Efficient Computation of $(3^n, 3^n)$ -isogenies

Journées Codage & Cryptographie 2023, Najac

Thomas Decru¹ & <u>Sabrina Kunzweiler²</u>

October 15th, 2023

¹imec-COSIC, KU Leuven, België ²Inria, IMB, Bordeaux, France

What are $(3^n, 3^n)$ -isogenies?

What are $(3^n, \overline{3^n})$ -isogenies?

What are $(3^n, 3^n)$ -isogenies?

What are $(3^n, \overline{3^n})$ -isogenies?

What are $(3^n, \overline{3^n})$ -isogenies?

Dimension 1: Elliptic curves

• 3^n -isogeny: chain of 3-isogenies, kernel $K \cong C_{3^n}$.

What are $(3^n, 3^n)$ -isogenies?

Dimension 2: Principally polarized abelian surfaces (p.p.a.s.)

What are $(3^n, 3^n)$ -isogenies?

Dimension 2: Principally polarized abelian surfaces (p.p.a.s.)

What are $(3^n, \overline{3^n})$ -isogenies?

Dimension 2: Principally polarized abelian surfaces (p.p.a.s.)

What are $(3^n, 3^n)$ -isogenies?

Dimension 2: Principally polarized abelian surfaces (p.p.a.s.)

 (3ⁿ, 3ⁿ)-isogeny: chain of (3, 3)-isogenies, kernel K ≅ C_{3ⁿ} × C_{3ⁿ}

EuroCrypt 2023:

- Key recovery attack on SIDH (Castryk-Decru; Maino-Martindale-Panny-Pope-Wesolowski; Robert)
- Algorithmic prerequisite: isogeny computations in higher dimension.

Retrieving Bob's secret

▷ based on
 (2^m, 2^m)-isogenies
 ▷ 9 sec (SIKEp217) - 1 h
 (SIKEp751)

EuroCrypt 2023:

- Key recovery attack on SIDH (Castryk-Decru; Maino-Martindale-Panny-Pope-Wesolowski; Robert)
- Algorithmic prerequisite: isogeny computations in higher dimension.

Retrieving Bob's secret

▷ based on
 (2^m, 2^m)-isogenies
 ▷ 9 sec (SIKEp217) - 1 h
 (SIKEp751)

EuroCrypt 2023:

- Key recovery attack on SIDH (Castryk-Decru; Maino-Martindale-Panny-Pope-Wesolowski; Robert)
- Algorithmic prerequisite: isogeny computations in higher dimension.

Retrieving Alice's secret	
▷ based on	
$(3^n, 3^n)$ -isogenies	
⊳ timing: ?	2

State-of-the-art of (3,3)-formulae

Four types of (3, 3)-isogenies

State-of-the-art of (3, 3)-formulae

Four types of (3, 3)-isogenies

- Generic:

 ✓ Explicit Formulae
 [Bruin-Flynn-Testa '14]
 ✓ Non-ontimized (27.50)
 - X Non-optimized (37.500 mult. for point evaluation)

State-of-the-art of (3, 3)-formulae

Four types of (3, 3)-isogenies

1. Generic:

✓ Explicit Formulae [Bruin-Flynn-Testa '14]

- X Non-optimized (37.500 mult. for point evaluation)
- Splitting and 3. Gluing:
 ✓ Compact parametrization
 [Bröker, Howe, Lauter, Stevenhagen '15]

X Explicit maps only on the level of curves (not surfaces)

State-of-the-art of (3, 3)-formulae

Four types of (3, 3)-isogenies

- 1. Generic:
 - ✓ Explicit Formulae [Bruin-Flynn-Testa '14]
 - X Non-optimized (37.500 mult. for point evaluation)
- Splitting and 3. Gluing:
 ✓ Compact parametrization
 [Bröker, Howe, Lauter, Stevenhagen '15]
 - X Explicit maps only on the level of curves (not surfaces)
- 4. Product:
 - x not explicitly discussed anywhere

Generic Case (1.):

BFT provide a three-parameter (r, s, t) parametrization.

Isogeny evaluation $x \mapsto y$ with $x = (x_1, x_2, x_3, x_4)$ is represented by matrix multiplication:¹

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} a_1 & \dots & a_{20} \\ \vdots & & \vdots \\ d_1 & \dots & d_{20} \end{pmatrix} \cdot \begin{pmatrix} x_4^2 \\ x_4^2 x_3 \\ \vdots \\ x_1^3 \end{pmatrix}$$

¹Technical remark: Computations are done on the Kummer surface.

Generic Case (1.):

BFT provide a three-parameter (r, s, t) parametrization.

Isogeny evaluation $x \mapsto y$ with $x = (x_1, x_2, x_3, x_4)$ is represented by matrix multiplication:¹

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} a_1 & \dots & a_{20} \\ \vdots & & \vdots \\ d_1 & \dots & d_{20} \end{pmatrix} \cdot \begin{pmatrix} x_4^2 \\ x_4^2 x_3 \\ \vdots \\ x_1^3 \end{pmatrix}$$

Formulae for the matrix entries in terms of r, s, t are known, but expensive!

¹Technical remark: Computations are done on the Kummer surface.

Generic Case (1.):

BFT provide a three-parameter (r, s, t) parametrization.

Isogeny evaluation $x \mapsto y$ with $x = (x_1, x_2, x_3, x_4)$ is represented by matrix multiplication:¹

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} a_1 & \dots & a_{20} \\ \vdots & & \vdots \\ d_1 & \dots & d_{20} \end{pmatrix} \cdot \begin{pmatrix} x_4^2 \\ x_4^2 x_3 \\ \vdots \\ \vdots \\ x_3^2 \end{pmatrix}$$

Formulae for the matrix entries in terms of *r*, *s*, *t* are known, but expensive!

Tricks for simplifying the formulae:

• Find 282 (at most quartic) relations among matrix entries and curve coefficients.

• Formulate the problem as a Mixed Integer Linear Program. ¹Technical remark: Computations are done on the Kummer surface.

Example: Matrix entry a_5 (coefficient of $x_3^2x_4$)

(a) * (profesantiz) = profesantiz = simplicatiz) = simplicatize = simplicatize = profesantize = profesantize = simplicatize = simplicatize

Original formula with r, s, t.

 $4(f_{6}\Delta - g_{6}).$

New formula with curve coefficients f_0, \ldots, f_6 , g_0, \ldots, g_6 .

Example: Matrix entry a_5 (coefficient of $x_3^2 x_4$)

(4) * (r^6*s^4*t^2 + r^6*s^4*t - 9*r^5*s^4*t^2 + 3*r^4*s^4*t^3 r^3*s^4*t^4 + r^6*s^4 + 2*r^6*s^3*t - 9*r^5*s^4*t + 39*r^4*s^4*t^2 29*r 's^4*t^3 + 18*r^2*s^4*t^4 - 6*r*s^4*t^5 + s^4*t^6 - r^6*s^3 -9*** s^3*t + 3*r^4*s^4*t + 3*r^4*s^3*t^2 - 29*r^3*s^4*t^2 -2*r^3*e^3*t^3 + 9*r^2*e^4*t^3 - 3*r*e^4*t^4 + r6*e^2 + 39*r^4*e^3*t r^3*s^4*t - 57*r^3*s^3*t^2 + 18*r^2*s^4*t^2 + 51*r^2*s^3*t^3 s^4*t^3 - 21*r*s^3*t^4 + s^4*t^4 + 4*s^3*t^5 - 3*r^4*s^3 3*** *s^2*t - 28*r^3*s^3*t + 33*r^2*s^3*t^2 - 6*r*s^4*t^2 18*r e^3*+^3 + 3*e^3*+^4 + 3*r^4*e^3 + r^3*e^3 - 38*r^3*e^3*+ + 15*r^7*s^3*t + 48*r^7*s^7*t^7 - 15*r*s^3*t^7 + s^4*t^7 - 77*r*s^7*t^3 + 5*s^3*t^3 + 6*s^2*t^4 - 3*r^4*s + 2*r^3*s*t + 21*r^2*s^2*t -3*r*s^3*t - 24*r*s^2*t^2 + 2*s^3*t^2 + 5*s^2*t^3 + 15*r^2*s*t -9*r*s^2*t - 15*r*s*t^2 + 6*s^2*t^2 + 4*s*t^3 + r^3 - 9*r*c*t + c^2*t + 4*s*t^2 - 3*r*t + 2*s*t + t^2 + t)

Original formula with r, s, t.

$$4(f_6\Delta - g_6).$$

New formula with curve coefficients f_0, \ldots, f_6 , g_0, \ldots, g_6 .

In total: Our new formulae reduce the number of multiplications by 94 %.

All other cases (2.-4.):

All other cases (2.-4.):

✓ We derive compact and explicit formulae on the level of Kummer surfaces, Jacobians or elliptic curves (as needed). All other cases (2.-4.):

✓ We derive compact and explicit formulae on the level of Kummer surfaces, Jacobians or elliptic curves (as needed).

Code https://github.com/KULeuven-COSIC/3_3_isogenies

- Implementation of our formulae and the resulting algorithm to compute $(3^n, 3^n)$ -isogenies in magma.
- Symbolic verification of our results.

Cryptanalysis

• SIDH attack: We can now also retrieve Alice's secret key!

Cryptanalysis

• SIDH attack: We can now also retrieve Alice's secret key! Only 11 seconds for SIKEp751 parameters.

Cryptanalysis

• SIDH attack: We can now also retrieve Alice's secret key! Only 11 seconds for SIKEp751 parameters.

New Protocols

- 2-dimensional CGL hash function.
- Constructive use of the SIDH attack, such as: FESTA, SQISign-HD, ...

Thank you!