EPRINT.IACR.ORG/2023/1389 **PUBLISHED AT ASIACRYPT 2023 PRESENTATION BY PAOLA DE PERTHUIS**

cosmian

