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Elliptic curves and isogenies

● Elliptic curve: smooth projective curve given by an affine model such as above.

● Isogeny: non-constant rational map inducing a group homomorphism.

P

Q

P ` Q

E : y2
“ x3

` Ax ` B

φ

φpPq

φpP ` Qq

φpQq

“

φpPq ` φpQq

E 1 : y2
“ x3

` A1x ` B 1
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Isogeny hard problem

E : y2
“ x3

` Ax ` B

?

E 1 : y2
“ x3

` A1x ` B 1

The Isogeny Problem

Given two elliptic curves E and E 1, find an isogeny between them.
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Endomorphism ring

An isogeny φ : E Ñ E is an endomorphism.
We denote EndpE q :“ tφ : E Ñ Eu Y t0u.

● pEndpE q,`, ˝q is the endomorphism ring of E , where for every P P E :
pφ`ψqpPq “ φpPq ` ψpPq and pφ˝ψqpPq “ φpψpPqq.

● Z ãÑ EndpE q as subring. For every n P Z, we have the endomorphism

rns : E Ñ E

P ÞÑ rnsP :“ P ` ¨ ¨ ¨ ` P
looooomooooon

n times

.

● pEndpE q,`q is a lattice of dimension
✹ 2 then EndpEq » Z ‘ αZ,

uE is ordinary.

or
✹ 4 then EndpEq » Z ‘ αZ ‘ βZ ‘ γZ.

uE is supersingular.
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Supersingular endomorphism ring problem

The Endomorphism Ring Problem (EndRing):

Given a supersingular elliptic curve E , find a basis of its endomorphism ring End pE q.

● The Endomorphism Ring Problem is equivalent to the Isogeny Problem. [Wes22b]
● Some protocols give additional information such as a public endomorphism θ P EndpE qzZ.

(CSIDH, [Cas+18], SCALLOP [Feo+23])

The Endomorphism Ring Problem given one Endomorphism :

Given a supersingular elliptic curve E and an endomorphism θ P EndpE qzZ, find a basis of its
endomorphism ring End pE q.

EndRing EndRing given one endomorphism θ

Classic p1{2 pdeg θq
1{4

Quantum p1{4 subexponential in log deg θ

Complexity of EndRing and its variant for an elliptic curve defined over Fp2 , with p a prime.
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Orientations [CK20],[Onu20]

Let θ P EndpE qzZ.
● Zrθs » ZrX s{ ă X 2 ` aX ` b ą for some a, b P Z, i.e. Zrθs is a quadratic ring.
● Zrθs ãÑ EndpE q.

Let O be a quadratic ring.
● An embedding ι : O ãÑ EndpE q is called an O-orientation.
● It is a primitive O-orientation if for any quadratic ring O1 Ě O,

it is impossible to extend ι to O1 such that ι : O1 ãÑ EndpE q.
● The ideal class group ClpOq acts on elliptic curves endowed with an O-orientation.

The O-oriented Endomorphism Ring Problem (O-EndRing):

Given a supersingular elliptic curve E and a primitive orientation ι : O ãÑ EndpE q, find a
basis of its endomorphism ring End pE q.
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EndRing given an endomorphism

A basis of EndpE q

E and θ P EndpE qzZ

E and ι : Zrθs ãÑ EndpE q

1

2

E and ι : Zrθs ãÑ EndpE q primitive

Primitivisation

3 O-EndRing

➀ Immediate.

➁

Polynomial time given the factorisation of the
discriminant of Zrθs.

➂

Rigorous complexity analysis.
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What’s next ?

● Constructive applications
● Attacks by climbing volcanoes of ℓ-isogenies

Thanks for your attention!
https://eprint.iacr.org/2023/1448
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