# Dually Computable Cryptographic Accumulators and Their Application to Attribute-Based Encryption Journées Codages et Cryptographie 

Anaïs Barthoulot ${ }^{1,2}$ Olivier Blazy ${ }^{3}$ Sébastien Canard ${ }^{4}$

${ }^{1}$ Orange ${ }^{2}$ Université de Limoges ${ }^{3}$ École Polytechnique ${ }^{4}$ Télécom Paris
October 17, 2023


## Table of contents

(1) Cryptographic Accumulators
(2) Our Accumulator
(3) Encryption From Accumulators

## Cryptographic Accumulators [Bd94]

- Introduced in 1994 by Benaloh and De Mare
- Compact representation of a set
- Membership proof for one element...
- ... that cannot be forged
- RSA-based, pairing-based, lattice-based constructions
- Several applications:
* timestamping
$\star$ (anonymous) credentials
* ecash
* ...

Never used for encryption

## Asymmetric Accumulators [Bd94, DHS15]



$$
\underset{\mathrm{sk}_{\mathrm{acc}} \mathrm{pk}_{\mathrm{acc}}}{?} \longleftarrow \operatorname{Gen}\left(1^{\lambda}\right)
$$

## Special Type of Accumulator



$$
\underset{\mathrm{sk}_{\mathrm{acc}} \mathrm{pk}_{\mathrm{acc}} \longleftarrow \operatorname{Gen}\left(1^{\lambda}\right) .2{ }^{2} \longleftarrow}{ }
$$

## New Functionality: Dually Computable



## Sizes Requirements And Distinguishability

Sizes requirements: $|a c c \mathcal{X}|$ and $\mid$ wit $_{y} \mid$ are small as for any accumulator

## Distinguishability:



## Correctness



## Correctness



## Correctness of Duality



## Asymmetric Cryptographic Accumulator Security: Collision

## Resistance



## Dually Computable Accumulator Security: Dual Collision Resistance



## Table of contents

(1) Cryptographic Accumulators
(2) Our Accumulator

## Mathematical Background

## Asymmetric bilinear pairing:

- $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ cyclic (multiplicative) groups of order $p$ (prime)
- $\mathbb{G}_{1}=<g_{1}>, \mathbb{G}_{2}=<g_{2}>$
- e: $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ a function s.t.:
- $e\left(g_{1}^{a}, g_{2}^{b}\right)=e\left(g_{1}, g_{2}\right)^{a b}$ for all $a, b \in \mathbb{Z}_{p}$ (bilinear)
- $e\left(g_{1}, g_{2}\right) \neq 1,1$ : identity element in $\mathbb{G}_{T}$ (non-degenerate)
- $e(X, Y)$ efficiently computable $\forall X \in \mathbb{G}_{1}, Y \in \mathbb{G}_{2}$ (efficiently computable)


## Asymmetric bilinear pairing groups:

- $\Gamma=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, g_{1}, g_{2}, e\right)$ as above
- and efficient algorithm to decide membership of the groups


## Mathematical Background

## Dual Pairing Vector Spaces (DPVS)

- Prime $p$ and a fixed (constant) dimension $n$
- Asymmetric bilinear pairing group $\Gamma=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, g_{1}, g_{2}, e\right)$
- $\mathbb{D}=\left(\boldsymbol{d}_{1}, \cdots, \boldsymbol{d}_{n}\right)$ and $\mathbb{D}^{*}=\left(\boldsymbol{d}_{1}^{*}, \cdots, \boldsymbol{d}_{n}^{*}\right)$ of $\mathbb{Z}_{p}^{n}$ two random bases
- Dual orthonormal, meaning that
- $\boldsymbol{d}_{i} \cdot \boldsymbol{d}_{j}^{*}=0(\bmod p)$ whenever $i \neq j$,
- $\boldsymbol{d}_{i} \cdot \boldsymbol{d}_{i}^{*}=\psi(\bmod p)$ for all $i$,
where $\psi$ is a uniformly random element of $\mathbb{Z}_{p}$
- Generated by algorithm $\operatorname{Dual}\left(\mathbb{Z}_{p}^{n}\right)$

In our setting: $n=2, \mathbb{D}=\left(\boldsymbol{d}_{1}, \boldsymbol{d}_{2}\right)$ and $\mathbb{D}^{*}=\left(\boldsymbol{d}_{1}^{*}, \boldsymbol{d}_{2}^{*}\right): \boldsymbol{d}_{1} \cdot \boldsymbol{d}_{2}^{*}=0$ and $\boldsymbol{d}_{1} \cdot \boldsymbol{d}_{1}^{*}=\psi$

Note: elements of $\mathbb{D}, \mathbb{D}^{*}$ are vectors

## Pairings and Vectors \& Characteristic Polynomial

- $g_{i} \in \mathbb{G}_{i}$ group element for $i \in\{1,2\}, \boldsymbol{u}, \boldsymbol{v}$ two vectors of length $\ell$
- $g_{i}^{v}:=\left(g_{i}^{v_{1}}, \cdots, g_{i}^{v_{\ell}}\right)$
- $g_{i}^{\boldsymbol{u} \cdot \boldsymbol{v}}=g_{i}^{\alpha}$, where $\alpha=\boldsymbol{u} \cdot \boldsymbol{v}=u_{1} \cdot v_{1}+u_{2} \cdot v_{2}+\cdots+u_{\ell} \cdot v_{\ell}$

$$
e\left(g_{1}^{\boldsymbol{u}}, g_{2}^{v}\right):=\prod_{i=1}^{\ell} e\left(g_{1}^{u_{i}}, g_{2}^{v_{i}}\right)=e\left(g_{1}, g_{2}\right)^{u \cdot v}
$$

- For set $\mathcal{X}$ :
characteristic polynomial $\mathrm{Ch}_{\mathcal{X}}[Z]=\prod_{x \in \mathcal{X}}(x+Z)=\sum_{i=0}^{|\mathcal{X}|} a_{i} \cdot Z^{i}$


## Our Dually Computable Accumulator

[Ngu05]'s pairing-based accumulator + DPVS of dimension 2

$$
\begin{aligned}
q & \in \mathbb{N}, \Gamma=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), s \in \mathbb{Z}_{p}^{*},\left(\mathbb{D}, \mathbb{D}^{*}\right) \leftarrow \operatorname{Dual}\left(\mathbb{Z}_{p}^{2}\right) \\
& \bullet \operatorname{sk}_{\text {acc }}
\end{aligned}=\left(s, \mathbb{D}, \mathbb{D}^{*}\right) \text {. }
$$

## Our Dually Computable Accumulator

[Ngu05]'s pairing-based accumulator + DPVS of dimension 2

$$
q \in \mathbb{N}, \Gamma=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), s \in \mathbb{Z}_{p}^{*},\left(\mathbb{D}, \mathbb{D}^{*}\right) \leftarrow \operatorname{Dual}\left(\mathbb{Z}_{p}^{2}\right)
$$

- $\mathrm{sk}_{\text {acc }}=\left(s, \mathbb{D}, \mathbb{D}^{*}\right)$
$-\quad \operatorname{acc} \mathcal{X}=g_{1}^{\boldsymbol{d}_{1} \operatorname{Ch} \mathcal{X}(s)}=g_{1}^{\boldsymbol{d}_{1} \prod_{x \in \mathcal{X}}(x+s)}=g_{1}^{\boldsymbol{d}_{1} \sum_{i=0}^{q} a_{i} s^{i}}$
Private Evaluation


## Our Dually Computable Accumulator

[Ngu05]'s pairing-based accumulator + DPVS of dimension 2

$$
\begin{aligned}
q & \in \mathbb{N}, \Gamma \\
& =\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), s \in \mathbb{Z}_{p}^{*},\left(\mathbb{D}, \mathbb{D}^{*}\right) \leftarrow \operatorname{Dual}\left(\mathbb{Z}_{p}^{2}\right) \\
& =\left(s, \mathbb{D}, \mathbb{D}^{*}\right)
\end{aligned}
$$

$-\operatorname{acc} \mathcal{X}=g_{1}^{\boldsymbol{d}_{1} \operatorname{Ch} \mathcal{X}(s)}=g_{1}^{\boldsymbol{d}_{1} \prod_{x \in \mathcal{X}}(x+s)}=g_{1}^{\boldsymbol{d}_{1} \sum_{i=0}^{q} a_{i} s^{i}}$
Private Evaluation

- $\mathrm{pk}_{\mathrm{acc}}=\left(\Gamma, g_{2}^{\boldsymbol{d}_{1}^{*}}, g_{2}^{\boldsymbol{d}_{1}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{1}^{*} s^{q}}, \cdots\right)$


## Our Dually Computable Accumulator

[Ngu05]'s pairing-based accumulator + DPVS of dimension 2

$$
\begin{aligned}
q & \in \mathbb{N}, \Gamma \\
& =\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), s \in \mathbb{Z}_{p}^{*},\left(\mathbb{D}, \mathbb{D}^{*}\right) \leftarrow \operatorname{Dual}\left(\mathbb{Z}_{p}^{2}\right) \\
& \text { skacc }
\end{aligned}=\left(s, \mathbb{D}, \mathbb{D}^{*}\right) \text {. }
$$

$-\operatorname{acc} \mathcal{X}=g_{1}^{\boldsymbol{d}_{1} \operatorname{Ch} \mathcal{X}(s)}=g_{1}^{\boldsymbol{d}_{1} \prod_{x \in \mathcal{X}}(x+s)}=g_{1}^{\boldsymbol{d}_{1} \sum_{i=0}^{q} a_{i} s^{i}}$
Private Evaluation

- $\mathrm{pk}_{\mathrm{acc}}=\left(\Gamma, g_{2}^{\boldsymbol{d}_{1}^{*}}, g_{2}^{\boldsymbol{d}_{1}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{1}^{*} s^{q}}, \cdots\right)$
- $\operatorname{accp} \mathcal{X}=g_{2} \boldsymbol{d}_{1}^{*} \operatorname{Ch} \mathcal{X}_{\mathcal{X}}(s)=g_{2} \boldsymbol{d}_{1}^{*} \prod_{x \in \mathcal{X}}(x+s)=g_{2} \boldsymbol{d}_{1}^{*} \sum_{i=0}^{q} a_{i} s^{i} \quad$ Public Evaluation


## Our Dually Computable Accumulator

[Ngu05]'s pairing-based accumulator + DPVS of dimension 2

$$
\begin{aligned}
q & \in \mathbb{N}, \Gamma=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), s \in \mathbb{Z}_{p}^{*},\left(\mathbb{D}, \mathbb{D}^{*}\right) \leftarrow \operatorname{Dual}\left(\mathbb{Z}_{p}^{2}\right) \\
\bullet \mathrm{pk}_{\mathrm{acc}} & =\left(\Gamma, g_{2}^{\boldsymbol{d}_{1}^{*}}, g_{2}^{\boldsymbol{d}_{1}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{1}^{*} s^{q}}, g_{2}^{\boldsymbol{d}_{2}^{*}}, g_{2}^{\boldsymbol{d}_{2}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{2}^{*} s^{q}}, \cdots\right)
\end{aligned}
$$

## Our Dually Computable Accumulator

[Ngu05]'s pairing-based accumulator + DPVS of dimension 2

$$
\begin{aligned}
& q \in \mathbb{N}, \Gamma=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), s \in \mathbb{Z}_{p}^{*},\left(\mathbb{D}, \mathbb{D}^{*}\right) \leftarrow \operatorname{Dual}\left(\mathbb{Z}_{p}^{2}\right) \\
& \bullet \mathrm{pk}_{\mathrm{acc}}=\left(\Gamma, g_{2}^{\boldsymbol{d}_{1}^{*}}, g_{2}^{\boldsymbol{d}_{1}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{1}^{*} s^{q}}, g_{2}^{d_{2}^{*}}, g_{2}^{\boldsymbol{d}_{2}^{*} s}, \cdots, g_{2}^{d_{2}^{*} s^{q}}, \cdots\right) \\
& \bullet \text { wit }_{y}=g_{2}^{d_{2}^{*} \mathrm{Ch}_{\mathcal{X} \backslash\{y\}}(s)}=g_{2}^{d_{2}^{*}} \prod_{x \in \mathcal{X} \backslash\{y\}}(x+s) \\
& =g_{2}^{\boldsymbol{d}_{2}^{*} \sum_{i=0}^{q} b_{i} s^{i}}
\end{aligned}
$$

## Our Dually Computable Accumulator

[Ngu05]'s pairing-based accumulator + DPVS of dimension 2

$$
\begin{aligned}
& q \in \mathbb{N}, \Gamma=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), s \in \mathbb{Z}_{p}^{*},\left(\mathbb{D}, \mathbb{D}^{*}\right) \leftarrow \operatorname{Dual}\left(\mathbb{Z}_{p}^{2}\right) \\
& \bullet \mathrm{pk}_{\mathrm{acc}}=\left(\Gamma, g_{2}^{\boldsymbol{d}_{1}^{*}}, g_{2}^{\boldsymbol{d}_{1}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{1}^{*} s^{q}}, g_{2}^{\boldsymbol{d}_{2}^{*}}, g_{2}^{\boldsymbol{d}_{2}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{2}^{*} s^{q}}, g_{1}^{\boldsymbol{d}_{2}}, g_{1}^{\boldsymbol{d}_{2} s}, \cdots\right) \\
& \bullet \text { wit }_{y}=g_{2} \boldsymbol{d}_{2}^{*} \mathrm{Ch}_{\mathcal{X} \backslash\{y\}}(s)=g_{2}^{\boldsymbol{d}_{2}^{*}} \prod_{x \in \mathcal{X} \backslash\{y\}}(x+s)=g_{2}^{\boldsymbol{d}_{2}^{*} \sum_{i=0}^{q} b_{i} s^{i}}
\end{aligned}
$$

## Our Dually Computable Accumulator

[Ngu05]'s pairing-based accumulator + DPVS of dimension 2

$$
\begin{aligned}
& q \in \mathbb{N}, \Gamma=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), s \in \mathbb{Z}_{p}^{*},\left(\mathbb{D}, \mathbb{D}^{*}\right) \leftarrow \operatorname{Dual}\left(\mathbb{Z}_{p}^{2}\right) \\
& \bullet \mathrm{pk}_{\mathrm{acc}}=\left(\Gamma, g_{2}^{\boldsymbol{d}_{1}^{*}}, g_{2}^{\boldsymbol{d}_{1}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{1}^{*} s^{q}}, g_{2}^{\boldsymbol{d}_{2}^{*}}, g_{2}^{\boldsymbol{d}_{2}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{2}^{*} s^{q}}, g_{1}^{\boldsymbol{d}_{2}}, g_{1}^{\boldsymbol{d}_{2} s}, \cdots\right) \\
& \bullet \text { wit }_{y}=g_{2} \boldsymbol{d}_{2}^{*} \mathrm{Ch}_{\mathcal{X} \backslash\{y\}}(s)=g_{2}^{\boldsymbol{d}_{2}^{*}} \prod_{x \in \mathcal{X} \backslash\{y\}}(x+s)=g_{2}^{\boldsymbol{d}_{2}^{*}} \sum_{i=0}^{q} b_{i} s^{i}
\end{aligned}
$$

- $e\left(\operatorname{acc} \mathcal{X}, g_{2}^{\boldsymbol{d}_{1}^{*}}\right) \stackrel{?}{=} e\left(g_{1}^{\boldsymbol{d}_{2 y}} \cdot g_{1}^{\boldsymbol{d}_{2 s}}\right.$, wit $\left._{y}\right)$

Verification

## Our Dually Computable Accumulator

[Ngu05]'s pairing-based accumulator + DPVS of dimension 2

$$
\begin{aligned}
& q \in \mathbb{N}, \Gamma=\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e, g_{1}, g_{2}\right), s \in \mathbb{Z}_{p}^{*},\left(\mathbb{D}, \mathbb{D}^{*}\right) \leftarrow \operatorname{Dual}\left(\mathbb{Z}_{p}^{2}\right) \\
& \bullet \mathrm{pk}_{\mathrm{acc}}=\left(\Gamma, g_{2}^{\boldsymbol{d}_{1}^{*}}, g_{2}^{\boldsymbol{d}_{1}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{1}^{*} s^{q}}, g_{2}^{\boldsymbol{d}_{2}^{*}}, g_{2}^{\boldsymbol{d}_{2}^{*} s}, \cdots, g_{2}^{\boldsymbol{d}_{2}^{*} s^{q}}, g_{1}^{\boldsymbol{d}_{2}}, g_{1}^{\boldsymbol{d}_{2} s}, g_{1}^{\boldsymbol{d}_{1}}\right) \\
& \bullet \text { wit }_{y}=g_{2}^{\boldsymbol{d}_{2}^{*} \mathrm{Ch}_{\mathcal{X} \backslash\{y\}}(s)=g_{2}{ }^{\boldsymbol{d}_{2}^{*}} \prod_{x \in \mathcal{X} \backslash\{y\}}(x+s)}=g_{2}^{\boldsymbol{d}_{2}^{*} \sum_{i=0}^{q} b_{i} s^{i}}
\end{aligned}
$$

- $e\left(\operatorname{acc} \mathcal{X}, g_{2}^{\boldsymbol{d}_{1}^{*}}\right) \stackrel{?}{=} e\left(g_{1}^{\boldsymbol{d}_{2 y}} \cdot g_{1}^{\boldsymbol{d}_{2 s}}\right.$, wit $\left._{y}\right)$

Verification

- $e\left(g_{1}^{\boldsymbol{d}_{1}}, \operatorname{accp} \mathcal{X}\right) \stackrel{?}{=} e\left(g_{1}^{\boldsymbol{d}_{2 y}} \cdot g_{1}^{\boldsymbol{d}_{2} s}\right.$, wit $\left._{y}\right)$

Public Verification

## All Properties Are Satisfied

- Correctness: [Ngu05]'s correctness + DVPS
$e\left(g_{1}^{\boldsymbol{d}_{2 y+s}}\right.$, wit $\left._{y}\right)=e\left(g_{1}^{\boldsymbol{d}_{2} \mathrm{Ch}_{\{y\}}(s)}, g_{2}^{\boldsymbol{d}_{2}^{*} \mathrm{Ch}_{\mathcal{X} \backslash\{y\}}(s)}\right)=e\left(g_{1}, g_{2}\right)^{\psi \mathrm{Ch}_{\mathcal{X}}(s)}$, and $e\left(\operatorname{acc} \mathcal{X}, g_{2}^{\boldsymbol{d}_{1}^{*}}\right)=e\left(g_{1}, g_{2}\right)^{\psi \operatorname{Ch}_{\mathcal{X}}(s)}=e\left(g_{1}^{\boldsymbol{d}_{1}}, \operatorname{accp} \mathcal{X}\right)$


## All Properties Are Satisfied

- Correctness: [Ngu05]'s correctness + DVPS
- Distinguishability: $\operatorname{acc} \mathcal{X} \in \mathbb{G}_{1}^{2} \neq \operatorname{accp} \mathcal{X} \in \mathbb{G}_{2}^{2}$


## All Properties Are Satisfied

- Correctness: [Ngu05]'s correctness + DVPS
- Distinguishability: $\operatorname{acc} \mathcal{X} \in \mathbb{G}_{1}^{2} \neq \operatorname{accp} \mathcal{X} \in \mathbb{G}_{2}^{2}$
- Correctness of duality:



## All Properties Are Satisfied

- Correctness: [Ngu05]'s correctness + DVPS
- Distinguishability: $\operatorname{acc} \mathcal{X} \in \mathbb{G}_{1}^{2} \neq \operatorname{accp} \mathcal{X} \in \mathbb{G}_{2}^{2}$
- Correctness of duality:

$$
\underbrace{e\left(\operatorname{acc} \mathcal{X}, g_{2}^{\boldsymbol{d}_{1}^{*}}\right)}_{\text {from Eval }}=\underbrace{e\left(g_{1}^{\boldsymbol{d}_{2}(y+s)}, \text { wit }_{y}\right)}_{\text {from WitCreate }}=\underbrace{e\left(g_{1}^{\boldsymbol{d}_{1}}, \text { accp } \mathcal{X}\right)}_{\text {from PublicEval }}
$$

- Dual collision resistance: from $q$-Strong Bilinear Diffie Hellman assumption, as Nguyen's scheme


## Table of contents

## (1) Cryptographic Accumulators

(2) Our Accumulator
(3) Encryption From Accumulators

## Ciphertext Policy Attribute-Based Encryption (CP-ABE)

$?$ ? $\operatorname{Setup}\left(1^{\lambda}\right)$
msk pk


## CP-ABE from Dually Computable Accumulators



## Access Policies and Accumulators: an Example

- Access policies: disjunctions of conjunctions
- $\mathcal{H}:\{$ set of attributes $\} \rightarrow \mathbb{Z}_{p}$, hash function
- $\Pi=\left(a_{1} \wedge a_{3}\right) \vee a_{4}$
- $\mathcal{Y}=\left\{\mathcal{H}\left(\left\{a_{1}, a_{3}\right\}\right), \mathcal{H}\left(\left\{a_{4}\right\}\right)\right\}$
- $\operatorname{accр}_{п} \leftarrow$ PublicEval(pk acc, $\left.\mathcal{Y}\right)$
- $\Upsilon=\left\{a_{1}, a_{2}, a_{3}\right\}$
- $\mathcal{X}=\left\{\mathcal{H}\left(\left\{a_{i}\right\}_{i=1}^{3}\right), \mathcal{H}\left(\left\{a_{i}, a_{j}\right\}_{1 \leq i<j \leq 3}\right), \mathcal{H}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)\right\}$
- acc ${ }_{\Upsilon} \leftarrow \operatorname{Eval}\left(\mathrm{sk}_{\mathrm{acc}}, \mathcal{X}\right)$
- $\mathcal{H}\left(\left\{a_{1}, a_{3}\right\}\right) \in \operatorname{acc} \Upsilon \cap \operatorname{accp} \boldsymbol{R}_{\Pi}$ and $\left\{a_{1}, a_{3}\right\}$ satisfies $\Pi$


## Our CP-ABE

- Combination of previous idea + our dually computable accumulator
- Intersection of two accumulators: more details in the paper
- Advantages:
- Constant size ciphertext
- Constant size secret key
- Drawbacks:
- Public key size exponential
- No generic construction
- Simple access policies


## Table of contents

(1) Cryptographic Accumulators
(2) Our Accumulator
(3) Encryption From Accumulators
(4) Conclusion

## Conclusion

## Our contributions

- Improvement of accumulator state of the art
- Introduction of dually computable accumulators
- Construction of a dually computable accumulator
- New application of accumulators: encryption
- Improvement of attribute-based encryption state of the art


## Futur works

- Reducing our CP-ABE public key size
- Developing generic construction of ABE from dually computable accumulators
- Dealing with fine-grained access policies

Paper accepted at CANS 2023 (October, $31^{\text {st }}$ - November, $2^{\text {nd }}$ )
Eprint version: https://eprint.iacr.org/2023/1277

## Bibliography I

Man Ho Au, Qianhong Wu, Willy Susilo, and Yi Mu.
Compact e-cash from bounded accumulator.
pages 178-195, 2007.
Josh Cohen Benaloh and Michael de Mare.
One-way accumulators: A decentralized alternative to digital sinatures (extended abstract).
pages 274-285, 1994.
Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee.
Shorter IBE and signatures via asymmetric pairings.
pages 122-140, 2013.
圊 David Derler, Christian Hanser, and Daniel Slamanig.
Revisiting cryptographic accumulators, additional properties and relations to other primitives.
pages 127-144, 2015.
Lan Nguyen.
Accumulators from bilinear pairings and applications.
pages 275-292, 2005.

