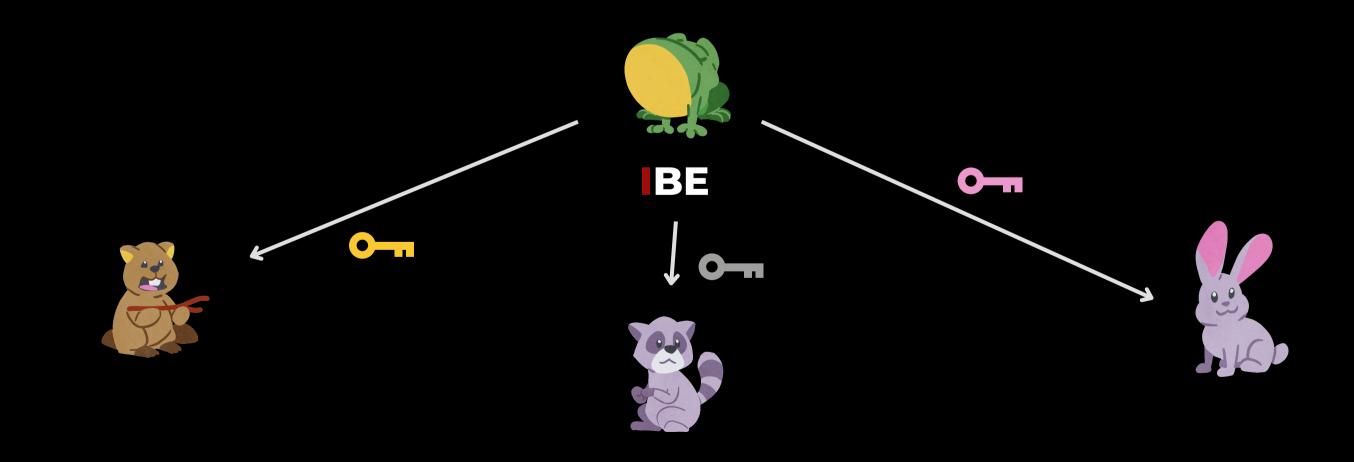
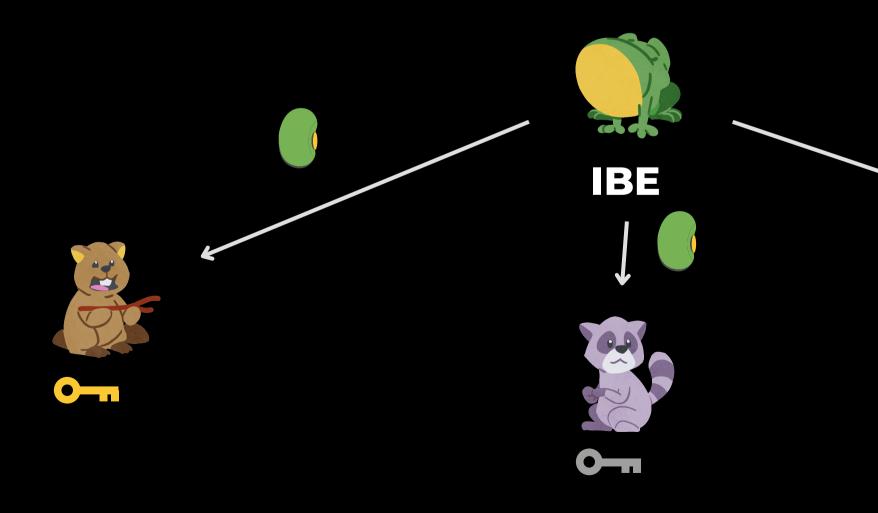
CUCKOO COMMITMENTS: REGISTRATION-BASED ENCRYPTION & KEY-VALUE MAP COMMITMENTS FOR LARGE SPACES

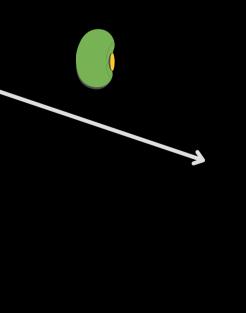
WORK BY DARIO FIORE¹, DIMITRIS KOLONELOS^{1, 2}& PAOLA DE PERTHUIS^{3,4} FULL VERSION: HTTPS://EPRINT.IACR.ORG/2023/1389 PUBLISHED AT ASIACRYPT 2023 PRESENTATION BY PAOLA DE PERTHUIS

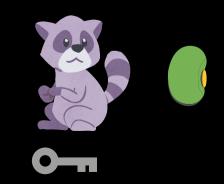
cosmian

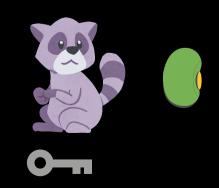
MOTIVATIONS



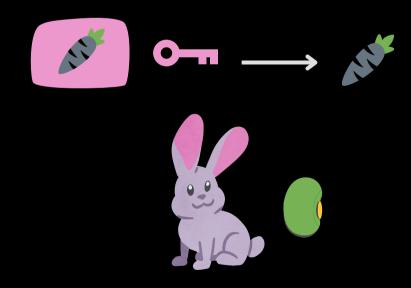


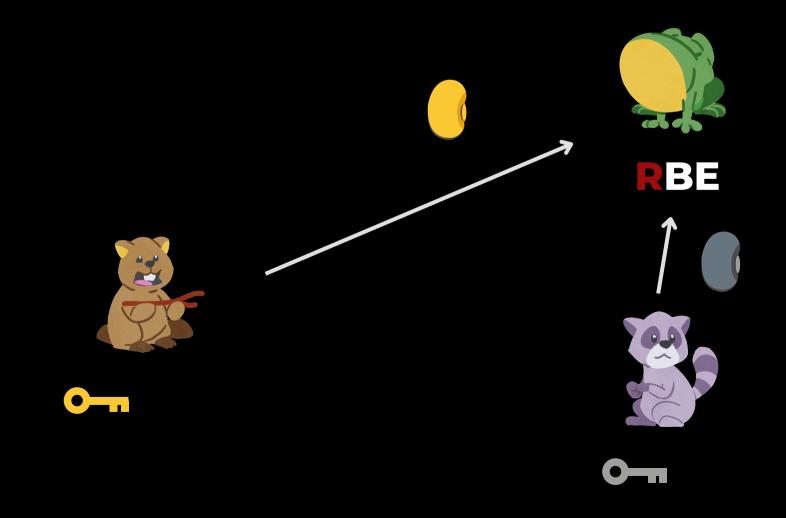








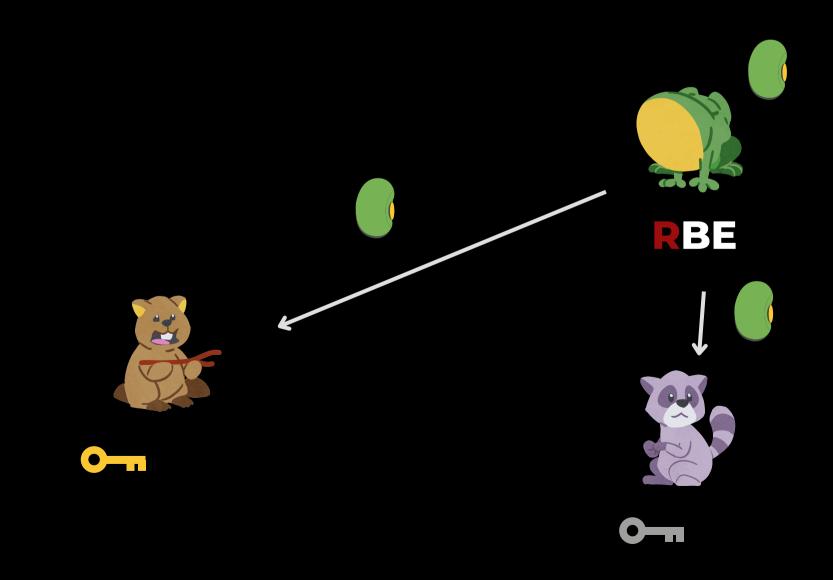


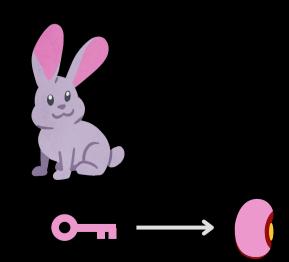


Stemming from [TCC:Garg-Hajiabadi-Mahmoody-Ral Like Identity-Based Encryption (IBE), but without the key curator holding secrets.

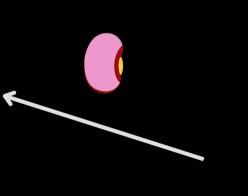
RBE

 \rightarrow

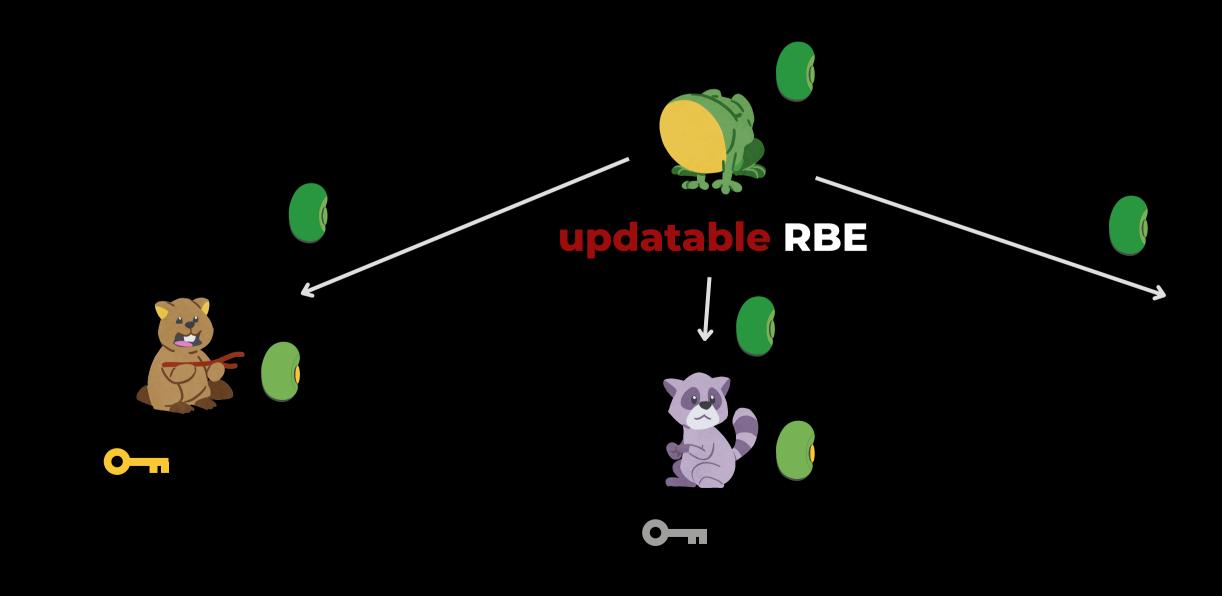


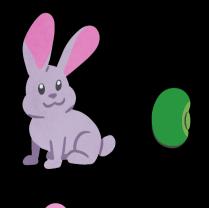


Like Identity-Based Encryption (IBE), but without the key curator holding secrets.



Like Identity-Based Encryption (IBE), but without the key curator holding secrets.

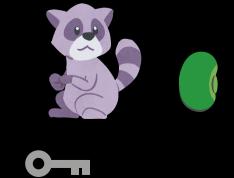


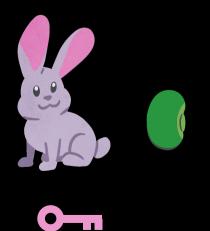


REGISTRATION-BASED ENCRYPTION (RBE)

State-of-the-art:

- first constructions were very inefficient;
- efficient black-box constructions in [Glaeser-Kolonelos-Malavolta-Rahimi-22] but identity-space of polynomial size
- and [EC:Döttling-Kolonelos-Lai-Lin-Malavolta-Rahimi-23] with lattices, but ciphertexts in GB





REGISTRATION-BASED ENCRYPTION (RBE)

State-of-the-art:

- first constructions were very inefficient;
- efficient black-box constructions in [Glaeser-Kolonelos-Malavolta-Rahimi-22] but identity-space of polynomial size
- and [EC:Döttling-Kolonelos-Lai-Lin-Malavolta-Rahimi-23] with lattices, but ciphertexts in GB

	Setting	\mathcal{ID}	Compactness	ct	#updates	pp + crs
[HLWW23]	Pairings (C)	$\{0,1\}^*$	Adaptive	$O(\lambda \log n)$	$\log n$	$O(\lambda n^{2/3}\log n)$
[GKMR22]	Pairings (P)	[1,n]	Adaptive	$4\log n$	$\log n$	$O(\sqrt{n}\log n)$
Ours P1	Pairings (P)	$\{0,1\}^*$	Adaptive	$6\lambda \log n$	$\log n$	$O(\sqrt{\lambda n}\log n)$
Ours P2	Pairings (P)	$\{0,1\}^*$	Selective	$12\log n$	$\log n$	$O(\sqrt{n}\log n)$
$[DKL^+23]$	Lattices	$\{0,1\}^*$	Adaptive	$(2\lambda + 1)\log n$	$\log n$	$O(\log n)$
Ours L	Lattices	$\{0,1\}^*$	Selective	$4\log^2 n$	$\log n$	$O(\log n)$

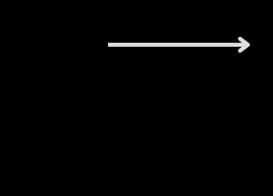
Table 1: Comparison of the schemes resulting from different instantiations of our compiler. n is the maximum number of users to be registered. Parings (P) indicates prime order groups and Pairings (C) composite order groups respectively. |ct| in the pairing construction is measured in group elements and in the Lattice constructions LWE ciphertexts.

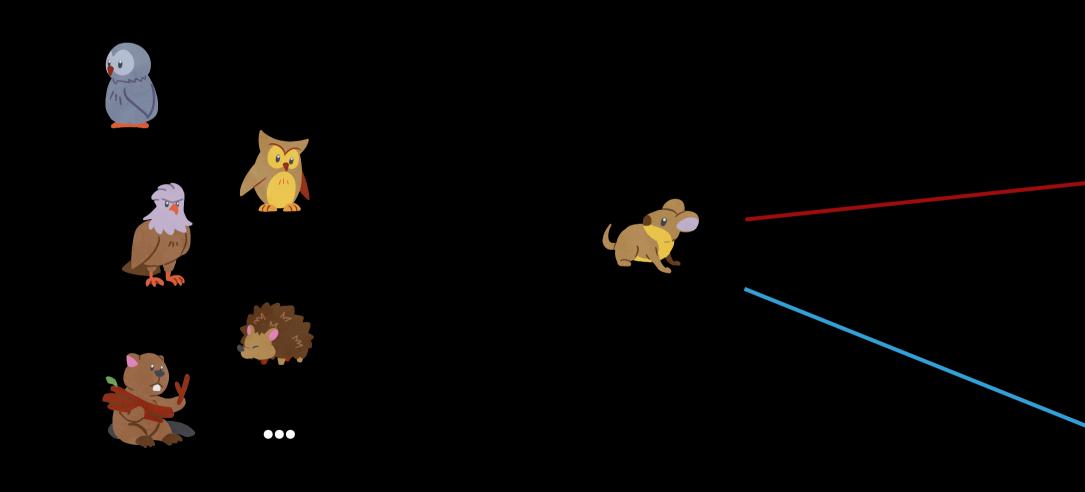
A NEW SETTING FOR CUCKOO HASHING

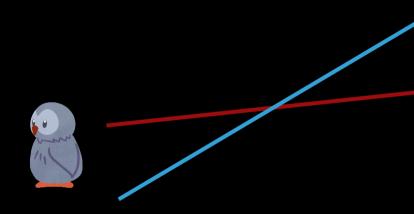
A powerful technique

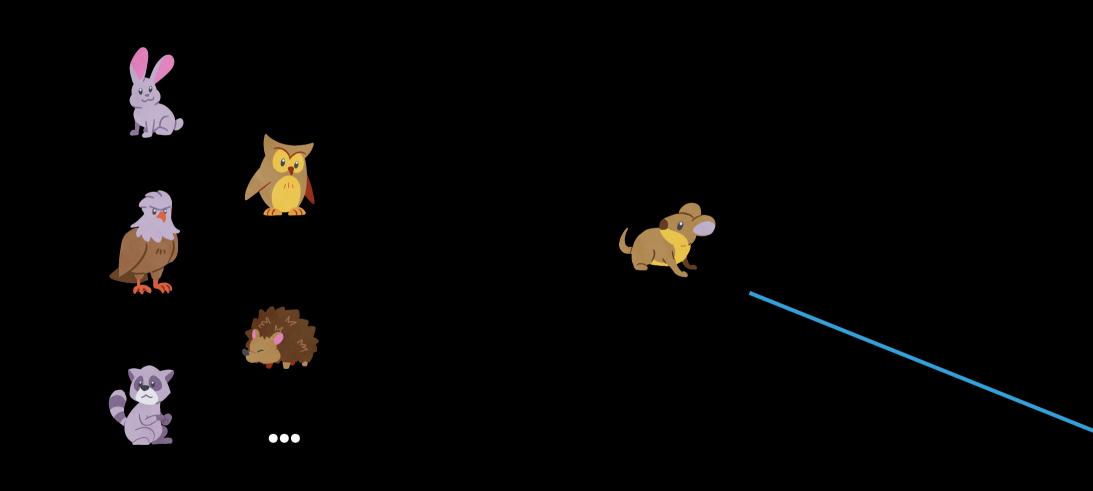
A powerful technique

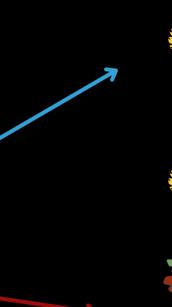
A powerful technique

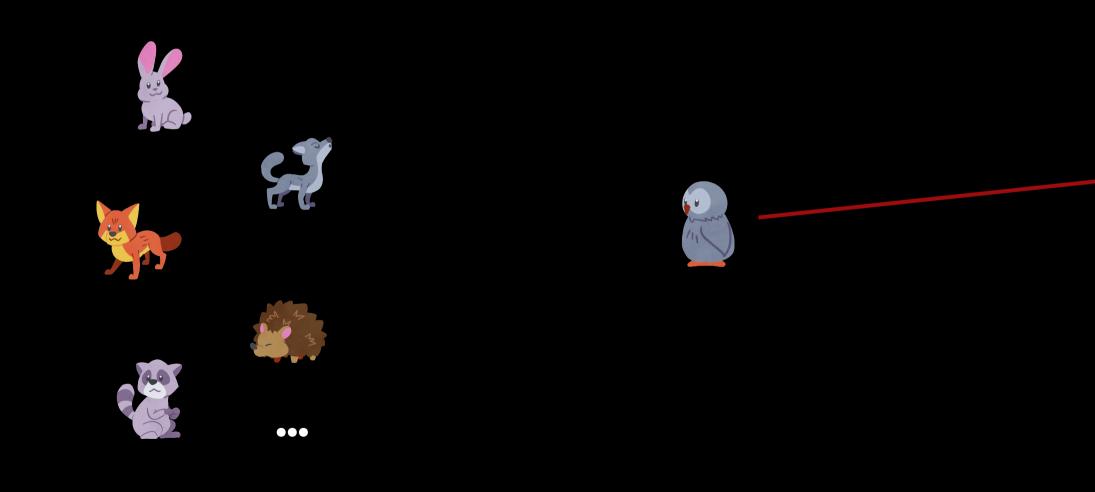




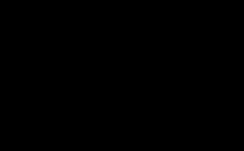








Performance



Performance, for negligible failure (in λ):

- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals:

average constant insertion time, worst-case log(n) stash.

Performance, for negligible failure (in λ):

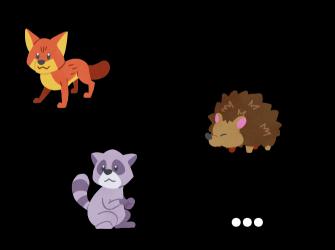
- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals:

average constant insertion time, worst-case log(n) stash.

Security against adversaries wanting to fill the stash? (choosing animals maliciously)

Performance, for negligible failure (in λ):

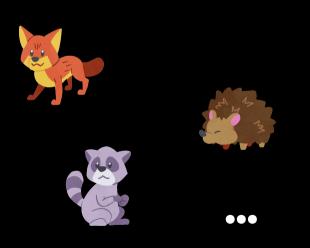
- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals:
 - average constant insertion time, worst-case log(n) stash.
- Security against adversaries wanting to fill the stash? (choosing animals maliciously)
- h = 2, N = 2kn nests: average constant insertion, worst-case n stash



ne, to store n animals: orst-case log(n) stash. n? iciously)

Performance, for negligible failure (in λ):

- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals: average constant insertion time, worst-case log(n) stash.
- Security against adversaries wanting to fill the stash? (choosing animals maliciously)
- h = 2, N = 2kn nests: average constant insertion, worst-case n stash
- h = λ , N = 2λ n nests: average λ time insertion, worst-case empty stash



Performance, for negligible failure (in λ):

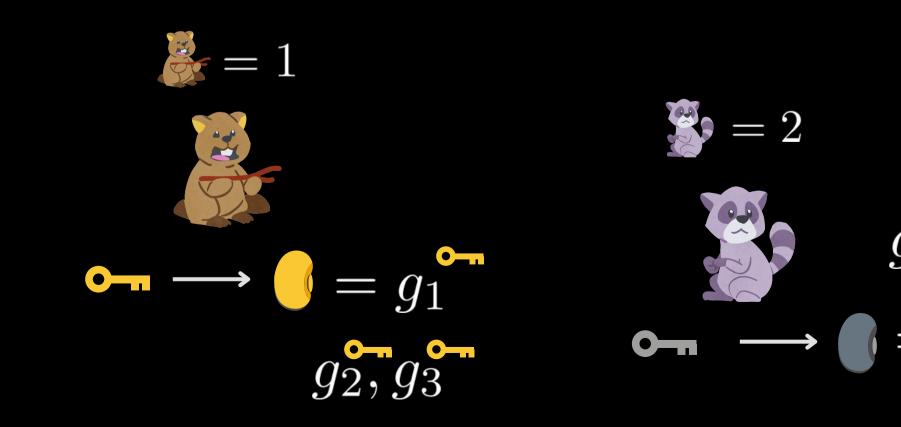
- h = 2 hash functions, N = 2hn nests with capacity one, to store n animals: average constant insertion time, worst-case log(n) stash.
- Security against adversaries wanting to fill the stash? (choosing animals maliciously)
- h = 2, N = 2kn nests: average constant insertion, worst-case n stash
- h = λ , N = 2λ n nests: average λ time insertion, worst-case empty stash

reference for parameters in cryptography: [C:Yeo23]

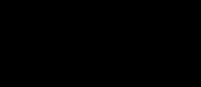
USING CUCKOO HASHING WITH VECTOR COMMITMENTS (VC),

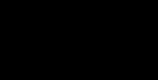
AND WITNESS ENCRYPTION FOR VC (VCWE)

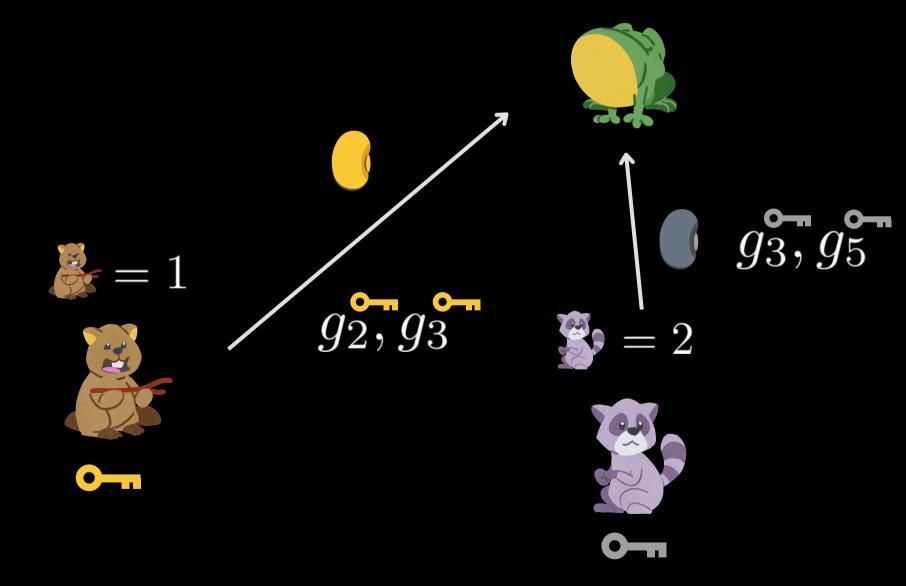
 $crs = g_1, g_2, g_3, g_5, g_6$



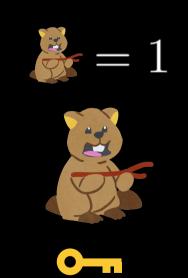
 g_3, g_5



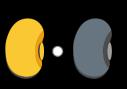




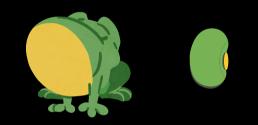
 g_1, g_2, g_3, g_5, g_6

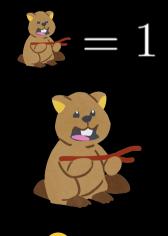


 g_2, g_3 g_3, g_5

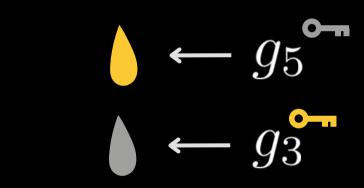


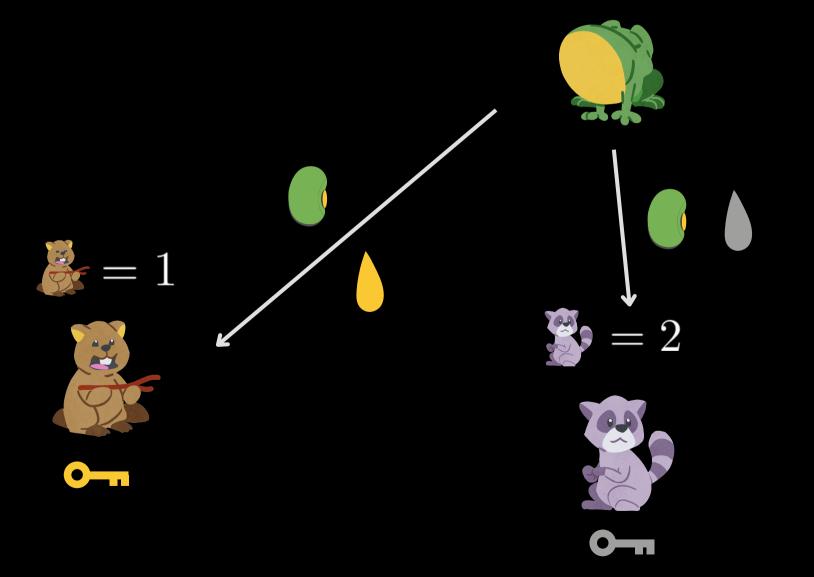
 g_1, g_2, g_3, g_5, g_6

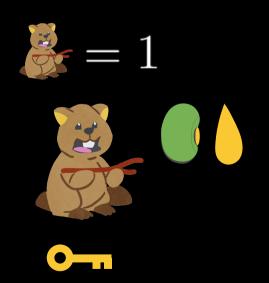




 g_2, g_3

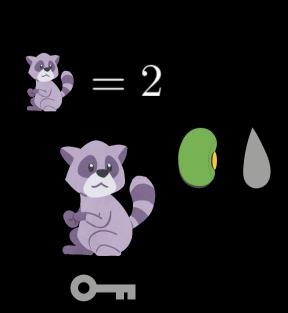


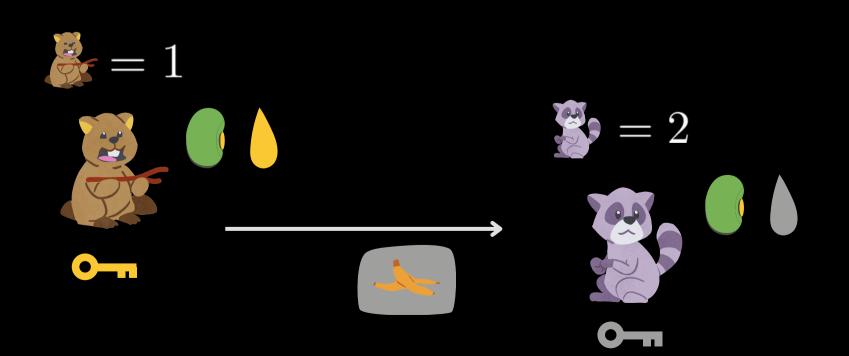


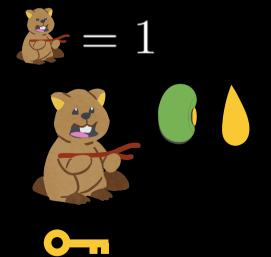


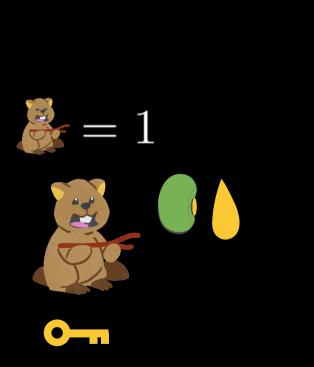


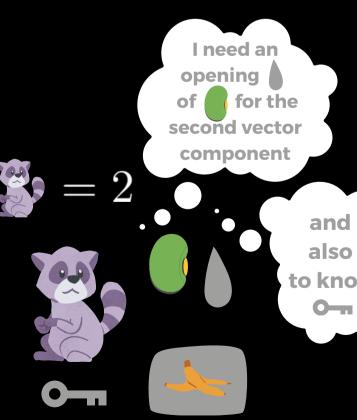
g_1, g_2, g_3, g_5, g_6





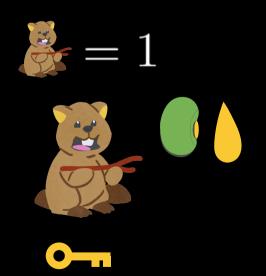


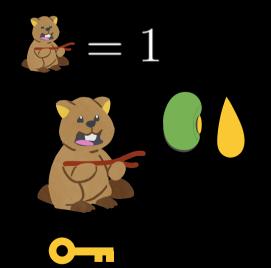


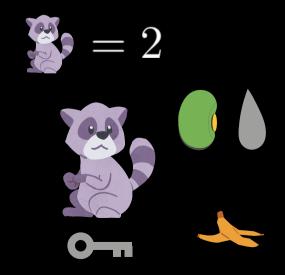


 g_2, g_3

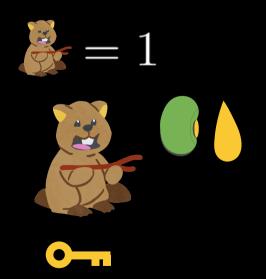
also to know

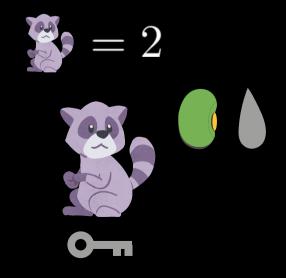


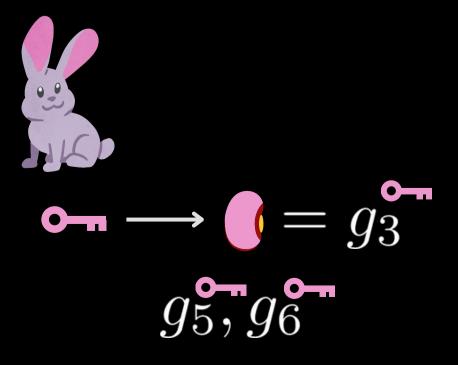




Updates







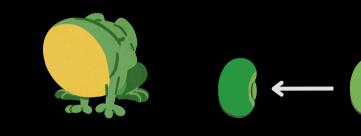
Updates

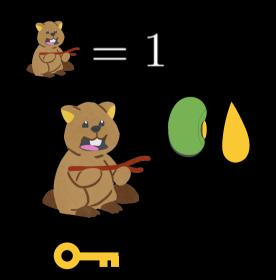
 g_1, g_2, g_3, g_5, g_6

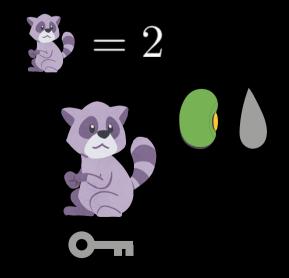
= 2

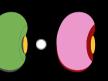
 $\mathbf{\hat{e}} = 1$

Updates





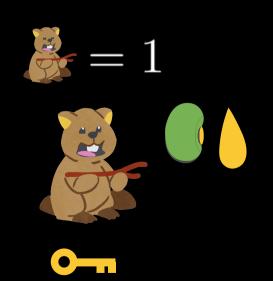


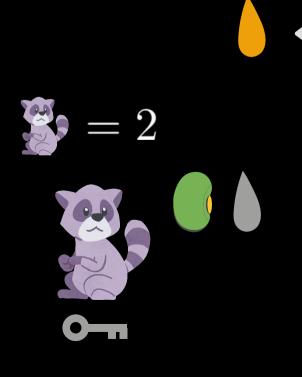


THE GLAESER-KOLONELOS-MALAVOLTA-RAHIMI (GKMR) RBE, USING LIBERT-YUNG VECTOR COMMITMENTS [TCC:LY10]

Updates

 g_1, g_2, g_3, g_5, g_6



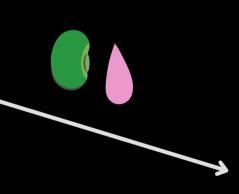


 $\leftarrow g_2 \cdot g_3$ $\leftarrow \circ g_5$ $\leftarrow \circ g_6$

THE GLAESER-KOLONELOS-MALAVOLTA-RAHIMI (GKMR) RBE, USING LIBERT-YUNG VECTOR COMMITMENTS [TCC:LY10]

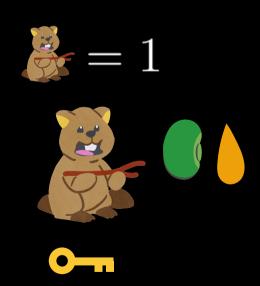
Updates

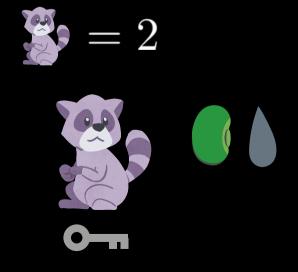
= 2



THE GLAESER-KOLONELOS-MALAVOLTA-RAHIMI (GKMR) RBE, USING LIBERT-YUNG VECTOR COMMITMENTS [TCC:LY10]

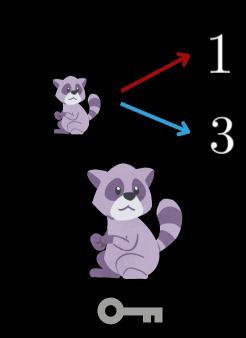
Updates





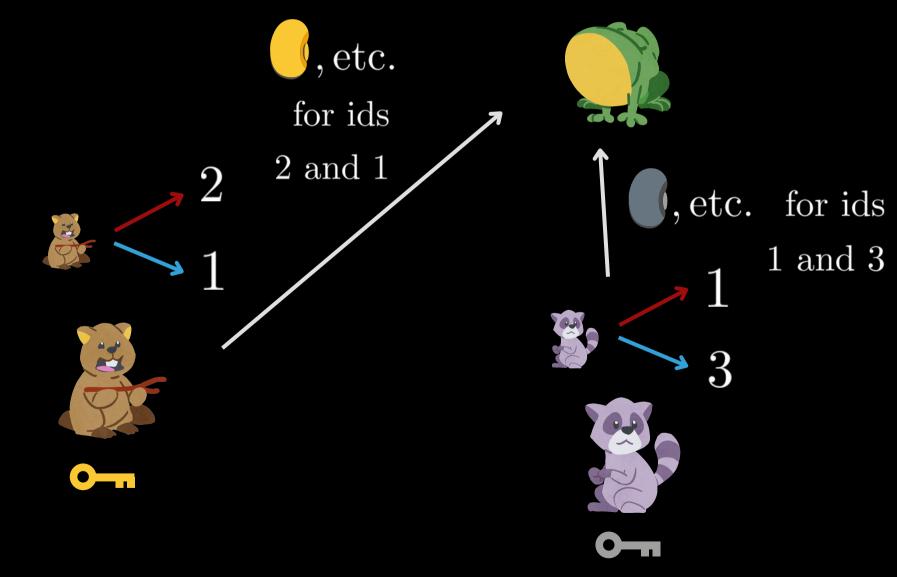
SALEME G GKMR WITH CUCKOO HASHING

 $\mathbf{2}$



WITH CUCKOO HASHING

 g_1, g_2, g_3, g_5, g_6

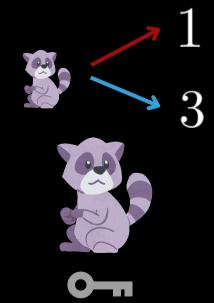


[|]|;[,] GKMR WITH CUCKOO HASHING

 $\overline{g_1}, \overline{g_2}, \overline{g_3}, \overline{g_5}, \overline{g_6}$

→2

cuckoo hashing



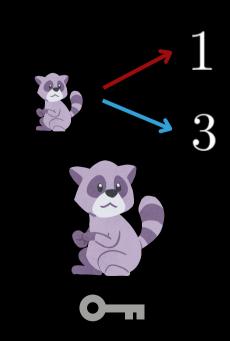
2

etc. for ids 2 and 1

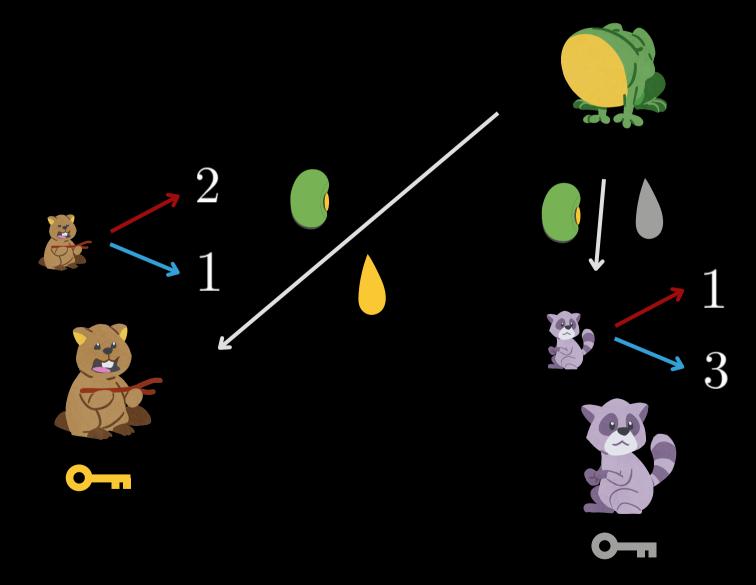
etc. for ids 1 and 3

GKMR WITH CUCKOO HASHING

2



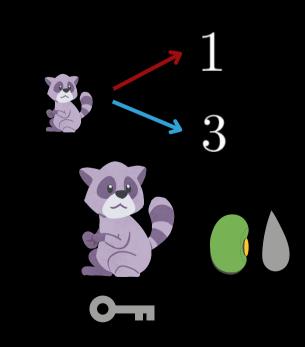
SAHEME OUR G GKNR WITH CUCKOO HASHING



SCHEME OUR G GKNR WITH CUCKOO HASHING

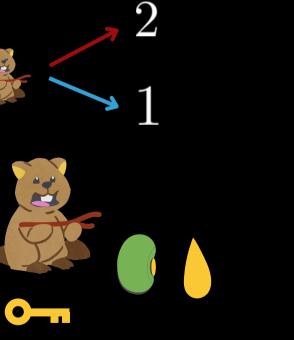
 $\mathbf{2}$

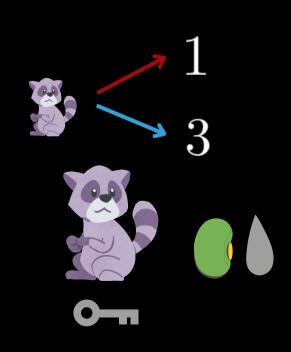
3



GKMR WITH CUCKOO HASHING

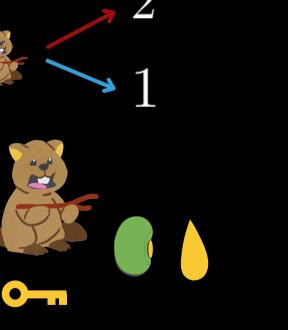
Problem

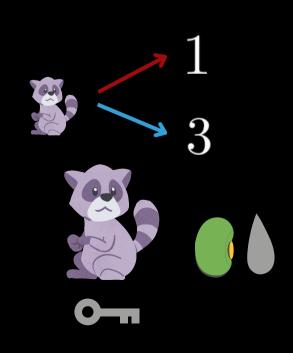




SCHEM GKMR WITH CUCKOO HASHING H

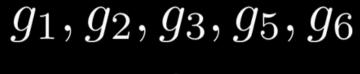
Problem: what if encryptors use the wrong hash function?

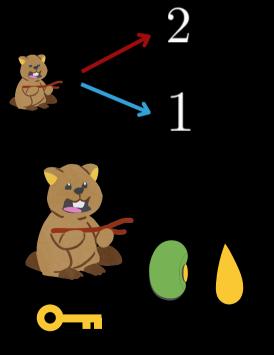


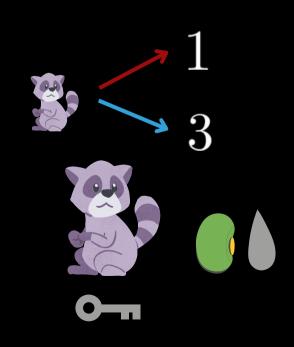


OUR SCHEME GKMR WITH CUCKOO HASHING

Encryption needs to be not only with respect to the position, but also the identity.

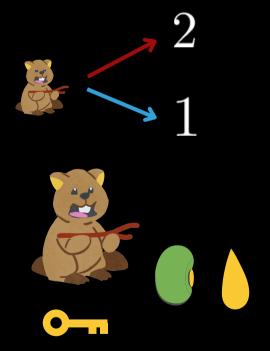


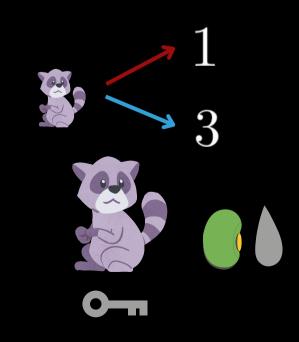




SCHEVE GKMR WITH CUCKOO HASHING

commitment of o-n o-n

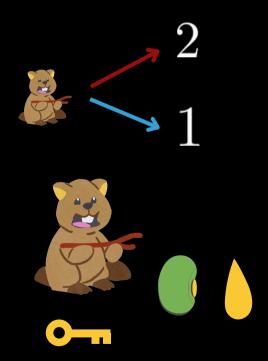


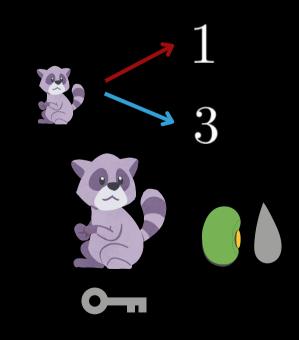


GKMR WITH CUCKOO HASHING

commitment of o-

commitment of

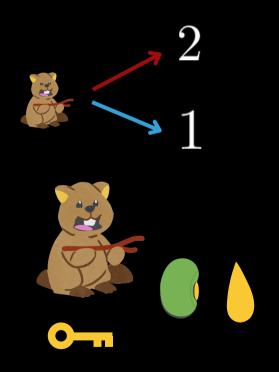


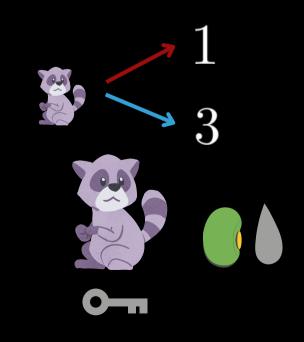


GKMR WITH CUCKOO HASHING

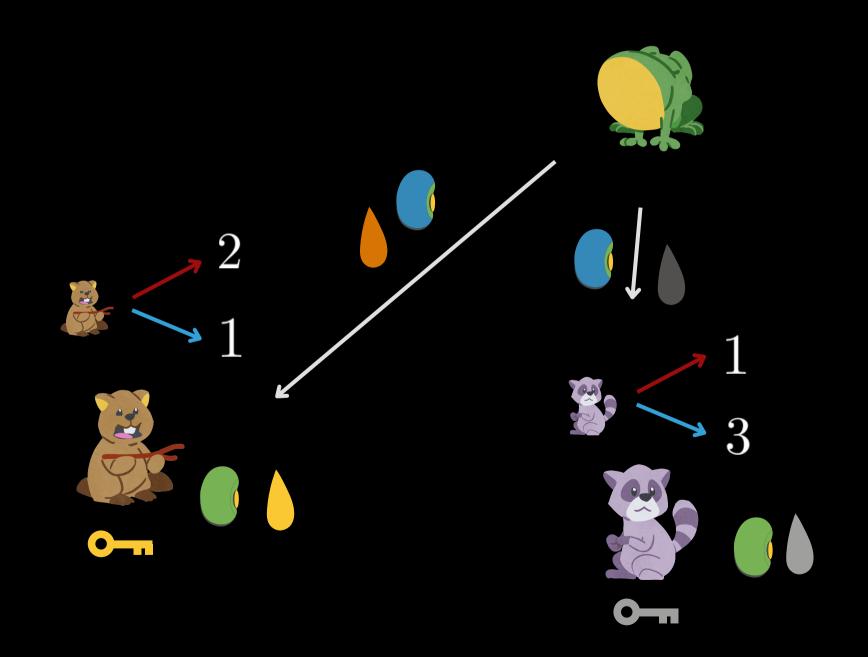
commitment of on on

commitment of

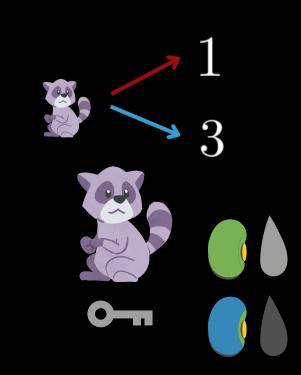




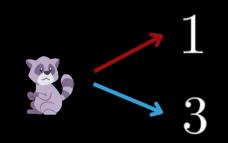
SCHEME, OUR G GKMR WITH CUCKOO HASHING HI

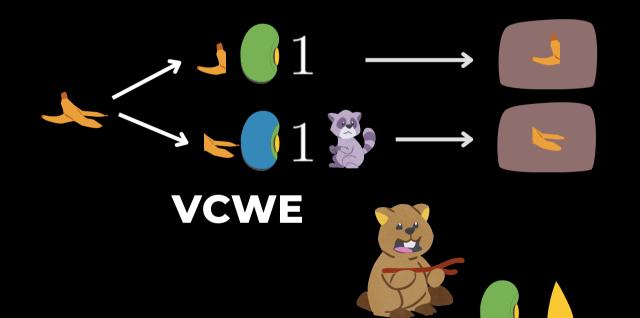


SCHEME, OUR NG GKMR WITH CUCKOO HASHING **H**I



OUR SCHEME, G GKNR WITH CUCKOO HASHING

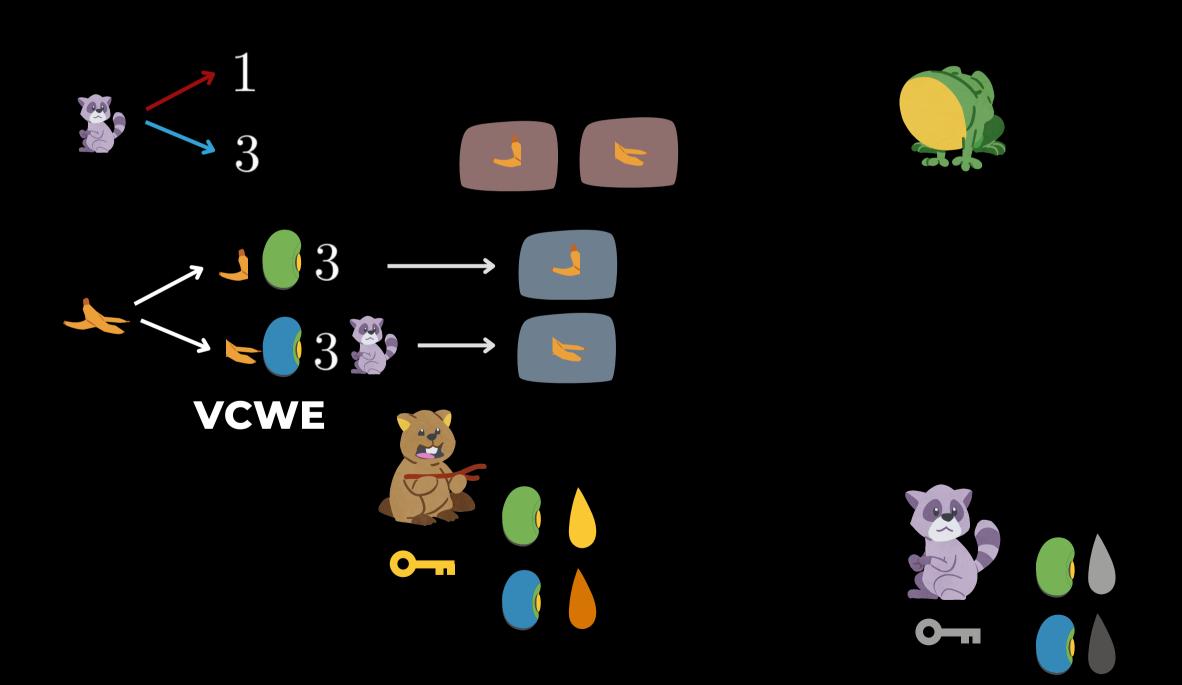




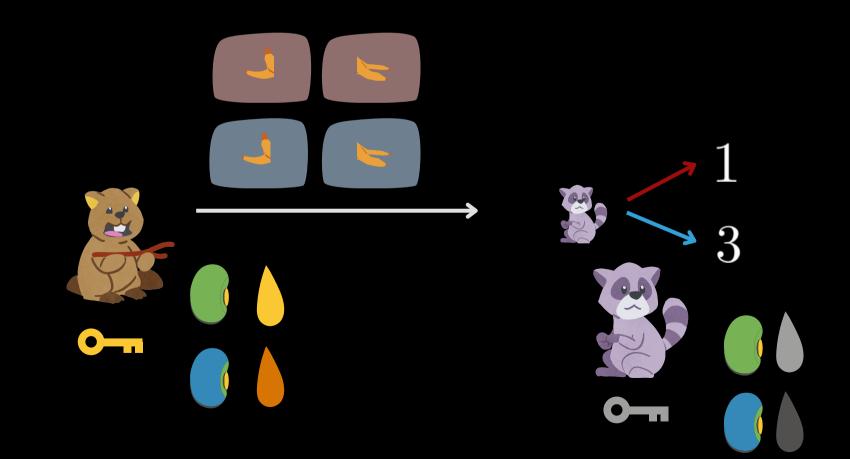
0-1



OUR SCHEME, G GKNR WITH CUCKOO HASHING

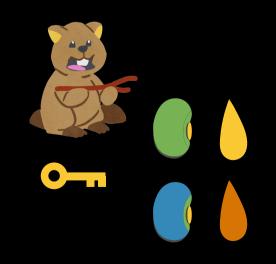


SCHEME, OUR NG GKMR WITH CUCKOO HASHING



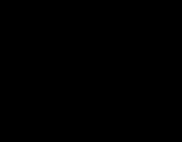


OUR SCHEME, NING GKMR WITH CUCKOO HASHING



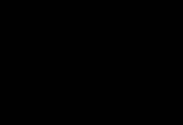
 $\xrightarrow{\sim} 2$

OUR SCHEME, NING GKMR WITH CUCKOO HASHING $(\mathsf{H}(\mathsf{I}))$



OUR SCHEME GKMR WITH CUCKOO HASHING

Without both openings for position 1, without **O** committed to in **(**) in position 1, without **made for this cuckoo hashing**, nothing could be inferred.



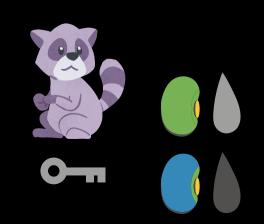
OUR SCHEME, GKNR WITH CUCKOO HASHING

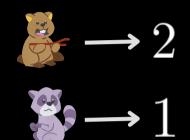
updatable as before

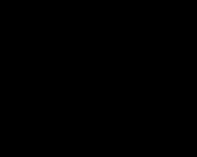


OUR SCHEME, GKMR WITH CUCKOO HASHING H

updatable as before if the cuckoo hashing changes, the commitments and opening change.







OUR SCHEME, COMBINING GKMR WITH CUCKOO HASHING

	Setting	\mathcal{ID}	Compactness	ct	#updates	
• J	9 (/	$\{0,1\}^*$	Adaptive	$O(\lambda \log n)$	$\log n$	$O(\lambda n^{2/3}\log n)$
[GKMR22]	Pairings (P)	[1,n]	Adaptive	$4\log n$	$\log n$	$O(\sqrt{n}\log n)$
Ours P1	Pairings (P)	$\{0,1\}^*$	Adaptive	$6\lambda \log n$	$\log n$	$O(\sqrt{\lambda n}\log n)$
Ours P2	Pairings (P)	$\{0,1\}^*$	Selective	$12\log n$	$\log n$	$O(\sqrt{n}\log n)$
$[DKL^+23]$	Lattices	$\{0,1\}^*$	Adaptive	$(2\lambda + 1)\log n$	$\log n$	$O(\log n)$
Ours L	Lattices	$\{0,1\}^*$	Selective	$4\log^2 n$	$\log n$	$O(\log n)$

Table 1: Comparison of the schemes resulting from different instantiations of our compiler. n is the maximum number of users to be registered. Parings (P) indicates prime order groups and Pairings (C) composite order groups respectively. |ct| in the pairing construction is measured in group elements and in the Lattice constructions LWE ciphertexts.

OTHER CONTRIBUTION KEY-VALUE MAP COMMITMENTS for large keys, with updates, using pairings

OTHER CONTRIBUTION KEY-VALUE MAP COMMITMENTS for large keys, with updates, using pairings

equivalence of vector commitments and universal accumulators

WORK BY DARIO FIORE¹, DIMITRIS KOLONELOS^{1, 2} & PAOLA DE PERTHUIS^{3,4} FULL VERSION: HTTPS://EPRINT.IACR.ORG/2023/1389 **PUBLISHED AT ASIACRYPT 2023 PRESENTATION BY PAOLA DE PERTHUIS**

cosmian

