Constrained Pseudorandom Functions From Homomorphic Secret Sharing

Geoffroy Couteau¹, Pierre Meyer^{1,2}, Alain Passelègue^{3,4}, and <u>Mahshid Riahinia</u>⁴

¹ Université Paris Cité, CNRS, IRIF, Paris, France.
 ² Reichman University, Herzliya, Israel.
 ³ Inria, France.
 ⁴ ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France.

Journées C2 2023

Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A deterministic keyed function that is computationally indistinguishable from a truly random function. ([GGM'1984])

Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A deterministic keyed function that is computationally indistinguishable from a truly random function. ([GGM'1984])

Set of Outputs (\mathcal{Y})

Pseudorandom function: $F:\mathcal{K} imes \mathcal{X}
ightarrow \mathcal{Y}$

Definition. A deterministic keyed function that is computationally indistinguishable from a truly random function. ([GGM'1984])

Pseudorandom function: $F: \mathcal{K} \times \mathcal{X}
ightarrow \mathcal{Y}$

Definition. A deterministic keyed function that is computationally indistinguishable from a truly random function. ([GGM'1984])

Constrained Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A pseudorandom function with constrained access to the evaluation. ([BW'13, KPTZ'13,BGI'14])

Constrained Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A pseudorandom function with constrained access to the evaluation. ([BW'13, KPTZ'13,BGI'14])

Mahshid Riahinia, ENS Lyon

Constrained Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A pseudorandom function with constrained access to the evaluation. ([BW'13, KPTZ'13,BGI'14])

Our contributions

1-key (selectively-secure) constrained PRF for inner-product and NC¹ predicates.

Our contributions

1-key (selectively-secure) constrained PRF for inner-product and NC¹ predicates.

+ MPC Applications

Definition. Protocol for performing distributed evaluation on a secret. ([BGI'16])

Program $P \in \mathcal{P}$

Goal: Evaluate P(s).

s secret

Definition. Protocol for performing distributed evaluation on a secret. ([BGI'16])

Definition. Protocol for performing distributed evaluation on a secret. ([BGI'16])

Definition. Protocol for performing distributed evaluation on a secret. ([BGI'16])

Our contributions

1-key constrained PRF for inner-product and NC¹ predicates from homomorphic secret sharing.

- Extending homomorphic secret sharing properties.
- (most of) Existing HSS schemes satisfy these properties.

 $\sim\!\!\sim\!\!\sim$ new constructions of constrained PRF.

- Revisiting Applications of HSS to Secure Computation.
 - Secure computation with silent preprocessing, and
 - 1-sided statistically-secure computation with sublinear communication.

Our contributions

1-key constrained PRF for inner-product and NC¹ predicates from homomorphic secret sharing.

- Extending homomorphic secret sharing properties.
- (most of) Existing HSS schemes satisfy these properties.

 $\sim\!\!\sim\!\!\sim$ new constructions of constrained PRF.

- Revisiting Applications of HSS to Secure Computation.
 - Secure computation with silent preprocessing, and
 - 1-sided statistically-secure computation with sublinear communication.

(1) **D**ecisional **C**omposite **R**esiduosity

(2) **LWE** with superpolynomial modulus

(3) Hardness of the **Joye-Libert** encryption scheme

(4) **DDH & DXDH** over class groups

(5) **H**ard **M**embership **S**ubgroup over class groups

Constrained PRF

from

Homomorphic Secret Sharing

General strategy

For a constraint $C: \mathcal{X} ext{->} \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

For a constraint C: \mathcal{X} -> {0,1}: $S_C = \{x \in \mathcal{X}: C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $\ P_x: (k,C)\mapsto C(x)\cdot F_k(x)$.

For a constraint C: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $\ P_x: (k,C)\mapsto C(x)\cdot F_k(x)$. The second sec

For a constraint C: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF *F* with key *k*, and use an HSS to compute $P_x: (k,C)\mapsto C(x)\cdot F_k(x)$.

For a constraint C: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it. idea' Take a PRF F with key k, and use an HSS to compute $\ P_x: (k,C)\mapsto C(x)\cdot F_k(x).$ $\implies x \in S_C \Rightarrow P_x(k,C) = 0$ ek_0 k_0 Eval_{P_x} C_0 y_0 correctness: msk C, kShare $y_0 - y_1 = P_x(k, C)$ ek_1 C_1 Eval_{P_x} k_1 y_1

For a constraint C: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it. idea' Take a PRF F with key k, and use an HSS to compute $\ P_x: (k,C)\mapsto C(x)\cdot F_k(x).$ $\implies x \in S_C \Rightarrow P_x(k,C) = 0$ ek₀ k_0 Eval_{P_x} C_0 y_0 correctness: msk C, kShare $y_0-y_1=0 ig| \Rightarrow y_0=y_1$ ek_1 C_1 Eval_{P_x} k_1 y_1

For a constraint *C*: \mathcal{X} -> {0,1}: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $\ P_x: (k,C)\mapsto C(x)\cdot F_k(x).$

For a constraint C: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it. idea' Take a PRF *F* with key *k*, and use an HSS to compute $P_x: (k,C) \mapsto C(x) \cdot F_k(x)$. $x \in S_C \Rightarrow P_x(k,C) = 0 \longrightarrow Equal outputs$ $\rightarrow x \notin S_C \Rightarrow P_x(k,C) = F_k(x)$ $\xrightarrow{\mathsf{ek}_0} \mathsf{Eval}_{P_x}$ k_0 $\rightarrow y_0$ C_0 correctness: msk C, k-Share $y_0 - y_1 = F_k(x)$ ek_{1} C_1 Eval_{P_x} k_1 y_1

For a constraint C: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it. idea Take a PRF *F* with key *k*, and use an HSS to compute $P_x: (k,C) \mapsto C(x) \cdot F_k(x)$. $x \in S_C \Rightarrow P_x(k,C) = 0 \longrightarrow Equal outputs$ $\rightarrow x \notin S_C \Rightarrow P_x(k,C) = F_k(x)$ ek₀_ k_0 Eval_{P_x} C_0 $\rightarrow y_0$ correctness: msk C, kShare $y_0 - y_1 = F_k(x)$ ek_1 C_1 Eval_{P_x} $ightarrow y_1 \quad igliarrow y_0 = y_1 + F_k(x)$ k_1 looks random (k is hidden)

For a constraint C: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it. idea Take a PRF F with key k, and use an HSS to compute $\ P_x: (k,C)\mapsto C(x)\cdot F_k(x).$ $x \in S_C \Rightarrow P_x(k,C) = 0 \longrightarrow$ Equal outputs $ightarrow x
otin S_C \Rightarrow P_x(k,C) = F_k(x) \sim Random-looking$ function output ek_0 Eval_{P_x} C_0 k_0 $\rightarrow y_0$ correctness: msk C, kShare $y_0 - y_1 = F_k(x)$ ek_1 C_1 Eval_{P_x} $y_1 \hspace{0.4cm} | \Rightarrow \hspace{0.4cm} y_0 = y_1 + F_k(x)$ k_1 looks random (k is hidden)

For a constraint C: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $\ P_x: (k,C)\mapsto C(x)\cdot F_k(x)$. The formula $F_k(x)$ is the two products $F_k(x)$. The two products $F_k(x)$ is the two products $F_k(x)$ is the two products $F_k(x)$. The two products $F_k(x)$ is the two products $F_k(x)$ is the two products $F_k(x)$. The two products $F_k(x)$ is the two products $F_k(x)$

For a constraint *C*: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $\ P_x: (k,C)\mapsto C(x)\cdot F_k(x)$. The second sec

idea

For a constraint *C*: $\mathcal{X} \rightarrow \{0,1\}$: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $\ P_x: (k,C)\mapsto C(x)\cdot F_k(x)$. $\$

For a constraint *C*: \mathcal{X} -> {0,1}: $S_C = \{x \in \mathcal{X} : C(x) = 0\}$ The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Constrained PRF

from

Homomorphic Secret Sharing

What really happens!

Homomorphic Secret Sharing supporting $P_x : (k, C) \mapsto C(x) \cdot F_k(x)$

Homomorphic Secret Sharing supporting NC¹ programs

Homomorphic Secret Sharing supporting NC¹ programs

Using (additively homomorphic) public-key encryption scheme.

Shares: Encryptions

Using (additively homomorphic) public-key encryption scheme.

Shares: Encryptions

Using (additively homomorphic) public-key encryption scheme.

Shares: Encryptions

Using (additively homomorphic) public-key encryption scheme.

 $P_x:(k,C)\mapsto C(x)\cdot F_k(x)$ Eval_{P_x}

Using (additively homomorphic) public-key encryption scheme.

 $P_x:(k,C)\mapsto C(x)\cdot F_k(x)$ Eval_{P_x} Inputs $\mathsf{Enc}(C)$ Enc(k) ek_b

Using (additively homomorphic) public-key encryption scheme.

 $P_x:(k,C)\mapsto C(x)\cdot F_k(x)$ Eval_{P_x} Inputs $\mathsf{Enc}(C)$ Enc(k) ek_b Memory C_b

Using (additively homomorphic) public-key encryption scheme.

Using (additively homomorphic) public-key encryption scheme.

Using (additively homomorphic) public-key encryption scheme.

Using (additively homomorphic) public-key encryption scheme.

Using (additively homomorphic) public-key encryption scheme.

Using (additively homomorphic) public-key encryption scheme.

Using (additively homomorphic) public-key encryption scheme.

 $P_x:(k,C)\mapsto C(x)\cdot F_k(x)$ after Eval_{P_x} Eval_{P_x} knowing C Inputs Enc(k)Inputs ek_0 Enc(k)ek₁ Random C_0 Can be faked!99 Set $C_1 = C_0 - C$

Using (additively homomorphic) public-key encryption scheme.

after Eval_{P_x} Eval_{P_x} knowing C Inputs Enc(k)Inputs ek_0 Enc(k)ek₁ Random Co Can be () (•) 99 Set $C_1 = C_0 - C$ $\Rightarrow C_0 - C_1 \models C \checkmark$

Using (additively homomorphic) public-key encryption scheme.

after Eval_{P_x} Eval_{P_x} knowing C Inputs Inputs Enc(k) ek_0 Enc(k)ek₁ Random $C_0 \qquad Can be \int \int$ faked! C_1 There's some hope! Set $C_1 = C_0 - C$ C_1 $\Rightarrow C_0 - C_1 = C \checkmark$

Constrained PRF

from

Homomorphic Secret Sharing

For Inner-Product.

 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle\mathsf{z},\mathsf{x}
angle\cdot F_k(\mathsf{x}) ext{ for a vector } \mathsf{z}.$

 $P_{\mathsf{x}}: (k, \mathsf{z}) \mapsto \langle \mathsf{z}, \mathsf{x} \rangle \cdot F_k(\mathsf{x})$ for a vector z . Adversary can compute on x iff $\langle \mathsf{z}, \mathsf{x} \rangle = 0$.

 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle\mathsf{z},\mathsf{x}
angle\cdot F_k(\mathsf{x}) ext{ for a vector } \mathsf{z}.$

 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle\mathsf{z},\mathsf{x}
angle\cdot F_k(\mathsf{x}) ext{ for a vector } \mathsf{z}.$

Mahshid Riahinia, ENS Lyon

Constrained PRF

from

Homomorphic Secret Sharing

For NC¹

NC¹ Constraint

$$P_x:(k,C)\mapsto C(x)\cdot F_k(x)$$

Conclusion

- HSS + (some level of) Programmability -> Constrained PRF (for inner-product and NC¹)
- New constructions of constrained PRF.

(1) Decisional Composite Residuoisity, (2) LWE with superpolynomial modulus,
 (3) Hardness of the Joye-Libert encryption scheme, (4) DDH & DXDH over class groups, (5) Hard Membership Subgroup over class groups

- Revisiting Applications of HSS to Secure Computation.
 - Secure computation with silent preprocessing. (one party can preprocess even before knowing the identity of the other party)
 - One-sided statistically secure computation with sublinear communication. (without FHE!)

Conclusion

- HSS + (some level of) Programmability -> Constrained PRF (for inner-product and NC¹)
- New constructions of constrained PRF.

(1) Decisional Composite Residuoisity, (2) LWE with superpolynomial modulus,
 (3) Hardness of the Joye-Libert encryption scheme, (4) DDH & DXDH over class groups, (5) Hard Membership Subgroup over class groups

- Revisiting Applications of HSS to Secure Computation.
 - Secure computation with silent preprocessing. (one party can preprocess even before knowing the identity of the other party)
 - One-sided statistically secure computation with sublinear communication. (without FHE!)

Thank You!

Mahshid Riahinia, ENS Lyon

eprint.iacr.org/2023/387