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What are (3n, 3n)-isogenies?

Dimension 1: Elliptic curves
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• 3n-isogeny: chain of 3-isogenies,
kernel K ∼= C3n .
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What are (3n, 3n)-isogenies?

Dimension 2: Principally polarized abelian surfaces (p.p.a.s.)
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Why are (3n, 3n)-isogenies interesting (for crypto)?

SIDH
Alice
2m

Bob
3n

EuroCrypt 2023:
• Key recovery attack on SIDH

(Castryk-Decru;
Maino-Martindale-Panny-Pope-
Wesolowski; Robert)

• Algorithmic prerequisite:
isogeny computations in higher
dimension.

Retrieving Bob’s secret
▷ based on
(2m, 2m)-isogenies
▷ 9 sec (SIKEp217) - 1 h
(SIKEp751)

Retrieving Alice’s secret
▷ based on
(3n, 3n)-isogenies
▷ timing: ?
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State-of-the-art of (3, 3)-formulae

Four types of
(3, 3)-isogenies
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1. Generic:
✓ Explicit Formulae
[Bruin-Flynn-Testa ’14]
✗ Non-optimized (37.500 mult. for
point evaluation)

2. Splitting and 3. Gluing:
✓ Compact parametrization
[Bröker, Howe, Lauter, Stevenhagen
’15]
✗ Explicit maps only on the level of
curves (not surfaces)

4. Product:
✗ not explicitly discussed anywhere
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[Bröker, Howe, Lauter, Stevenhagen
’15]
✗ Explicit maps only on the level of
curves (not surfaces)

4. Product:
✗ not explicitly discussed anywhere

4



State-of-the-art of (3, 3)-formulae

Four types of
(3, 3)-isogenies

x
y

z
1

2

3

1

2

3

4

x
y

z

x
y

z

x
y

z

1. Generic:
✓ Explicit Formulae
[Bruin-Flynn-Testa ’14]
✗ Non-optimized (37.500 mult. for
point evaluation)

2. Splitting and 3. Gluing:
✓ Compact parametrization
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Our Contributions

Generic Case (1.):
BFT provide a three-parameter
(r, s, t) parametrization.

x
y

z 1

∋ x 7→ y ∈

x
y

z

Isogeny evaluation x 7→ y with x = (x1, x2, x3, x4) is represented by
matrix multiplication:1

y1
y2
y3
y4

 =


a1 . . . a20
...

...
d1 . . . d20

 ·


x3

4
x2

4x3
...
x3

1



Formulae for the matrix entries
in terms of r, s, t are known,

but expensive!

Tricks for simplifying the formulae:

• Find 282 (at most quartic) relations among matrix entries
and curve coefficients.

• Formulate the problem as a Mixed Integer Linear Program.

1Technical remark: Computations are done on the Kummer surface.
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Our Contributions

Example: Matrix entry a5 (coefficient of x2
3x4)

Original formula with r, s, t.

⇒

4(f6∆− g6).

New formula with curve
coefficients f0, . . . , f6,
g0, . . . ,g6.

In total: Our new formulae reduce the number of
multiplications by 94 %. ✓
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Our Contributions

All other cases
(2.-4.):
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✓ We derive compact and explicit formulae on the level
of Kummer surfaces, Jacobians or elliptic curves (as
needed).

Code https://github.com/KULeuven-COSIC/3 3 isogenies

• Implementation of our formulae and the resulting
algorithm to compute (3n, 3n)-isogenies in magma.

• Symbolic verification of our results.
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https://github.com/KULeuven-COSIC/3_3_isogenies


Our Contributions

All other cases
(2.-4.):

x
y

z

4

2

3

x
y

z

x
y

z

x
y

z

✓ We derive compact and explicit formulae on the level
of Kummer surfaces, Jacobians or elliptic curves (as
needed).

Code https://github.com/KULeuven-COSIC/3 3 isogenies

• Implementation of our formulae and the resulting
algorithm to compute (3n, 3n)-isogenies in magma.

• Symbolic verification of our results.

7

https://github.com/KULeuven-COSIC/3_3_isogenies


Our Contributions

All other cases
(2.-4.):

x
y

z

4

2

3

x
y

z

x
y

z

x
y

z

✓ We derive compact and explicit formulae on the level
of Kummer surfaces, Jacobians or elliptic curves (as
needed).

Code https://github.com/KULeuven-COSIC/3 3 isogenies

• Implementation of our formulae and the resulting
algorithm to compute (3n, 3n)-isogenies in magma.

• Symbolic verification of our results.

7

https://github.com/KULeuven-COSIC/3_3_isogenies


Applications

Cryptanalysis

• SIDH attack: We can now also retrieve Alice’s secret key!

Only 11 seconds for SIKEp751 parameters.

New Protocols

• 2-dimensional CGL hash function.
• Constructive use of the SIDH attack, such as:

FESTA, SQISign-HD, . . .
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Thank you!
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