CRYPTOCECXPERTS

WE INNOVATE TO SECURE YOUR BUSINESS

Optimized
homomorphic
evaluation of Boolean
functions

Journées C2 2023

Nicolas Bon

Client

sk, evk < KeyGen ()

evk

¢ < EncFHE(m, sk)

m' < DecFHE(c, sk)

Correctness property:

Server

pEEED ¢ GEE
-GS ¢ o

d < frue(c,evk)

Performances: Overhead in time and in size

Noise control: risk of losing correctness

Limited set of supported homomorphic
operations

TFHE : description of the scheme

Clear space: T, Encrypted space: 1

P has a size of few bits.

TFHE : description of the scheme

Natural embedding of Tp in Tq

TFHE : description of the scheme

Encryption of a message 1 € Tp

TFHE : description of the scheme

Encryption of a message 1 € Tp

Gaussian Noise

- SumonT,
. a\!
- External product on Tp by a clear constant .

Reset the noise level VCH)U

- Programmable Bootstrapping ~ Evaluate any Look-up table on the (\Eﬁ?ﬂf
ciphertext

BUT slow and heavy operation 1@

Natural approach of Boolean function evaluation:

gate bootstrapping
X1Xx2 X3 X4
l l - See Boolean functions as Boolean circuits
& - Each bit is a ciphertext
l ! - Each gate is a 2-input Look-up table
D
|

Natural approach of Boolean function evaluation:

gate bootstrapping
X1x2 X3 x4
l l - See Boolean functions as Boolean circuits
& - Each bit is a ciphertext
l ! - Each gate is a 2-input Look-up table
D
|

& Problem: each gate costs 1 Programmable Bootstrapping

Our strategy

- Pick a p(better if prime) and embed each bit in T,

- Pick a p(better if prime) and embed each bit in T

- Compute the sum (fast!) and label the sectors according to the
function we want to evaluate

Pick a p(better if prime) and embed each bitin T},

Compute the sum (fast !) and label the sectors according to the
function we want to evaluate

Compute a Bootstrapping on the sum and get a fresh ciphertext

()
Bootstrapping —— O
A

- Pick a p(better if prime) and embed each bit in T

- Compute the sum (fast!) and label the sectors according to the
function we want to evaluate

- Compute a Bootstrapping on the sum and get a fresh ciphertext

We do not use the notion of circuit anymore
We evaluate Boolean functions in one single bootstrapping no matter the number of inputs

Bootstrapping

Bootstrapping ——

For a given function:

- How to select encodings such that the sum is valid (i.e. no overlap between true
and false ciphertexts) ?
- Which p to use ? (the lower the better)

Our search algorithm finds the optimal solution to this problem

- For use-cases such as transciphering, OPREF, ...

- Efficient solutions for acceptable modulus for some lightweight block ciphers
and hash functions

- Our implementation beats the state of the art

- But no solution for AES!

Extension to bigger circuits (e.g. AES)

om0
.k dad
& e

HS

®
Q
9
®
®
&)

Extension to AES

e

[] Gro) (o) [o] Gy L)
L S
- A

@ @&
OID) DX

Extension to AES

@®® HmH @@
]
@

Bk

@) ¢y [G e [~]
ﬂ@@g@@

- 210 seconds on one thread on a laptop (beats state of the art). Highly
parallelizable
- Total of 7040 Bootstrappings (with p=11).

Thank you'!

https://eprint.iacr.org/2023/1589

For (much more) details

