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Side-channel attack: determine a cryptographic secret from 

the environmental leakage of an electronic device

• Vertical attack: observe several operations using the same secret, then 

combine the information from these executions

• Horizontal / single-trace attack: determine full or partial secret from a 

single execution of the algorithm

Purpose and summary
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This work was published in [1] Assael, Elbaz-Vincent and Reymond, "Improving Single-

Trace Attacks on the Number-Theoretic Transform for Cortex-M4," HOST 2023.



• Optimization technique first applied

to side-channel attacks in [2]

• Model the target algorithm as a factor graph

 Variable nodes: unknown quantities

 Factor nodes: relations between variables

• Pass messages (→) between adjacent nodes

• They represent the belief (estimated probability distribution) on a variable

• Variable nodes compute their output messages based on their input messages

• Factor nodes’ computation is based on the relation they represent and their input messages

• Iterate message passing until convergence, then extract marginal probabilities

Belief-propagation (BP) attacks
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[2] Veyrat-Charvillon et al., “Soft analytical side-channel attacks,” in Advances in Cryptology – ASIACRYPT 2014.
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• Kyber is a lattice-based key-encapsulation mechanism selected by NIST for PQC [3]

• It uses the Number-Theoretic Transform (NTT) for polynomial multiplication

• Kyber NTT is made up of butterfly operations on pairs of coefficients, applied in 7 layers

• Microcontrollers based on ARMv7E-M instruction set (e.g. Cortex-M4) have DSP instructions 

operating on packed half-words. They can implement Kyber NTT two butterflies at a time by 

packing pairs of coefficients into a 32-bit word [4]

Kyber NTT for Cortex-M4

[3] Alagic et al., “Status report on the third round of the NIST post-quantum cryptography standardization process,” 

National Institute of Standards and Technology, 2022.

[4] Huang et al., “Improved Plantard arithmetic for lattice-based cryptography,” TCHES 2022/4.

1 Context
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Leakage model

We assume that instructions
leak the result they write to registers or RAM

The leakage considered is Hamming Weight (between 0 and 32)

Exact Hamming-weight measurements are overlaid with centered 
Gaussian noise having configurable standard deviation 𝝈𝑴

2 Attack implementation
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• We model the exact CPU instructions used

• Every 16-bit polynomial coefficient in each 

NTT layer is modeled by a variable node

• Types of factor nodes used

𝐿 leakage of load or store operations

𝐼 leakage from instructions on single coefficients

𝑉 leakage from instructions on pairs of coefficients

𝐵 butterfly equation

Factor graph for each double butterfly2 Attack implementation
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• We use a ping-pong message schedule after 

[5]: start from the NTT input layer, propagate 

messages until last layer, and bounce back 

toward the input

• All same-type factors of each layer can be 

processed in parallel (up to 128 threads)

𝐿 leakage of load or store operations

𝐼 leakage from instructions on single coefficients

𝑉 leakage from instructions on pairs of coefficients

𝐵 butterfly equation

Message-passing order

[5] Pessl et al., “More practical single-trace attacks on the 

number theoretic transform,” LATINCRYPT 2019.
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Message damping and pruning

Pessl et al. [5] introduced message damping to reduce the risk 
of messages oscillating across iterations

We apply their technique with the following weighting:

• 95% weight for the message-update rule

• 5% weight for the old message value

Additionally, we perform message pruning by zeroing low-
probability outcomes to speed up computations

[5] Pessl et al, “More practical single-trace attacks on the number theoretic transform,” LATINCRYPT 2019.

2 Attack implementation
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Environment

• Python 3.10, partially JIT-compiled with numba 0.55

• AMD EPYC 7713P @ 2 GHz, running on 32 cores

Target simulation

• Sample a random input polynomial with 256 coefficients

• Compute its NTT by simulating the instructions constituting the butterflies

• Measure the Hamming weight of all results written to registers and add 
Gaussian noise

Attack

• Build factor graph and configure factor nodes with the noised measurements

• Run the message passing until convergence, iteration limit or failure

• Compute the marginals of input-layer variables and keep
the highest-probability outcome of each

General setup3 Results
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• The input polynomial is sampled with coefficients 

binomially distributed in −3, 3

• The standard deviation 𝜎 of measurement noise is 

known

• More than 75% of the trials reach perfect success 

(all coefficients recovered) up to 𝝈 = 𝟓

• Average CPU time ≤ 3 hours up to 𝜎 = 4

Results for binomially-distributed NTT input3 Results
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• The input polynomial is sampled with coefficients 

binomially distributed in −3, 3

• The standard deviation 𝜎𝑀 of measurement noise 

is unknown and approximated by 𝝈𝑭

• Actual standard deviation is 𝜎𝑀 = 4

• More than 90% of the trials reach perfect success 

(all coefficients recovered) when 𝝈𝑭 ∈ 𝟑, 𝟔

• Average CPU time ≤ 3 hours for 𝜎𝐹 ∈ 3, 6

Reality check: what if noise level is unknown?3 Results
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Attack exploitation

Message recovery

• Used to recover the encapsulated shared 
secret

• Recover 𝒓 during encryption

Key recovery

• Recover 𝒔 or 𝒆 during key generation

• Or perform message recovery during the 
decapsulation of chosen ciphertexts, and 
use as a decryption-failure oracle [6]

[6] Hermelink et al., “Fault-Enabled Chosen-Ciphertext Attacks on 

Kyber,” INDOCRYPT 2021.

4 Conclusion and perspectives
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Threat model: attacker can record side-channel traces

and may request the decapsulation of chosen ciphertexts



Impact of countermeasures?

❌ Masking

• Not effective as the attacker can recover shares independently and 
combine them after the attack, or during the attack given modifications 
to the graph [5]

• Masking only reduces noise tolerance

✅ Shuffling

• Very effective [5]: decorrelates timing from the corresponding data

• Some adaptations of the attack have been proposed [7]

[5] Pessl et al., “More practical single-trace attacks on the number theoretic transform,” LATINCRYPT 2019.

[7] Hermelink et al., “Adapting belief propagation to counter shuffling of NTTs,” TCHES 2023/1.

4 Conclusion and perspectives
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We adapt the belief-propagation attack to
an optimized Cortex-M4 implementation of Kyber

We show that accurate modelling of the algorithm allows the attack
to tolerate high noise, up to standard deviation 𝜎 = 5
(for Hamming-weight measurements between 0 and 32)

We highlight that the attack performs well when the amplitude
of measurement noise is not precisely known

Summarizing our contribution4 Conclusion and perspectives
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• The input polynomial is sampled with coefficients 

uniformly distributed in [−⌈𝑞/2⌉, ⌊𝑞/2⌋] (𝑞 = 3329)

• The standard deviation 𝜎 of measurement noise

is known

• More than 90% of the trials reach perfect success 

(all coefficients recovered) up to 𝝈 = 𝟏. 𝟐

• Average CPU time ≤ 3 hours up to 𝜎 = 1.1

Results for uniformly-distributed NTT input
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• The input polynomial is sampled with coefficients 

uniformly distributed in [−⌈𝑞/2⌉, ⌊𝑞/2⌋] (𝑞 = 3329)

• The standard deviation 𝜎𝑀 of measurement noise is 

unknown and approximated by 𝜎_𝐹

• Actual standard deviation is 𝜎𝑀 = 1.1

• More than 75% of the trials reach perfect success 

(all coefficients recovered) when 𝝈𝑭 ∈ 𝟎. 𝟖, 𝟏. 𝟒

• Average CPU time ≤ 3 hours for 𝜎𝐹 ∈ 0.8, 1.4

Uniformly-distributed NTT input and unknown noise
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Possible attack paths on IND-CPA Kyber

Key-recovery attack

Message-recovery attack

Key-recovery attack through Inverse NTT 20



• Cortex-M4 microcontrollers have DSP 

instructions operating on packed half-words

• They can efficiently implement Kyber NTT two 

butterflies at a time by packing pairs of 16-bit 

coefficients into a 32-bit word [4]
Kyber modulus has 12 bits, but coefficients can grow to 16 bits 

due to lazy reduction

• Previous BP attacks against the NTT did not 

use the same instructions and were not 

adapted to packed coefficients

Optimized NTT implementation for Cortex-M4

[4] Huang et al., “Improved Plantard arithmetic for lattice-based cryptography,” TCHES 2022/4. 21



Assembly implementation of the double butterfly

The optimized Cortex-M4 

implementation of [4] uses 

Plantard modular reduction.

Lazy reduction is used:

- the results of modular 

multiplications are reduced 

during the NTT

- the results of modular 

additions/subtractions are 

not reduced during the NTT: 

they are allowed to grow up to 

16 bits and are only reduced 

during the subsequent point-

wise multiplication.

The results written back by instructions are measured and accounted 

for in factors of types 𝐿 (2 instances), 𝐼 and 𝑉 (2 instances). 22

[4] Huang et al., “Improved 

Plantard arithmetic for lattice-based 

cryptography,” TCHES 2022/4.



• Software environment

• All attack phases are run by Python 3.10.6

• The computation of messages is JIT-compiled using numba 0.55.1

• Machine and resources

• AMD EPYC 7713P CPU @ 2 GHz, using 32 out of 64 cores (the other cores are used by unrelated tasks)

• RAM usage peaked at 10 GB

• All reported times are active CPU time, i.e. in core×hours. Real time is less due to parallelism.

Details on the attack environment
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After each message update, we clear all 

outcomes having probability less than 10−8 

times the probability of the most-likely 

outcome

→ Unlikely outcomes are progressively 

eliminated, making later iterations faster

Due to damping, little to no pruning

takes place during the first iterations

Effects of pruning on runtime

Runtime per iteration for a typical 

execution of the attack against NTT with 

binomially distributed input, noise 𝜎 = 5
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• Damping: the new value of a message is computed as 𝑚𝑖+1 = 1 − 𝛿 𝑚𝑖 + 𝛿𝑚′

where 𝛿 = 0.95, 𝑚𝑖 is the old value of the message, and 𝑚′ is given by the 

message-update equation

• Pruning: after each message update, we clear all outcomes having probability 

less than 10−8 times the probability of the most-likely outcome

• We stop when reaching any of the stop conditions:

• All messages changed by less than 10−5 (absolute value) during the previous iteration, or

• A message having all-zero outcomes is computed, or

• 100 iterations have been performed

Details on damping and pruning, and stop conditions
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Four main ending conditions are observed

• Successful: belief propagation converges to a single 

possibility, and the highest-probability outcome is right for all 

variables. In most such cases, less than 20 iterations have 

been performed

• Under-determined: belief propagation reaches a 

stable state (messages no longer change) but many 

outcomes have nonzero probability

• Non-convergent: the iteration limit is reached but the 

messages still change across iterations

• Failed: an all-zero message is computed

Situation for a uniform-input NTT→

Possible ending conditions

26
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