Optimized homomorphic evaluation of Boolean functions

Journées C2 2023

Nicolas Bon
What is FHE?

Client

$sk, evk \leftarrow \text{KeyGen}()$

$c \leftarrow \text{EncFHE}(m, sk)$

Server

evk

c

$c' \leftarrow f_{FHE}(c, evk)$

$m' \leftarrow \text{DecFHE}(c, sk)$

Correctness property: $f(m) = m'$
Main constraints of FHE

- Performances: Overhead in time and in size
- Noise control: risk of losing correctness
- Limited set of supported homomorphic operations
TFHE : description of the scheme

Clear space: \mathbb{T}_p

p has a size of few bits.

Encrypted space: \mathbb{T}_q

$q = 2^{32}$ or 2^{64}
TFHE: description of the scheme

Natural embedding of \mathbb{T}_p in \mathbb{T}_q
TFHE : description of the scheme

Encryption of a message \(m \in \mathbb{T}_p \)
TFHE: description of the scheme

Encryption of a message $m \in \mathbb{T}_p$
TFHE: available operations

- Sum on \mathbb{T}_p
- External product on \mathbb{T}_p by a clear constant
- Programmable Bootstrapping
 - Reset the noise level
 - Evaluate any Look-up table on the ciphertext
 - **BUT** slow and heavy operation
Natural approach of Boolean function evaluation: gate bootstrapping

- See Boolean functions as Boolean circuits
- Each bit is a ciphertext
- Each gate is a 2-input Look-up table
Natural approach of Boolean function evaluation: gate bootstrapping

- See Boolean functions as Boolean circuits
- Each bit is a ciphertext
- Each gate is a 2-input Look-up table

Problem: each gate costs 1 Programmable Bootstrapping
Our strategy

- Pick a p (better if prime) and embed each bit in \mathbb{T}_p
Our strategy

- Pick a p (better if prime) and embed each bit in \mathbb{T}_p

- Compute the sum (fast !) and label the sectors according to the function we want to evaluate
Our strategy

- Pick a p (better if prime) and embed each bit in \mathbb{T}_p

- Compute the sum (fast!) and label the sectors according to the function we want to evaluate

- Compute a Bootstrapping on the sum and get a fresh ciphertext
Our strategy

- Pick a p (better if prime) and embed each bit in \mathbb{T}_p
- Compute the sum (fast!) and label the sectors according to the function we want to evaluate
- Compute a Bootstrapping on the sum and get a fresh ciphertext

We do not use the notion of circuit anymore
We evaluate Boolean functions in one single bootstrapping no matter the number of inputs
Construction of our solution

For a given function:

- How to select encodings such that the sum is valid (i.e. no overlap between true and false ciphertexts)?
- Which p to use? (the lower the better)

Our search algorithm finds the optimal solution to this problem
Application to cryptographic primitives

- For use-cases such as transciphering, OPRF, ...

- Efficient solutions for acceptable modulus for some lightweight block ciphers and hash functions

- Our implementation beats the state of the art

- But no solution for AES!
Extension to bigger circuits (e.g. AES)
Extension to AES
Extension to AES
AES: performances

- 210 seconds on one thread on a laptop (beats state of the art). Highly parallelizable
- Total of 7040 Bootstrappings (with p=11).
Thank you!

https://eprint.iacr.org/2023/1589
For (much more) details