
Optimized
homomorphic

evaluation of Boolean
functions

Journées C2 2023

Nicolas Bon

What is FHE ?
Client Server

Correctness property:

Main constraints of FHE

Performances: Overhead in time and in size

Noise control: risk of losing correctness

Limited set of supported homomorphic
operations

TFHE : description of the scheme

Encrypted space: Clear space:

 has a size of few bits.

TFHE : description of the scheme

Natural embedding of in

TFHE : description of the scheme

Encryption of a message

TFHE : description of the scheme

Encryption of a message

Gaussian Noise

TFHE: available operations

- Programmable Bootstrapping

Reset the noise level

Evaluate any Look-up table on the
ciphertext

BUT slow and heavy operation

- Sum on

- External product on by a clear constant

Natural approach of Boolean function evaluation:
gate bootstrapping

x1 x2 x3 x4

y

- See Boolean functions as Boolean circuits

- Each bit is a ciphertext

- Each gate is a 2-input Look-up table

Natural approach of Boolean function evaluation:
gate bootstrapping

x1 x2 x3 x4

y

- See Boolean functions as Boolean circuits

- Each bit is a ciphertext

- Each gate is a 2-input Look-up table

Problem: each gate costs 1 Programmable Bootstrapping

Our strategy
- Pick a (better if prime) and embed each bit in

x1 x2 x3

Our strategy

- Compute the sum (fast !) and label the sectors according to the
function we want to evaluate

- Pick a (better if prime) and embed each bit in

x1 x2 x3

x1 x2 x3

Bootstrapping

y

Our strategy

- Compute the sum (fast !) and label the sectors according to the
function we want to evaluate

- Compute a Bootstrapping on the sum and get a fresh ciphertext

- Pick a (better if prime) and embed each bit in

x1 x2 x3

Bootstrapping

y

Our strategy

- Compute the sum (fast !) and label the sectors according to the
function we want to evaluate

- Compute a Bootstrapping on the sum and get a fresh ciphertext

- Pick a (better if prime) and embed each bit in

We do not use the notion of circuit anymore
We evaluate Boolean functions in one single bootstrapping no matter the number of inputs

Construction of our solution

x1 x2 x3

Bootstrapping

y

For a given function:

- How to select encodings such that the sum is valid (i.e. no overlap between true
and false ciphertexts) ?

- Which p to use ? (the lower the better)

Our search algorithm finds the optimal solution to this problem

Application to cryptographic primitives

- Efficient solutions for acceptable modulus for some lightweight block ciphers
and hash functions

- Our implementation beats the state of the art

- But no solution for AES !

- For use-cases such as transciphering, OPRF, …

Extension to bigger circuits (e.g. AES)

Extension to AES

Extension to AES

AES: performances

- 210 seconds on one thread on a laptop (beats state of the art). Highly
parallelizable

- Total of 7040 Bootstrappings (with p=11).

https://eprint.iacr.org/2023/1589
For (much more) details

Thank you !

