
Improving Single-Trace Attacks on the
Number-Theoretic Transform for Cortex-M4

Authors: Guilhèm Assael 1, 2, Philippe Elbaz-Vincent 2, Guillaume Reymond 1

1 STMicroelectronics Rousset, 13106 Rousset, France
2 Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France

October 17, 2023

Side-channel attack: determine a cryptographic secret from

the environmental leakage of an electronic device

• Vertical attack: observe several operations using the same secret, then

combine the information from these executions

• Horizontal / single-trace attack: determine full or partial secret from a

single execution of the algorithm

Purpose and summary

2

1 Context

2 Attack implementation

3 Results

4 Conclusion and perspectives

This work was published in [1] Assael, Elbaz-Vincent and Reymond, "Improving Single-

Trace Attacks on the Number-Theoretic Transform for Cortex-M4," HOST 2023.

• Optimization technique first applied

to side-channel attacks in [2]

• Model the target algorithm as a factor graph

 Variable nodes: unknown quantities

 Factor nodes: relations between variables

• Pass messages (→) between adjacent nodes

• They represent the belief (estimated probability distribution) on a variable

• Variable nodes compute their output messages based on their input messages

• Factor nodes’ computation is based on the relation they represent and their input messages

• Iterate message passing until convergence, then extract marginal probabilities

Belief-propagation (BP) attacks

𝑎

𝑏

𝑐𝐹

𝑢𝑎→𝐹

𝑢𝑏→𝐹

𝑣𝐹→𝑐

[2] Veyrat-Charvillon et al., “Soft analytical side-channel attacks,” in Advances in Cryptology – ASIACRYPT 2014.

1 Context

3

• Kyber is a lattice-based key-encapsulation mechanism selected by NIST for PQC [3]

• It uses the Number-Theoretic Transform (NTT) for polynomial multiplication

• Kyber NTT is made up of butterfly operations on pairs of coefficients, applied in 7 layers

• Microcontrollers based on ARMv7E-M instruction set (e.g. Cortex-M4) have DSP instructions

operating on packed half-words. They can implement Kyber NTT two butterflies at a time by

packing pairs of coefficients into a 32-bit word [4]

Kyber NTT for Cortex-M4

[3] Alagic et al., “Status report on the third round of the NIST post-quantum cryptography standardization process,”

National Institute of Standards and Technology, 2022.

[4] Huang et al., “Improved Plantard arithmetic for lattice-based cryptography,” TCHES 2022/4.

1 Context

4

Leakage model

We assume that instructions
leak the result they write to registers or RAM

The leakage considered is Hamming Weight (between 0 and 32)

Exact Hamming-weight measurements are overlaid with centered
Gaussian noise having configurable standard deviation 𝝈𝑴

2 Attack implementation

5

• We model the exact CPU instructions used

• Every 16-bit polynomial coefficient in each

NTT layer is modeled by a variable node

• Types of factor nodes used

𝐿 leakage of load or store operations

𝐼 leakage from instructions on single coefficients

𝑉 leakage from instructions on pairs of coefficients

𝐵 butterfly equation

Factor graph for each double butterfly2 Attack implementation

6

• We use a ping-pong message schedule after

[5]: start from the NTT input layer, propagate

messages until last layer, and bounce back

toward the input

• All same-type factors of each layer can be

processed in parallel (up to 128 threads)

𝐿 leakage of load or store operations

𝐼 leakage from instructions on single coefficients

𝑉 leakage from instructions on pairs of coefficients

𝐵 butterfly equation

Message-passing order

[5] Pessl et al., “More practical single-trace attacks on the

number theoretic transform,” LATINCRYPT 2019.
7

2 Attack implementation

Message damping and pruning

Pessl et al. [5] introduced message damping to reduce the risk
of messages oscillating across iterations

We apply their technique with the following weighting:

• 95% weight for the message-update rule

• 5% weight for the old message value

Additionally, we perform message pruning by zeroing low-
probability outcomes to speed up computations

[5] Pessl et al, “More practical single-trace attacks on the number theoretic transform,” LATINCRYPT 2019.

2 Attack implementation

8

Environment

• Python 3.10, partially JIT-compiled with numba 0.55

• AMD EPYC 7713P @ 2 GHz, running on 32 cores

Target simulation

• Sample a random input polynomial with 256 coefficients

• Compute its NTT by simulating the instructions constituting the butterflies

• Measure the Hamming weight of all results written to registers and add
Gaussian noise

Attack

• Build factor graph and configure factor nodes with the noised measurements

• Run the message passing until convergence, iteration limit or failure

• Compute the marginals of input-layer variables and keep
the highest-probability outcome of each

General setup3 Results

9

• The input polynomial is sampled with coefficients

binomially distributed in −3, 3

• The standard deviation 𝜎 of measurement noise is

known

• More than 75% of the trials reach perfect success

(all coefficients recovered) up to 𝝈 = 𝟓

• Average CPU time ≤ 3 hours up to 𝜎 = 4

Results for binomially-distributed NTT input3 Results

10

• The input polynomial is sampled with coefficients

binomially distributed in −3, 3

• The standard deviation 𝜎𝑀 of measurement noise

is unknown and approximated by 𝝈𝑭

• Actual standard deviation is 𝜎𝑀 = 4

• More than 90% of the trials reach perfect success

(all coefficients recovered) when 𝝈𝑭 ∈ 𝟑, 𝟔

• Average CPU time ≤ 3 hours for 𝜎𝐹 ∈ 3, 6

Reality check: what if noise level is unknown?3 Results

11

Attack exploitation

Message recovery

• Used to recover the encapsulated shared
secret

• Recover 𝒓 during encryption

Key recovery

• Recover 𝒔 or 𝒆 during key generation

• Or perform message recovery during the
decapsulation of chosen ciphertexts, and
use as a decryption-failure oracle [6]

[6] Hermelink et al., “Fault-Enabled Chosen-Ciphertext Attacks on

Kyber,” INDOCRYPT 2021.

4 Conclusion and perspectives

12

Threat model: attacker can record side-channel traces

and may request the decapsulation of chosen ciphertexts

Impact of countermeasures?

❌ Masking

• Not effective as the attacker can recover shares independently and
combine them after the attack, or during the attack given modifications
to the graph [5]

• Masking only reduces noise tolerance

✅ Shuffling

• Very effective [5]: decorrelates timing from the corresponding data

• Some adaptations of the attack have been proposed [7]

[5] Pessl et al., “More practical single-trace attacks on the number theoretic transform,” LATINCRYPT 2019.

[7] Hermelink et al., “Adapting belief propagation to counter shuffling of NTTs,” TCHES 2023/1.

4 Conclusion and perspectives

13

We adapt the belief-propagation attack to
an optimized Cortex-M4 implementation of Kyber

We show that accurate modelling of the algorithm allows the attack
to tolerate high noise, up to standard deviation 𝜎 = 5
(for Hamming-weight measurements between 0 and 32)

We highlight that the attack performs well when the amplitude
of measurement noise is not precisely known

Summarizing our contribution4 Conclusion and perspectives

14

References
[1] G. Assael, P. Elbaz-Vincent and G. Reymond, "Improving Single-Trace Attacks on the Number-Theoretic

Transform for Cortex-M4," 2023 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), San Jose, CA, USA, 2023, pp. 111-121, doi: 10.1109/HOST55118.2023.10133270.

[2] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert, “Soft analytical side-channel attacks,” in Advances in
Cryptology – ASIACRYPT 2014, P. Sarkar and T. Iwata, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 282–296.

[3] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger, Y.-K. Liu, C. Miller, D. Moody, R.
Peralta, R. Perlner, A. Robinson, and D. Smith-Tone, “Status report on the third round of the NIST post-quantum
cryptography standardization process,” National Institute of Standards and Technology, 2022.

[4] J. Huang, J. Zhang, H. Zhao, Z. Liu, R. C. C. Cheung, Ç. K. Koç, and D. Chen, “Improved Plantard arithmetic for
lattice-based cryptography,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2022,
no. 4, p. 614–636, Aug. 2022.

[5] P. Pessl and R. Primas, “More practical single-trace attacks on the number theoretic transform,” in Progress in
Cryptology – LATINCRYPT 2019, P. Schwabe and N. Thériault, Eds. Cham: Springer International Publishing,
2019, pp. 130–149.

[6] J. Hermelink, P. Pessl, T. Pöppelmann, “Fault-Enabled Chosen-Ciphertext Attacks on Kyber,” Progress in
Cryptology – INDOCRYPT 2021, INDOCRYPT 2021, P. Schwabe and N. Thériault, Eds. Cham: Springer
International Publishing, 2021, pp. 311–334.

[7] J. Hermelink, S. Streit, E. Strieder, and K. Thieme, “Adapting belief propagation to counter shuffling of NTTs,”
IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2023, no. 1, pp. 60–88, Nov. 2022.

15

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Thank you

http://www.st.com/trademarks

Appendices

• The input polynomial is sampled with coefficients

uniformly distributed in [−⌈𝑞/2⌉, ⌊𝑞/2⌋] (𝑞 = 3329)

• The standard deviation 𝜎 of measurement noise

is known

• More than 90% of the trials reach perfect success

(all coefficients recovered) up to 𝝈 = 𝟏. 𝟐

• Average CPU time ≤ 3 hours up to 𝜎 = 1.1

Results for uniformly-distributed NTT input

18

• The input polynomial is sampled with coefficients

uniformly distributed in [−⌈𝑞/2⌉, ⌊𝑞/2⌋] (𝑞 = 3329)

• The standard deviation 𝜎𝑀 of measurement noise is

unknown and approximated by 𝜎_𝐹

• Actual standard deviation is 𝜎𝑀 = 1.1

• More than 75% of the trials reach perfect success

(all coefficients recovered) when 𝝈𝑭 ∈ 𝟎. 𝟖, 𝟏. 𝟒

• Average CPU time ≤ 3 hours for 𝜎𝐹 ∈ 0.8, 1.4

Uniformly-distributed NTT input and unknown noise

19

Possible attack paths on IND-CPA Kyber

Key-recovery attack

Message-recovery attack

Key-recovery attack through Inverse NTT 20

• Cortex-M4 microcontrollers have DSP

instructions operating on packed half-words

• They can efficiently implement Kyber NTT two

butterflies at a time by packing pairs of 16-bit

coefficients into a 32-bit word [4]
Kyber modulus has 12 bits, but coefficients can grow to 16 bits

due to lazy reduction

• Previous BP attacks against the NTT did not

use the same instructions and were not

adapted to packed coefficients

Optimized NTT implementation for Cortex-M4

[4] Huang et al., “Improved Plantard arithmetic for lattice-based cryptography,” TCHES 2022/4. 21

Assembly implementation of the double butterfly

The optimized Cortex-M4

implementation of [4] uses

Plantard modular reduction.

Lazy reduction is used:

- the results of modular

multiplications are reduced

during the NTT

- the results of modular

additions/subtractions are

not reduced during the NTT:

they are allowed to grow up to

16 bits and are only reduced

during the subsequent point-

wise multiplication.

The results written back by instructions are measured and accounted

for in factors of types 𝐿 (2 instances), 𝐼 and 𝑉 (2 instances). 22

[4] Huang et al., “Improved

Plantard arithmetic for lattice-based

cryptography,” TCHES 2022/4.

• Software environment

• All attack phases are run by Python 3.10.6

• The computation of messages is JIT-compiled using numba 0.55.1

• Machine and resources

• AMD EPYC 7713P CPU @ 2 GHz, using 32 out of 64 cores (the other cores are used by unrelated tasks)

• RAM usage peaked at 10 GB

• All reported times are active CPU time, i.e. in core×hours. Real time is less due to parallelism.

Details on the attack environment

23

After each message update, we clear all

outcomes having probability less than 10−8

times the probability of the most-likely

outcome

→ Unlikely outcomes are progressively

eliminated, making later iterations faster

Due to damping, little to no pruning

takes place during the first iterations

Effects of pruning on runtime

Runtime per iteration for a typical

execution of the attack against NTT with

binomially distributed input, noise 𝜎 = 5

24

• Damping: the new value of a message is computed as 𝑚𝑖+1 = 1 − 𝛿 𝑚𝑖 + 𝛿𝑚′

where 𝛿 = 0.95, 𝑚𝑖 is the old value of the message, and 𝑚′ is given by the

message-update equation

• Pruning: after each message update, we clear all outcomes having probability

less than 10−8 times the probability of the most-likely outcome

• We stop when reaching any of the stop conditions:

• All messages changed by less than 10−5 (absolute value) during the previous iteration, or

• A message having all-zero outcomes is computed, or

• 100 iterations have been performed

Details on damping and pruning, and stop conditions

25

Four main ending conditions are observed

• Successful: belief propagation converges to a single

possibility, and the highest-probability outcome is right for all

variables. In most such cases, less than 20 iterations have

been performed

• Under-determined: belief propagation reaches a

stable state (messages no longer change) but many

outcomes have nonzero probability

• Non-convergent: the iteration limit is reached but the

messages still change across iterations

• Failed: an all-zero message is computed

Situation for a uniform-input NTT→

Possible ending conditions

26

	Slide 1: Improving Single-Trace Attacks on the Number-Theoretic Transform for Cortex-M4
	Slide 2: Purpose and summary
	Slide 3: Belief-propagation (BP) attacks
	Slide 4: Kyber NTT for Cortex-M4
	Slide 5: Leakage model
	Slide 6: Factor graph for each double butterfly
	Slide 7: Message-passing order
	Slide 8: Message damping and pruning
	Slide 9: General setup
	Slide 10: Results for binomially-distributed NTT input
	Slide 11: Reality check: what if noise level is unknown?
	Slide 12: Attack exploitation
	Slide 13: Impact of countermeasures?
	Slide 14: Summarizing our contribution
	Slide 15: References
	Slide 16
	Slide 17: Appendices
	Slide 18: Results for uniformly-distributed NTT input
	Slide 19: Uniformly-distributed NTT input and unknown noise
	Slide 20: Possible attack paths on IND-CPA Kyber
	Slide 21: Optimized NTT implementation for Cortex-M4
	Slide 22: Assembly implementation of the double butterfly
	Slide 23: Details on the attack environment
	Slide 24: Effects of pruning on runtime
	Slide 25: Details on damping and pruning, and stop conditions
	Slide 26: Possible ending conditions

