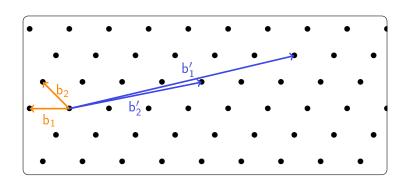
Lattices in cryptography: cryptanalysis, constructions and reductions

Alice Pellet--Mary

CNRS and Université de Bordeaux

Journées C2, 2023 Najac

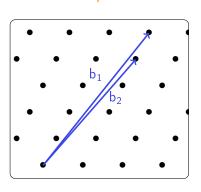
Lattices



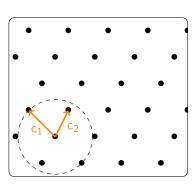
- $ightharpoonup \mathcal{L} = \{\sum_{i=1}^n x_i \mathsf{b}_i \mid \forall i, \, x_i \in \mathbb{Z}\}$ is a lattice
- $lackbox{ } (\mathsf{b}_1,\ldots,\mathsf{b}_n)=:B\in\mathrm{GL}_n(\mathbb{R}) \text{ is a basis } (\mathsf{not} \ \mathsf{unique})$

Short basis problem

Input:



Output:



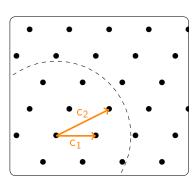
Shortest basis problem

$$\max_{i} \|c_{i}\| \leq \min_{\mathsf{B}' \text{ basis of L}} \left(\max_{i} \|b'_{i}\| \right)$$

Short basis problem

Input:

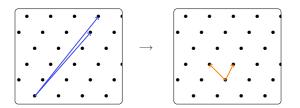
Output:



Approximate short basis problem

$$\max_{i} \|c_{i}\| \leq \gamma \cdot \min_{\text{B' basis of L}} \left(\max_{i} \|b'_{i}\| \right)$$

Lattice reduction algorithms



Dimension 2: Lagrange-Gauss algorithm

video

Dimension 2: Lagrange-Gauss algorithm

video

Theorem: The algorithm

- finds a shortest basis
- runs in polynomial time

Input: basis
$$B = (b_1, \ldots, b_n)$$

[LLL82] Lenstra, Lenstra, and Lovász. Factoring polynomials with rational coefficients. Mathematische annalen.

Input: basis $B = (b_1, \ldots, b_n)$

Main idea: improve the basis locally on blocks of dimension 2

(using Lagrange-Gauss algorithm)

Input: basis $B = (b_1, \ldots, b_n)$

Main idea: improve the basis locally on blocks of dimension 2

(using Lagrange-Gauss algorithm)

Algorithm:

- while there exists i such that (b_i, b_{i+1}) is not a shortest basis of L_i $(L_i$ is roughly the lattice spanned by (b_i, b_{i+1})
 - ightharpoonup run Lagrange-Gauss on L_i

[LLL82] Lenstra, Lenstra, and Lovász. Factoring polynomials with rational coefficients. Mathematische annalen.

Input: basis $B = (b_1, \ldots, b_n)$

Main idea: improve the basis locally on blocks of dimension 2

(using Lagrange-Gauss algorithm)

Algorithm:

- while there exists i such that (b_i, b_{i+1}) is not a shortest basis of L_i $(L_i \text{ is roughly the lattice spanned by } (b_i, b_{i+1}))$
 - run Lagrange-Gauss on L_i

This algorithm

finds an approximate short basis with $\gamma = 2^n$

[LLL82] Lenstra, Lenstra, and Lovász. Factoring polynomials with rational coefficients. Mathematische annalen.

Input: basis $B = (b_1, \ldots, b_n)$

Main idea: improve the basis locally on blocks of dimension 2

(using Lagrange-Gauss algorithm)

Algorithm:

- while there exists i such that (b_i, b_{i+1}) is not a shortest basis of L_i $(L_i \text{ is roughly the lattice spanned by } (b_i, b_{i+1}))$
 - ightharpoonup run Lagrange-Gauss on L_i

This algorithm

- finds an approximate short basis with $\gamma = 2^n$
- does not run in polynomial time

[LLL82] Lenstra, Lenstra, and Lovász. Factoring polynomials with rational coefficients. Mathematische annalen.

Input: basis $B = (b_1, \ldots, b_n)$

Main idea: improve the basis locally on blocks of dimension 2

(using Lagrange-Gauss algorithm)

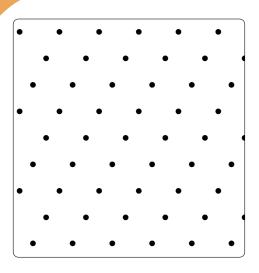
Algorithm:

- while there exists i such that (b_i, b_{i+1}) is not a γ' -short basis of L_i with $\gamma' = 4/3$
 - $(L_i \text{ is roughly the lattice spanned by } (b_i, b_{i+1}))$
 - \triangleright run Lagrange-Gauss on L_i

This algorithm

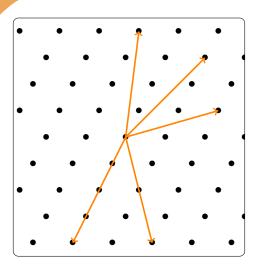
- finds an approximate short basis with $\gamma = 2^n$
- runs in polynomial time

[LLL82] Lenstra, Lenstra, and Lovász. Factoring polynomials with rational coefficients. Mathematische annalen.



Sieving:

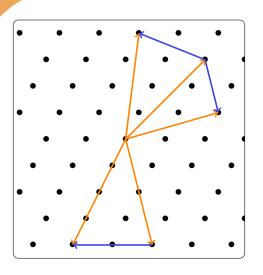
[AKS01] Ajtai, Kumar, and Sivakumar. A sieve algorithm for the shortest lattice vector problem. STOC



Sieving:

Create many large vectors

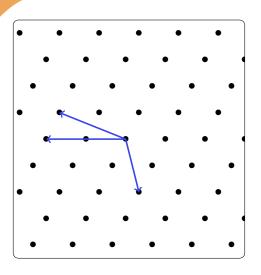
7/25



Sieving:

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

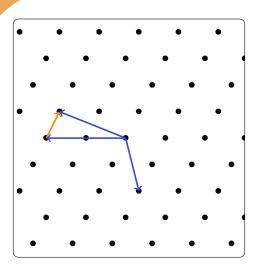


Sieving:

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

Repeat with the shorter vectors

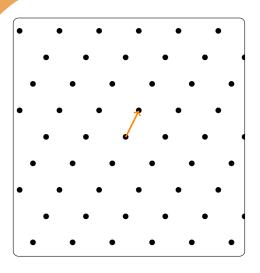


Sieving:

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

Repeat with the shorter vectors

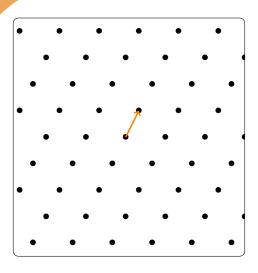


Sieving:

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

Repeat with the shorter vectors



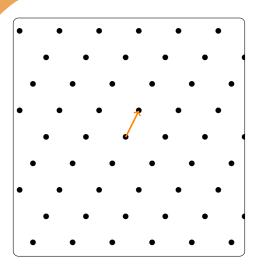
Sieving:

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

Repeat with the shorter vectors

Size of the initial list: $2^{O(n)}$



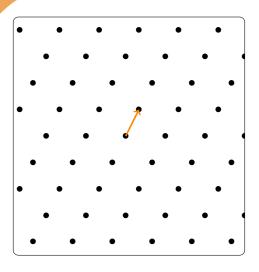
Sieving:

- Create many large vectors
- Subtract close ones to create shorter vectors
- Repeat with the shorter vectors

Size of the initial list: $2^{O(n)}$

finds a shortest basis

7/25



Sieving:

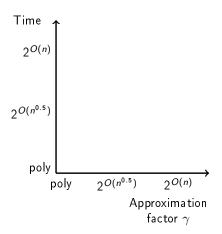
- Create many large vectors
- Subtract close ones to create shorter vectors
- Repeat with the shorter vectors

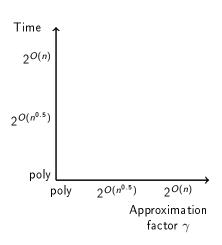
Size of the initial list: $2^{O(n)}$

finds a shortest basis

7/25

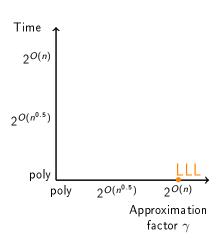
runs in time $2^{O(n)}$





Lagrange-Gauss algorithm: dim 2

- shortest basis
- polynomial time

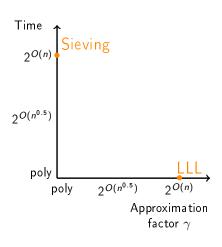


Lagrange-Gauss algorithm: dim 2

- shortest basis
- polynomial time

LLL algorithm: dim n

- $ightharpoonup \gamma$ -short basis with $\gamma=2^n$
- polynomial time



Lagrange-Gauss algorithm: dim 2

- shortest basis
- polynomial time

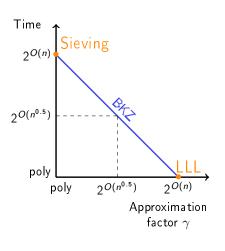
LLL algorithm: dim n

- $ightharpoonup \gamma$ -short basis with $\gamma=2^n$
- polynomial time

Sieving algorithm: dim n

- shortest basis
- ▶ time 2^{O(n)}

BKZ trade-offs



Lagrange-Gauss algorithm: dim 2

- shortest basis
- polynomial time

LLL algorithm: dim n

- $ightharpoonup \gamma$ -short basis with $\gamma = 2^n$
- polynomial time

Sieving algorithm: $\dim n$

- shortest basis
- ▶ time 2^{O(n)}

BKZ algorithm: combine LLL + Sieving ⇒ various trade-offs

Finding a shortest basis in practice:

 $ightharpoonup n=2 \leftrightarrow \text{easy}$, very efficient in practice

Finding a shortest basis in practice:

- ightharpoonup n=2
 ightharpoonup easy, very efficient in practice
- ▶ up to n = 60 or $n = 80 \rightsquigarrow$ a few minutes on a personal laptop

Finding a shortest basis in practice:

- $ightharpoonup n=2 \leadsto$ easy, very efficient in practice
- up to n = 60 or $n = 80 \rightsquigarrow$ a few minutes on a personal laptop
- ▶ up to $n = 180 \rightsquigarrow$ few days on big computers with good code [DSW21]

17/10/2023

9/25

[DSW21] Ducas, Stevens, van Woerden. Advanced Lattice Sieving on GPUs, with Tensor Cores.

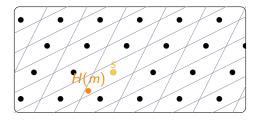
Finding a shortest basis in practice:

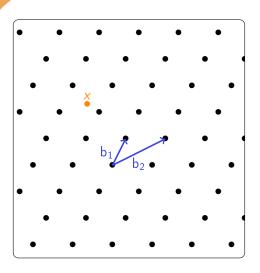
- $ightharpoonup n=2 \leadsto$ easy, very efficient in practice
- ▶ up to n = 60 or n = 80 \longrightarrow a few minutes on a personal laptop
- ightharpoonup up to n=180 ightharpoonup few days on big computers with good code <code>[DSW21]</code>
- from n = 500 to $n = 1000 \rightsquigarrow$ cryptography

[DSW21] Ducas, Stevens, van Woerden. Advanced Lattice Sieving on GPUs, with Tensor Cores.

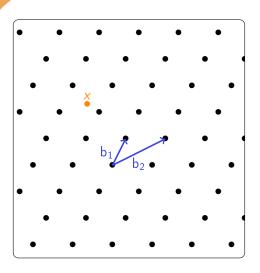
17/10/2023

Hash-and-sign signature



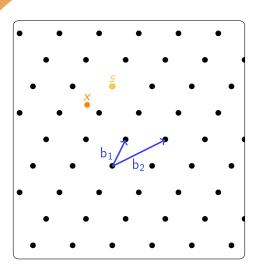


Input: $x = 3.7 \cdot b_1 - 1.4 \cdot b_2$



Input: $x = 3.7 \cdot b_1 - 1.4 \cdot b_2$

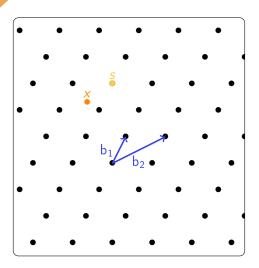
Algo: round each coordinate



Input: $x = 3.7 \cdot b_1 - 1.4 \cdot b_2$

Algo: round each coordinate

Output: $s = 4 \cdot b_1 - 1 \cdot b_2$



Input:
$$x = 3.7 \cdot b_1 - 1.4 \cdot b_2$$

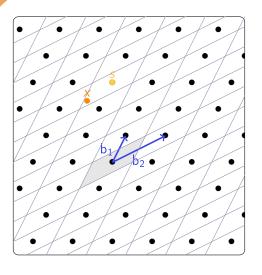
Algo: round each coordinate

Output:
$$s = 4 \cdot b_1 - 1 \cdot b_2$$

The smaller the basis, the closer the solution

(called Babai's round-off algorithm)

Decoding in a lattice using a short basis



Input:
$$x = 3.7 \cdot b_1 - 1.4 \cdot b_2$$

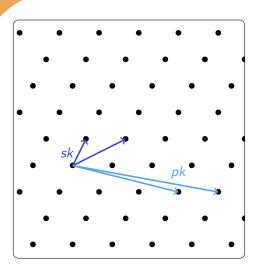
Algo: round each coordinate

Output:
$$s = 4 \cdot b_1 - 1 \cdot b_2$$

The smaller the basis, the closer the solution

(called Babai's round-off algorithm)

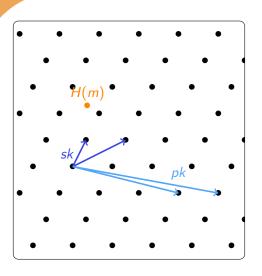
$$= \left\{ x_1 b_1 + x_2 b_2 \, \middle| \, |x_i| \le \frac{1}{2} \right\}$$



KeyGen:

- ightharpoonup pk =bad basis of \mathcal{L}
- $ightharpoonup sk = short basis of <math>\mathcal{L}$

12/25



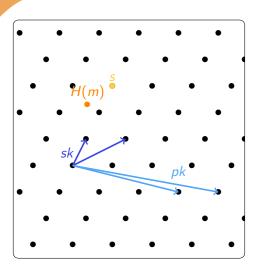
KeyGen:

- $ightharpoonup pk = \mathsf{bad} \; \mathsf{basis} \; \mathsf{of} \; \mathcal{L}$
- $ightharpoonup sk = short basis of <math>\mathcal{L}$

Sign(m, sk):

> x = H(m) (hash the message)

12/25



KeyGen:

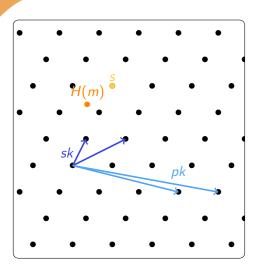
- $ightharpoonup pk = \mathsf{bad} \; \mathsf{basis} \; \mathsf{of} \; \mathcal{L}$
- $ightharpoonup sk = ext{short basis of } \mathcal{L}$

Sign(m, sk):

> x = H(m) (hash the message)

12/25

▶ output $s \in \mathcal{L}$ close to x



KeyGen:

- $ightharpoonup pk = \mathsf{bad} \; \mathsf{basis} \; \mathsf{of} \; \mathcal{L}$
- $ightharpoonup sk = short basis of <math>\mathcal{L}$

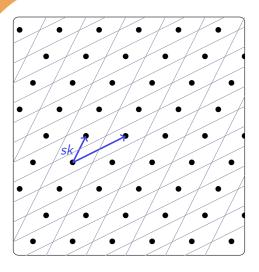
Sign(m, sk):

- x = H(m) (hash the message)
- ▶ output $s \in \mathcal{L}$ close to x

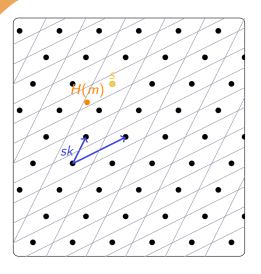
Verify(s, pk):

- lacktriangle check that $s\in\mathcal{L}$
- lacksquare check that H(m)-s is small

12/25

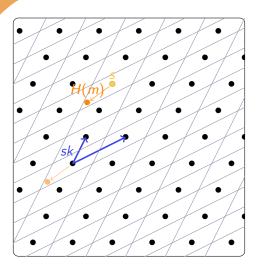


Parallelepiped attack:



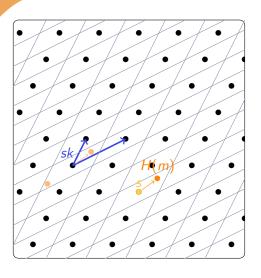
Parallelepiped attack:

▶ ask for a signature *s* on *m*



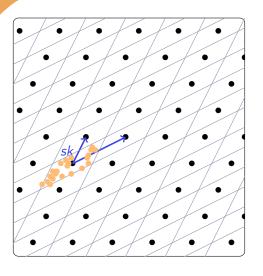
Parallelepiped attack:

- ightharpoonup ask for a signature s on m
- ▶ plot H(m) s



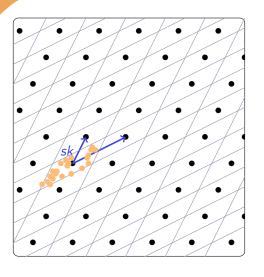
Parallelepiped attack:

- ightharpoonup ask for a signature s on m
- repeat



Parallelepiped attack:

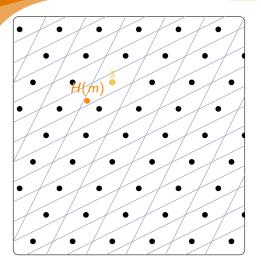
- ightharpoonup ask for a signature s on m
- repeat



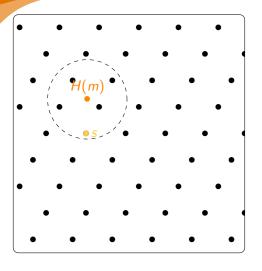
Parallelepiped attack:

- ask for a signature s on m
- ▶ plot H(m) s
- repeat

From the shape of the parallelepiped, one can recover the short basis



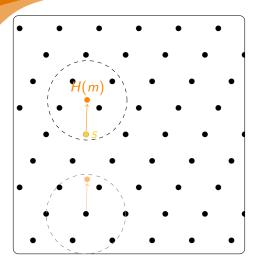
Idea: do not decode deterministically but randomly



Idea: do not decode deterministically but randomly

Sign(m, sk):

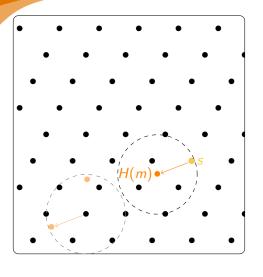
- > x = H(m) (hash the message)
- sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)



Idea: do not decode deterministically but randomly

Sign(m, sk):

- x = H(m) (hash the message)
- sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)



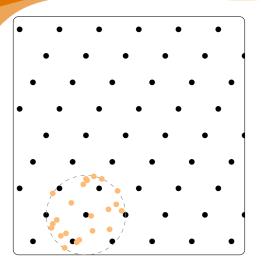
Idea: do not decode deterministically but randomly

Sign(m, sk):

x = H(m) (hash the message)

14/25

sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)



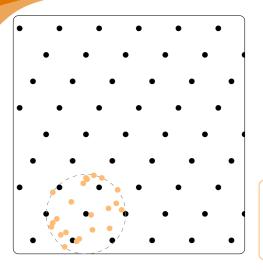
Idea: do not decode deterministically but randomly

Sign(m, sk):

x = H(m) (hash the message)

14/25

sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)



Idea: do not decode deterministically but randomly

Sign(m, sk):

- x = H(m) (hash the message)
- sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)

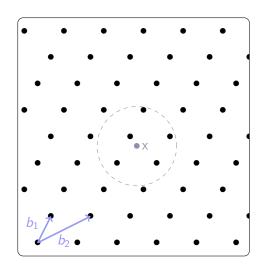
Lemma: if an adversary can forge signatures, then she can recover a short basis of \mathcal{L} using only pk (in the ROM)

14/25

Input: center x, radius r

(and a short basis (b_1, \ldots, b_n))

Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$



15/25

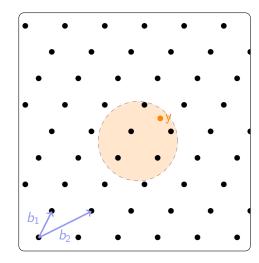
Input: center x, radius r

(and a short basis (b_1, \ldots, b_n))

Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

Sample $y \leftarrow \mathcal{U}(\mathcal{B}_r(x))$ (continuous distribution)



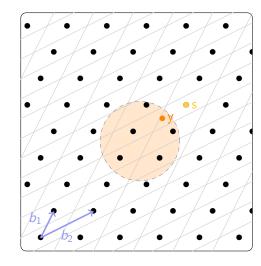
15/25

Input: center x, radius r (and a short basis (b_1, \ldots, b_n))

Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- Sample $y \leftarrow \mathcal{U}(\mathcal{B}_r(x))$ (continuous distribution)
- ightharpoonup s \leftarrow Babai_decoding(y)

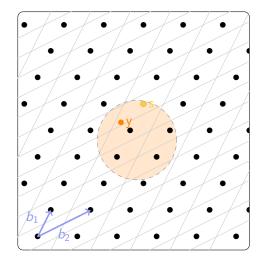


15/25

Input: center x, radius r (and a short basis (b_1, \ldots, b_n))
Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- Sample $y \leftarrow \mathcal{U}(\mathcal{B}_r(x))$ (continuous distribution)
- ightharpoonup s \leftarrow Babai_decoding(y)
- repeat until $s \in \mathcal{B}_r(x)$



15/25

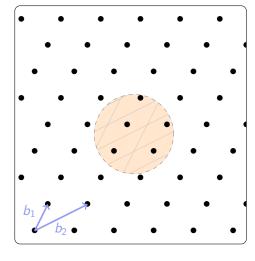
Input: center x, radius r

(and a short basis (b_1, \ldots, b_n))

Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- Sample $y \leftarrow \mathcal{U}(\mathcal{B}_r(x))$ (continuous distribution)
- ightharpoonup s \leftarrow Babai_decoding(y)
- lacksquare repeat until $\mathsf{s} \in \mathcal{B}_r(\mathsf{x})$



15/25

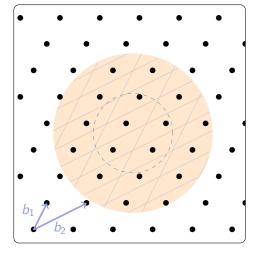
Input: center x, radius r

(and a short basis (b_1, \ldots, b_n))

Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- Sample $y \leftarrow \mathcal{U}(\mathcal{B}_{r'}(x))$ (continuous distribution)
- ightharpoonup s \leftarrow Babai_decoding(y)
- lacksquare repeat until $\mathsf{s} \in \mathcal{B}_r(\mathsf{x})$



17/10/2023

15/25

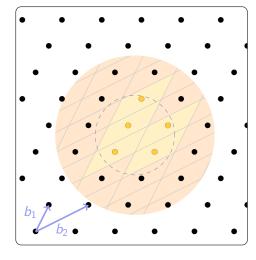
Input: center x, radius r

(and a short basis (b_1, \ldots, b_n))

Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- Sample $y \leftarrow \mathcal{U}(\mathcal{B}_{r'}(x))$ (continuous distribution)
- ightharpoonup s \leftarrow Babai_decoding(y)
- repeat until $s \in \mathcal{B}_r(x)$



Input: center x, radius r

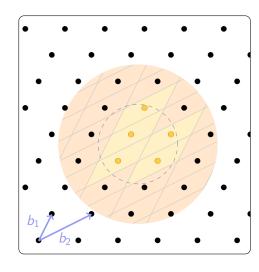
(and a short basis (b_1, \ldots, b_n))

Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- ▶ Sample y $\leftarrow \mathcal{U}(\mathcal{B}_{r'}(\mathsf{x}))$ (continuous distribution)
- $s \leftarrow Babai_decoding(y)$
- repeat until $s \in \mathcal{B}_r(x)$

polynomial time if
$$r > 2n^2 \cdot \max_i ||\mathbf{b}_i||$$

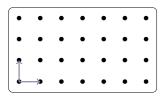


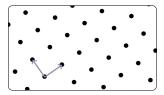
Summary

Hash-and-sign signature scheme:

- requires a lattice \mathcal{L} + a short basis B_s + a bad basis B_p ;
- \triangleright provably secure if recovering a short basis from B_p is hard.

How to generate a hard lattice?





Objective

What we want: An algorithm KeyGen such that

- KeyGen computes
 - a random lattice L
 - ightharpoonup a short basis B_s of \mathcal{L} (sk)
 - ightharpoonup a bad basis B_{p} of \mathcal{L} (pk)

Objective

What we want: An algorithm KeyGen such that

- KeyGen computes
 - \triangleright a random lattice \mathcal{L}
 - ightharpoonup a short basis B_s of \mathcal{L} (sk)
 - \triangleright a bad basis B_p of \mathcal{L} (pk)
- ightharpoonup computing a short basis of \mathcal{L} from B_p is hard with overwhelming probability

There is a basis B_0 of $\mathcal L$ that can be computed in poly time from any other basis B

 $\Rightarrow B_0$ is a worst possible basis

There is a basis B_0 of \mathcal{L} that can be computed in poly time from any other basis B

 \Rightarrow B₀ is a worst possible basis

Input: any basis B of \mathcal{L}

- ▶ Compute LLL-reduced basis $C = (c_1, ..., c_n)$
 - poly time
 - ▶ $\max_i \|c_i\| \le 2^n \cdot \min_{C'} \max_i \|c_i'\|$ (C' ranging over all bases of \mathcal{L})

There is a basis B_0 of $\mathcal L$ that can be computed in poly time from any other basis B

 \Rightarrow B₀ is a worst possible basis

Input: any basis B of ${\cal L}$

- ▶ Compute LLL-reduced basis $C = (c_1, ..., c_n)$
 - poly time
 - ▶ $\max_i \|c_i\| \le 2^n \cdot \min_{C'} \max_i \|c_i'\|$ (C' ranging over all bases of \mathcal{L})
- ▶ sample many vectors $\mathbf{v}_j \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r)$ (with $r = 2n^2 \cdot 2^n \cdot \min_{\mathbf{C}'} \max_i \|\mathbf{c}_i'\|$)
 - ightharpoonup until they generate ${\cal L}$
 - ▶ poly time because $r \ge 2n^2 \cdot \max_i \|c_i\|$

There is a basis B_0 of $\mathcal L$ that can be computed in poly time from any other basis B

 \Rightarrow B₀ is a worst possible basis

Input: any basis B of ${\cal L}$

- ▶ Compute LLL-reduced basis $C = (c_1, ..., c_n)$
 - poly time
 - ▶ $\max_i \|c_i\| \le 2^n \cdot \min_{C'} \max_i \|c_i'\|$ (C' ranging over all bases of \mathcal{L})
- ▶ sample many vectors $\mathbf{v}_j \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r)$ (with $r = 2n^2 \cdot 2^n \cdot \min_{\mathbf{C}'} \max_i \|\mathbf{c}_i'\|$)
 - ightharpoonup until they generate $\mathcal L$
 - ▶ poly time because $r \ge 2n^2 \cdot \max_i \|c_i\|$
- ightharpoonup extract a basis B₀ from the v_j 's
 - ▶ linear algebra ⇒ poly time

There is a random basis B_0 of $\mathcal L$ that can be computed in poly time from any other basis B

 \Rightarrow B₀ is a worst possible distribution over bases

Input: any basis B of ${\cal L}$

- ▶ Compute LLL-reduced basis $C = (c_1, ..., c_n)$
 - poly time
 - ▶ $\max_i \|c_i\| \le 2^n \cdot \min_{C'} \max_i \|c_i'\|$ (C' ranging over all bases of \mathcal{L})
- ▶ sample many vectors $\mathbf{v}_j \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r)$ (with $r = 2n^2 \cdot 2^n \cdot \min_{\mathbf{C}'} \max_i \|\mathbf{c}_i'\|$)
 - ightharpoonup until they generate $\mathcal L$
 - ▶ poly time because $r \ge 2n^2 \cdot \max_i \|c_i\|$
- ightharpoonup extract a basis B₀ from the v_j 's
 - ▶ linear algebra ⇒ poly time

Objective

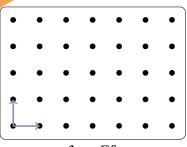
What we want: An algorithm KeyGen such that

- KeyGen computes
 - \triangleright a random lattice \mathcal{L}
 - ightharpoonup a short basis B_s of \mathcal{L} (sk)
 - \triangleright a bad basis B_p of \mathcal{L} (pk)
- computing a short basis from B_p is hard with overwhelming probability

Objective

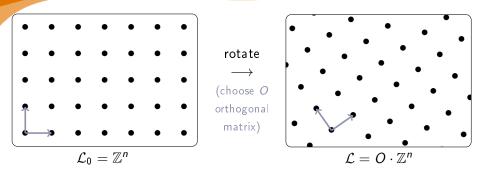
What we want: An algorithm KeyGen such that

- KeyGen computes
 - a random lattice L
 - ▶ a short basis B_s of \mathcal{L} (sk)
 - ightharpoonup a worst possible basis B_p of \mathcal{L} (pk)
- \triangleright computing a short basis from B_p is hard with overwhelming probability



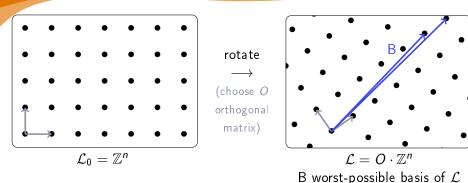
$$\mathcal{L}_0 = \mathbb{Z}^n$$

[DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms [...] Eurocrypt
[BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of \mathbb{Z}^n ? [...] Eurocrypt



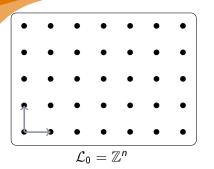
Alice Pellet-Mary

[[]DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms [...] Eurocrypt
[BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of \mathbb{Z}^n ? [...] Eurocrypt



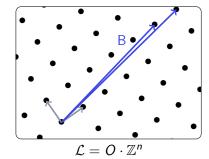
Alice Pellet-Mary

[[]DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms [...] Eurocrypt
[BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of \mathbb{Z}^n ? [...] Eurocrypt



rotate \longrightarrow (choose O orthogonal

matrix)



B worst-possible basis of ${\cal L}$

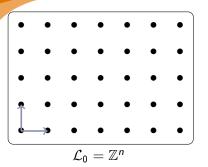
21/25

Lattice Isomorphism Problem (LIP) assumption recovering O from B is hard

 \Leftrightarrow computing a shortest basis of ${\mathcal L}$ is hard

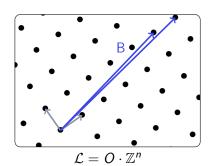
[DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms [...] Eurocrypt [BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of \mathbb{Z}^n ? [...] Eurocrypt

Alice Pellet-Mary Lattices in cryptography 17/10/2023



 $\begin{array}{c} \text{rotate} \\ \longrightarrow \\ \text{(choose } O \\ \text{orthogonal} \end{array}$

matrix)



B worst-possible basis of ${\cal L}$

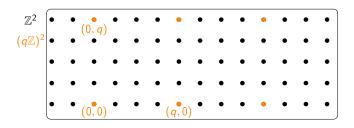
21/25

Lattice Isomorphism Problem (LIP) assumption recovering O from B is hard

 \Leftrightarrow computing a shortest basis of ${\mathcal L}$ is hard

► Hawk: hash-and-sign + (module) LIP [DPPW23]

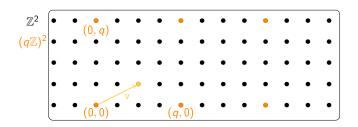
[DPPW23] Ducas, Postlethwaite, Pulles, van Woerden. Hawk: Module LIP makes lattice signatures [...] Asiacrypt



Start with $(q\mathbb{Z})^2$

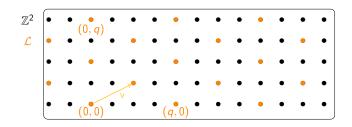
[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.

22/25



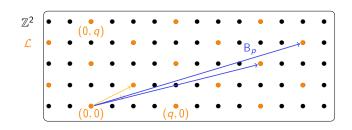
- Start with $(q\mathbb{Z})^2$
- sample random short $v \in \mathbb{Z}^2$ $(\|\mathbf{v}\| \approx \sqrt{q})$

[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.



- Start with $(q\mathbb{Z})^2$
- sample random short $\mathsf{v} \in \mathbb{Z}^2$ $(\|\mathsf{v}\| pprox \sqrt{q})$
- $ightharpoonup \mathcal{L}$ spanned by v and $(q\mathbb{Z})^2$

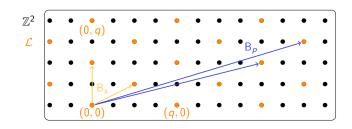
[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.



- Start with $(q\mathbb{Z})^2$
- sample random short $v \in \mathbb{Z}^2$ $(\|\mathbf{v}\| \approx \sqrt{q})$
- \mathcal{L} spanned by v and $(q\mathbb{Z})^2$
- B_p worst-possible basis of \mathcal{L}

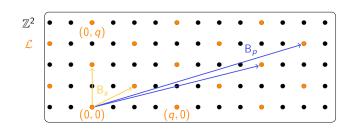
[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.

22/25



- lacksquare Start with $(q\mathbb{Z})^2$
- sample random short $v \in \mathbb{Z}^2$ $(\|v\| \approx \sqrt{q})$
- $ightharpoonup \mathcal{L}$ spanned by v and $(q\mathbb{Z})^2$
- $ightharpoonup \ \mathsf{B}_{p}$ worst-possible basis of \mathcal{L}
- ▶ B_s short basis (using knowledge of v short)

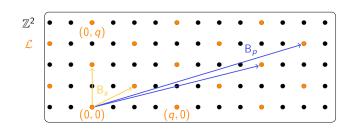
[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.



- lacksquare Start with $(q\mathbb{Z})^2$
- sample random short $v \in \mathbb{Z}^2$ $(\|v\| \approx \sqrt{q})$
- lacksquare $\mathcal L$ spanned by ${\sf v}$ and $(q\mathbb Z)^2$
- $ightharpoonup \ \mathsf{B}_p$ worst-possible basis of $\mathcal L$
- ▶ B_s short basis (using knowledge of v short)

Issue: dimension 2

 \Rightarrow short basis problem is easy



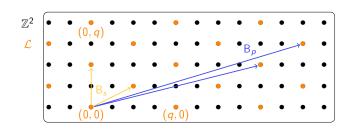
- Start with $(q\mathbb{Z})^2$
- sample random short $v \in \mathbb{Z}^2$ $(\|v\| \approx \sqrt{q})$
- $ightharpoonup \mathcal{L}$ spanned by ${\sf v}$ and $(q\mathbb{Z})^2$
- $ightharpoonup \mathsf{B}_p$ worst-possible basis of $\mathcal L$
- ▶ B_s short basis (using knowledge of v short)

Issue: dimension 2

⇒ short basis problem is easy

Solution: use polynomials in $\mathbb{Z}[X]/(X^d+1)$ instead of integers

module lattice of dimension 2d



- Start with $(q\mathbb{Z})^2$
- sample random short $\mathbf{v} \in \mathbb{Z}^2$ $(\|\mathbf{v}\| \approx \sqrt{q})$
- $ightharpoonup \mathcal{L}$ spanned by ${\sf v}$ and $(q\mathbb{Z})^2$
- $ightharpoonup \mathsf{B}_p$ worst-possible basis of $\mathcal L$
- ► B_s short basis
 (using knowledge of v short)

Issue: dimension 2

 \Rightarrow short basis problem is easy

Solution: use polynomials in $\mathbb{Z}[X]/(X^d+1)$ instead of integers

- module lattice of dimension 2d
- ► Falcon: hash-and-sign + NTRU

Short Integer Solution (SIS) assumption

Let
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n}) \ (m > n \log q)$$
 and

$$\mathcal{L}(A) := \{ x \in \mathbb{Z}^m \, | \, xA = 0 \text{ mod } q \}.$$

Finding a short basis of $\mathcal{L}(A)$ is hard with overwhelming probability.

[Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.

Short Integer Solution (SIS) assumption

Let
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n}) \ (m > n \log q)$$
 and

$$\mathcal{L}(A) := \{ x \in \mathbb{Z}^m \, | \, xA = 0 \, \operatorname{mod} \, q \}.$$

Finding a short basis of $\mathcal{L}(A)$ is hard with overwhelming probability.

Lemma: if there exists one lattice for which the short basis problem is hard, then the SIS assumption holds. [Ajt96]

[Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.

Short Integer Solution (SIS) assumption

Let
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n}) \ (m > n \log q)$$
 and

$$\mathcal{L}(A) := \{ x \in \mathbb{Z}^m \, | \, xA = 0 \text{ mod } q \}.$$

Finding a short basis of $\mathcal{L}(A)$ is hard with overwhelming probability.

Lemma: if there exists one lattice for which the short basis problem is hard, then the SIS assumption holds. [Ajt96]

17/10/2023

23/25

Lemma: one can sample A uniformly + a short basis B_s of $\mathcal{L}(A)$ in polynomial time [Ajt99]

[Ajt99] Ajtai. Generating hard instances of the short basis problem. ICALP.

Short Integer Solution (SIS) assumption

Let
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n}) \ (m > n \log q)$$
 and

$$\mathcal{L}(A) := \{ x \in \mathbb{Z}^m \, | \, xA = 0 \text{ mod } q \}.$$

Finding a short basis of $\mathcal{L}(A)$ is hard with overwhelming probability.

Lemma: if there exists one lattice for which the short basis problem is hard, then the SIS assumption holds. [Ajt96]

Lemma: one can sample A uniformly + a short basis B_s of $\mathcal{L}(A)$ in polynomial time [Ajt99]

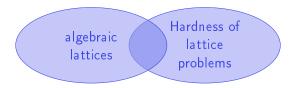
► GPV: hash-and-sign + SIS [GPV08]

[GPV08] Gentry, Peikert, Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. STOC

23/25

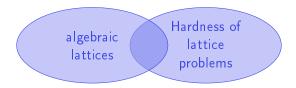
Conclusion

algebraic lattices Hardness of lattice problems



Some concrete questions: (come ask me if you want to know more)

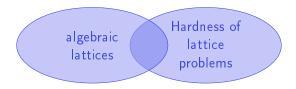
- can we generate a random prime ideal p in a number field K together with a short element in it?
- can we re-randomize an NTRU instance?



Some concrete questions: (come ask me if you want to know more)

- can we generate a random prime ideal p in a number field K together with a short element in it?
- can we re-randomize an NTRU instance?

Open position: 2 years post-doc on quantum cryptanalysis (Bordeaux)



Some concrete questions: (come ask me if you want to know more)

- can we generate a random prime ideal p in a number field K together with a short element in it?
- can we re-randomize an NTRU instance?

Open position: 2 years post-doc on quantum cryptanalysis (Bordeaux)

Thank you