The endomorphism ring problem given an endomorphism

Arthur Herlédan Le Merdy Supervisors: Guillaume Hanrot & Benjamin Wesolowski

Monday 16th October, 2023

$$E: y^2 = x^3 + Ax + B$$

• Elliptic curve: smooth projective curve given by an affine model such as above.

• Elliptic curve: smooth projective curve given by an affine model such as above.

• Elliptic curve: smooth projective curve given by an affine model such as above.

Elliptic curve: smooth projective curve given by an affine model such as above.
Isogeny: non-constant rational map inducing a group homomorphism.

Elliptic curve: smooth projective curve given by an affine model such as above.
Isogeny: non-constant rational map inducing a group homomorphism.

Elliptic curve: smooth projective curve given by an affine model such as above.
Isogeny: non-constant rational map inducing a group homomorphism.

The Isogeny Problem

Given two elliptic curves E and E', find an isogeny between them.

An isogeny $\varphi : E \to E$ is an **endomorphism**. We denote $End(E) := \{\varphi : E \to E\} \cup \{0\}.$

An isogeny $\varphi : E \to E$ is an **endomorphism**. We denote $End(E) := \{\varphi : E \to E\} \cup \{0\}.$

• $(\operatorname{End}(E), +, \circ)$ is the **endomorphism ring** of *E*, where for every $P \in E$: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$ and $(\varphi \circ \psi)(P) = \varphi(\psi(P)).$

An isogeny $\varphi : E \to E$ is an **endomorphism**. We denote $End(E) := \{\varphi : E \to E\} \cup \{0\}.$

- $(\operatorname{End}(E), +, \circ)$ is the **endomorphism ring** of *E*, where for every $P \in E$: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$ and $(\varphi \circ \psi)(P) = \varphi(\psi(P)).$
- $\mathbb{Z} \hookrightarrow \text{End}(E)$ as subring. For every $n \in \mathbb{Z}$, we have the endomorphism

$$[n]: E \to E$$
$$P \mapsto [n]P := \underbrace{P + \dots + P}_{n \text{ times}}.$$

An isogeny $\varphi : E \to E$ is an **endomorphism**. We denote $End(E) := \{\varphi : E \to E\} \cup \{0\}.$

- $(\operatorname{End}(E), +, \circ)$ is the **endomorphism ring** of *E*, where for every $P \in E$: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$ and $(\varphi \circ \psi)(P) = \varphi(\psi(P)).$
- $\mathbb{Z} \hookrightarrow \text{End}(E)$ as subring. For every $n \in \mathbb{Z}$, we have the endomorphism

$$[n]: E \to E$$
$$P \mapsto [n]P := \underbrace{P + \dots + P}_{n \text{ times}}.$$

• (End(E), +) is a lattice of dimension

* **2** then $\operatorname{End}(E) \simeq \mathbb{Z} \oplus \alpha \mathbb{Z}$,

or

* 4 then $\operatorname{End}(E) \simeq \mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$.

An isogeny $\varphi : E \to E$ is an **endomorphism**. We denote $End(E) := \{\varphi : E \to E\} \cup \{0\}.$

- $(\operatorname{End}(E), +, \circ)$ is the **endomorphism ring** of *E*, where for every $P \in E$: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$ and $(\varphi \circ \psi)(P) = \varphi(\psi(P)).$
- $\mathbb{Z} \hookrightarrow \text{End}(E)$ as subring. For every $n \in \mathbb{Z}$, we have the endomorphism

$$[n]: E \to E$$
$$P \mapsto [n]P := \underbrace{P + \dots + P}_{n \text{ times}}.$$

• (End(E), +) is a lattice of dimension

- * 2 then $\operatorname{End}(E) \simeq \mathbb{Z} \oplus \alpha \mathbb{Z}$, } E is ordinary.
- * 4 then $\operatorname{End}(E) \simeq \mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$. } *E* is supersingular.

The Endomorphism Ring Problem (EndRing):

Given a supersingular elliptic curve \boldsymbol{E} , find a basis of its endomorphism ring End (\boldsymbol{E}).

The Endomorphism Ring Problem (EndRing):

Given a supersingular elliptic curve \boldsymbol{E} , find a basis of its endomorphism ring End (\boldsymbol{E}).

• The Endomorphism Ring Problem is equivalent to the Isogeny Problem. [Wes22b]

The Endomorphism Ring Problem (EndRing):

Given a supersingular elliptic curve \boldsymbol{E} , find a basis of its endomorphism ring End (\boldsymbol{E}).

- The Endomorphism Ring Problem is equivalent to the Isogeny Problem. [Wes22b]
- Some protocols give additional information such as a public endomorphism θ ∈ End(E)\Z. (CSIDH, [Cas+18], SCALLOP [Feo+23])

The Endomorphism Ring Problem (EndRing):

Given a supersingular elliptic curve \boldsymbol{E} , find a basis of its endomorphism ring End (\boldsymbol{E}).

- The Endomorphism Ring Problem is equivalent to the Isogeny Problem. [Wes22b]
- Some protocols give additional information such as a public endomorphism θ ∈ End(E)\Z. (CSIDH, [Cas+18], SCALLOP [Feo+23])

The Endomorphism Ring Problem given one Endomorphism :

Given a supersingular elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, find a basis of its endomorphism ring $\text{End}(\boldsymbol{E})$.

The Endomorphism Ring Problem (EndRing):

Given a supersingular elliptic curve \boldsymbol{E} , find a basis of its endomorphism ring End (\boldsymbol{E}).

- The Endomorphism Ring Problem is equivalent to the Isogeny Problem. [Wes22b]
- Some protocols give additional information such as a public endomorphism θ ∈ End(E)\Z. (CSIDH, [Cas+18], SCALLOP [Feo+23])

The Endomorphism Ring Problem given one Endomorphism :

Given a supersingular elliptic curve \boldsymbol{E} and an endomorphism $\boldsymbol{\theta} \in \text{End}(\boldsymbol{E}) \setminus \mathbb{Z}$, find a basis of its endomorphism ring $\text{End}(\boldsymbol{E})$.

	EndRing	EndRing given one endomorphism θ
Classic	$p^{1/2}$	$(\deg heta)^{1/4}$
Quantum	$p^{1/4}$	subexponential in $\log \deg heta$

Complexity of EndRing and its variant for an elliptic curve defined over \mathbb{F}_{p^2} , with p a prime.

Orientations [CK20],[Onu20]

Let $\theta \in \operatorname{End}(E) \setminus \mathbb{Z}$.

- $\mathbb{Z}[\theta] \simeq \mathbb{Z}[X] / \langle X^2 + aX + b \rangle$ for some $a, b \in \mathbb{Z}$, i.e. $\mathbb{Z}[\theta]$ is a quadratic ring.
- $\mathbb{Z}[\theta] \hookrightarrow \operatorname{End}(E).$

Orientations [CK20],[Onu20]

Let $\theta \in \operatorname{End}(E) \setminus \mathbb{Z}$.

- $\mathbb{Z}[\theta] \simeq \mathbb{Z}[X] / \langle X^2 + aX + b \rangle$ for some $a, b \in \mathbb{Z}$, i.e. $\mathbb{Z}[\theta]$ is a quadratic ring.
- $\mathbb{Z}[\theta] \hookrightarrow \operatorname{End}(E).$

Let ${\mathfrak O}$ be a quadratic ring.

- An embedding $\iota : \mathfrak{O} \hookrightarrow \operatorname{End}(E)$ is called an \mathfrak{O} -orientation.
- It is a primitive D-orientation if for any quadratic ring D' ⊇ D, it is impossible to extend *ι* to D' such that *ι* : D' → End(E).
- The ideal class group $\mathcal{C}I(\mathfrak{O})$ acts on elliptic curves endowed with an \mathfrak{O} -orientation.

Orientations [CK20],[Onu20]

Let $\theta \in \operatorname{End}(E) \setminus \mathbb{Z}$.

- $\mathbb{Z}[\theta] \simeq \mathbb{Z}[X] / \langle X^2 + aX + b \rangle$ for some $a, b \in \mathbb{Z}$, i.e. $\mathbb{Z}[\theta]$ is a quadratic ring.
- $\mathbb{Z}[\theta] \hookrightarrow \operatorname{End}(E).$

Let ${\mathfrak O}$ be a quadratic ring.

- An embedding $\iota : \mathfrak{O} \hookrightarrow \operatorname{End}(E)$ is called an \mathfrak{O} -orientation.
- It is a primitive D-orientation if for any quadratic ring D' ⊇ D, it is impossible to extend *ι* to D' such that *ι* : D' → End(E).
- The ideal class group $\mathcal{C}I(\mathfrak{O})$ acts on elliptic curves endowed with an \mathfrak{O} -orientation.

The \mathfrak{O} -oriented Endomorphism Ring Problem (\mathfrak{O} -EndRing):

Given a supersingular elliptic curve \boldsymbol{E} and a **primitive orientation** $\iota : \mathfrak{O} \hookrightarrow \text{End}(\boldsymbol{E})$, find a basis of its endomorphism ring **End** (\boldsymbol{E}).

EndRing given an endomorphism

E and $heta \in \mathsf{End}(E) ackslash \mathbb{Z}$

A basis of End(E)

EndRing given an endomorphism

1 Immediate.

A basis of End(E)

1 Immediate.

② Hard problem with a subexponential quantum complexity. [Arp+23]

A basis of End(E)

① Immediate.

discriminant of $\mathbb{Z}[\theta]$.

Pard problem with a subexponential quantum complexity. [Arp+23]
Polynomial time given the factorisation of the

7/10

① Immediate.

Pard problem with a subexponential quantum complexity. [Arp+23]
Polynomial time given the factorisation of the discriminant of Z[0].

③ Known complexity under some heuristics. [Wes22a]

① Immediate.

Part problem with a subexponential quantum complexity. [Arp+23]
Polynomial time given the factorisation of the discriminant of Z[*θ*].

③ Known complexity under some heuristics. [Wes22a] Rigorous complexity analysis.

• Constructive applications

- Constructive applications
- Attacks by climbing volcanoes of ℓ -isogenies

- Constructive applications
- Attacks by climbing volcanoes of ℓ -isogenies

Thanks for your attention! https://eprint.iacr.org/2023/1448

Bibliography I

- [Arp+23] Sarah Arpin et al. "Orienteering with one endomorphism". In: La Matematica (2023), pp. 1–60.
- [Cas+18] Wouter Castryck et al. "CSIDH: an efficient post-quantum commutative group action". In: Advances in Cryptology-ASIACRYPT 2018. 2018, pp. 395-427.
- [CK20] Leonardo Colò and David Kohel. "Orienting supersingular isogeny graphs". In: Journal of Mathematical Cryptology 14.1 (Oct. 2020), pp. 414–437.
- [Feo+23] Luca De Feo et al. <u>SCALLOP: scaling the CSI-FiSh</u>. Published: Cryptology ePrint Archive, Paper 2023/058. 2023. url: https://eprint.iacr.org/2023/058.
- [Onu20] Hiroshi Onuki. <u>On oriented supersingular elliptic curves</u>. 2020. doi: 10.48550/ARXIV.2002.09894. url: https://arxiv.org/abs/2002.09894.

[Wes22a] Benjamin Wesolowski. "Orientations and the supersingular endomorphism ring problem". In:

Annual International Conference on the Theory and Applications of Cryptographic Technic Springer. 2022, pp. 345–371.

[Wes22b] Benjamin Wesolowski. "The supersingular isogeny path and endomorphism ring problems are equivalent". In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2022, pp. 1100–1111.