The endomorphism ring problem given an endomorphism

Arthur Herlédan Le Merdy
Supervisors: Guillaume Hanrot & Benjamin Wesolowski

Monday 16th October, 2023
Elliptic curves and isogenies

Elliptic curve: smooth projective curve given by an affine model such as above.

\[E : y^2 = x^3 + Ax + B \]

Elliptic curve: smooth projective curve given by an affine model such as above.
Elliptic curves and isogenies

\[E : y^2 = x^3 + Ax + B \]

- **Elliptic curve**: smooth projective curve given by an affine model such as above.
Elliptic curves and isogenies

- **Elliptic curve**: smooth projective curve given by an affine model such as above.

\[E : y^2 = x^3 + Ax + B \]

- **Isogeny**: non-constant rational map inducing a group homomorphism.
Elliptic curves and isogenies

- **Elliptic curve**: smooth projective curve given by an affine model such as above.
- **Isogeny**: non-constant rational map inducing a group homomorphism.
Elliptic curves and isogenies

- **Elliptic curve**: smooth projective curve given by an affine model such as above.
- **Isogeny**: non-constant rational map inducing a group homomorphism.

\[E : y^2 = x^3 + Ax + B \]
\[E' : y^2 = x^3 + A'x + B' \]
Elliptic curves and isogenies

- **Elliptic curve**: smooth projective curve given by an affine model such as above.
- **Isogeny**: non-constant rational map inducing a group homomorphism.
The Isogeny Problem

Given two elliptic curves E and E', find an isogeny between them.

$E : y^2 = x^3 + Ax + B$

$E' : y^2 = x^3 + A'x + B'$
Endomorphism ring

An isogeny \(\varphi : E \to E \) is an **endomorphism**.
We denote \(\text{End}(E) := \{ \varphi : E \to E \} \cup \{0\} \).
An isogeny $\varphi : E \to E$ is an endomorphism.
We denote $\text{End}(E) := \{\varphi : E \to E\} \cup \{0\}$.

$(\text{End}(E), +, \circ)$ is the endomorphism ring of E, where for every $P \in E$:

$(\varphi + \psi)(P) = \varphi(P) + \psi(P)$ and $(\varphi \circ \psi)(P) = \varphi(\psi(P))$.

4 / 10
An isogeny $\varphi : E \to E$ is an **endomorphism**.
We denote $\text{End}(E) := \{\varphi : E \to E\} \cup \{0\}$.

- $(\text{End}(E), +, \circ)$ is the **endomorphism ring** of E, where for every $P \in E$:
 $$(\varphi + \psi)(P) = \varphi(P) + \psi(P) \quad \text{and} \quad (\varphi \circ \psi)(P) = \varphi(\psi(P)).$$

- $\mathbb{Z} \hookrightarrow \text{End}(E)$ as **subring**. For every $n \in \mathbb{Z}$, we have the endomorphism
 $$[n] : E \to E$$
 $$P \mapsto [n]P := \underbrace{P + \cdots + P}_{n \text{ times}}.$$
An isogeny $\varphi : E \to E$ is an endomorphism. We denote $\text{End}(E) := \{\varphi : E \to E\} \cup \{0\}$.

- $(\text{End}(E), +, \circ)$ is the endomorphism ring of E, where for every $P \in E$:
 $$(\varphi + \psi)(P) = \varphi(P) + \psi(P) \quad \text{and} \quad (\varphi \circ \psi)(P) = \varphi(\psi(P)).$$

- $\mathbb{Z} \hookrightarrow \text{End}(E)$ as subring. For every $n \in \mathbb{Z}$, we have the endomorphism
 $$[n] : E \to E$$
 $$P \mapsto [n]P := P + \cdots + P \quad \text{n times}.$$

- $(\text{End}(E), +)$ is a lattice of dimension
 - 2 then $\text{End}(E) \simeq \mathbb{Z} \oplus \alpha\mathbb{Z}$, or
 - 4 then $\text{End}(E) \simeq \mathbb{Z} \oplus \alpha\mathbb{Z} \oplus \beta\mathbb{Z} \oplus \gamma\mathbb{Z}$.
Endomorphism ring

An isogeny \(\varphi : E \to E \) is an **endomorphism**. We denote \(\text{End}(E) := \{ \varphi : E \to E \} \cup \{0\} \).

- \((\text{End}(E), +, \circ)\) is the **endomorphism ring** of \(E \), where for every \(P \in E \):
 \[
 (\varphi + \psi)(P) = \varphi(P) + \psi(P) \quad \text{and} \quad (\varphi \circ \psi)(P) = \varphi(\psi(P)).
 \]

- \(\mathbb{Z} \hookrightarrow \text{End}(E) \) as subring. For every \(n \in \mathbb{Z} \), we have the endomorphism \([n] : E \to E \)
 \[
 P \mapsto [n]P := P + \cdots + P \quad \text{\(n \) times}.
 \]

- \((\text{End}(E), +)\) is a lattice of dimension
 - \(2 \) then \(\text{End}(E) \cong \mathbb{Z} \oplus \alpha \mathbb{Z} \), \(E \) is **ordinary**.
 - \(4 \) then \(\text{End}(E) \cong \mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z} \). \(E \) is **supersingular**.
The Endomorphism Ring Problem (EndRing):

Given a supersingular elliptic curve E, find a basis of its endomorphism ring $\text{End}(E)$.

- The Endomorphism Ring Problem is equivalent to the Isogeny Problem. \cite{Wes22b}
- Some protocols give additional information such as a public endomorphism $\theta \in \text{End}(E)$.

- (CSIDH, \cite{Cas+18}, SCALLOP \cite{Feo+23})

The Endomorphism Ring Problem given one endomorphism θ:

Given a supersingular elliptic curve E and an endomorphism $\theta \in \text{End}(E)$, find a basis of its endomorphism ring $\text{End}(E)$.

- **Classic**
 - $p \leq 2^{p^{\deg \theta} + 1} \leq 2^{16}$
- **Quantum**
 - $p \leq 2^{4 \deg \theta} \leq 2^{1.7}$
 - Subexponential in $\log \deg \theta$
The Endomorphism Ring Problem (EndRing):

Given a supersingular elliptic curve E, find a basis of its endomorphism ring $\text{End}(E)$.

- The Endomorphism Ring Problem is equivalent to the Isogeny Problem. [Wes22b]

Supersingular endomorphism ring problem

The Endomorphism Ring Problem (EndRing): Given a supersingular elliptic curve E, find a basis of its endomorphism ring $\text{End}(E)$.

- The Endomorphism Ring Problem is equivalent to the Isogeny Problem. [Wes22b]
The Endomorphism Ring Problem (EndRing):

Given a supersingular elliptic curve E, find a basis of its endomorphism ring $\text{End}(E)$.

- The Endomorphism Ring Problem is equivalent to the Isogeny Problem. [Wes22b]
- Some protocols give additional information such as a public endomorphism $\theta \in \text{End}(E) \setminus \mathbb{Z}$. (CSIDH, [Cas+18], SCALLOP [Feo+23])
Supersingular endomorphism ring problem

The Endomorphism Ring Problem (EndRing):
Given a supersingular elliptic curve E, find a basis of its endomorphism ring $\text{End}(E)$.

- The **Endomorphism Ring Problem** is equivalent to the **Isogeny Problem**. [Wes22b]
- Some protocols give additional information such as a public endomorphism $\theta \in \text{End}(E) \setminus \mathbb{Z}$. (CSIDH, [Cas+18], SCALLOP [Feo+23])

The Endomorphism Ring Problem given one Endomorphism:
Given a supersingular elliptic curve E and an endomorphism $\theta \in \text{End}(E) \setminus \mathbb{Z}$, find a basis of its endomorphism ring $\text{End}(E)$.
Supersingular endomorphism ring problem

The Endomorphism Ring Problem (EndRing):
Given a supersingular elliptic curve E, find a basis of its endomorphism ring $\text{End}(E)$.

- The **Endomorphism Ring Problem** is equivalent to the **Isogeny Problem**. [Wes22b]
- Some protocols give additional information such as a public endomorphism $\theta \in \text{End}(E)\backslash \mathbb{Z}$. (CSIDH, [Cas+18], SCALLOP [Feo+23])

The Endomorphism Ring Problem given one Endomorphism:
Given a supersingular elliptic curve E and an endomorphism $\theta \in \text{End}(E)\backslash \mathbb{Z}$, find a basis of its endomorphism ring $\text{End}(E)$.

<table>
<thead>
<tr>
<th>EndRing</th>
<th>EndRing given one endomorphism θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic</td>
<td>$p^{1/2}$</td>
</tr>
<tr>
<td>Quantum</td>
<td>$p^{1/4}$</td>
</tr>
</tbody>
</table>

Complexity of EndRing and its variant for an elliptic curve defined over \mathbb{F}_{p^2}, with p a prime.
Let $\theta \in \text{End}(E) \setminus \mathbb{Z}$.

- $\mathbb{Z}[\theta] \cong \mathbb{Z}[X]/\langle X^2 + aX + b \rangle$ for some $a, b \in \mathbb{Z}$, i.e. $\mathbb{Z}[\theta]$ is a quadratic ring.
- $\mathbb{Z}[\theta] \hookrightarrow \text{End}(E)$.

Orientations [CK20],[Onu20]
Orientations [CK20],[Onu20]

Let \(\theta \in \text{End}(E) \setminus \mathbb{Z} \).
- \(\mathbb{Z}[\theta] \cong \mathbb{Z}[X]/<X^2 + aX + b> \) for some \(a, b \in \mathbb{Z} \), i.e. \(\mathbb{Z}[\theta] \) is a quadratic ring.
- \(\mathbb{Z}[\theta] \hookrightarrow \text{End}(E) \).

Let \(\mathcal{O} \) be a quadratic ring.
- An embedding \(\iota : \mathcal{O} \hookrightarrow \text{End}(E) \) is called an \(\mathcal{O} \)-orientation.
- It is a primitive \(\mathcal{O} \)-orientation if for any quadratic ring \(\mathcal{O}' \supseteq \mathcal{O} \), it is impossible to extend \(\iota \) to \(\mathcal{O}' \) such that \(\iota : \mathcal{O}' \hookrightarrow \text{End}(E) \).
- The ideal class group \(\mathcal{C}l(\mathcal{O}) \) acts on elliptic curves endowed with an \(\mathcal{O} \)-orientation.
Orientations [CK20],[Onu20]

Let $\theta \in \text{End}(E) \setminus \mathbb{Z}$.

- $\mathbb{Z}[\theta] \cong \mathbb{Z}[X]/\langle X^2 + aX + b \rangle$ for some $a, b \in \mathbb{Z}$, i.e. $\mathbb{Z}[\theta]$ is a **quadratic ring**.
- $\mathbb{Z}[\theta] \hookrightarrow \text{End}(E)$.

Let \mathcal{O} be a quadratic ring.

- An embedding $\iota : \mathcal{O} \hookrightarrow \text{End}(E)$ is called an \mathcal{O}-orientation.
- It is a **primitive** \mathcal{O}-orientation if for any quadratic ring $\mathcal{O}' \supseteq \mathcal{O}$, it is impossible to extend ι to \mathcal{O}' such that $\iota : \mathcal{O}' \hookrightarrow \text{End}(E)$.
- The ideal class group $\text{Cl}(\mathcal{O})$ acts on elliptic curves endowed with an \mathcal{O}-orientation.

The \mathcal{O}-oriented Endomorphism Ring Problem (\mathcal{O}-EndRing):

Given a supersingular elliptic curve E and a **primitive orientation** $\iota : \mathcal{O} \hookrightarrow \text{End}(E)$, find a basis of its endomorphism ring $\text{End}(E)$.
EndRing given an endomorphism

\[E \text{ and } \theta \in \text{End}(E)\backslash \mathbb{Z} \]

A basis of \text{End}(E)
EndRing given an endomorphism

1. Immediate.

A basis of \(\text{End}(E) \)
EndRing given an endomorphism

1. Immediate.

2. Hard problem with a subexponential quantum complexity. [Arp+23]
EndRing given an endomorphism

1. EndRing given an endomorphism

\[E \text{ and } \theta \in \text{End}(E) \setminus \mathbb{Z} \]

2. Primitivisation

\[E \text{ and } \iota : \mathbb{Z}[heta] \hookrightarrow \text{End}(E) \]

\[E \text{ and } \iota : \mathbb{Z}[heta] \hookrightarrow \text{End}(E) \text{ primitive} \]

A basis of \text{End}(E)

1. Immediate.

2. Hard problem with a subexponential quantum complexity. [Arp+23]

Polynomial time given the factorisation of the discriminant of \(\mathbb{Z}[heta] \).
EndRing given an endomorphism

1. Immediate.

2. Hard problem with a subexponential quantum complexity. [Arp+23]
 Polynomial time given the factorisation of the discriminant of $\mathbb{Z}[\theta]$.

3. Known complexity under some heuristics. [Wes22a]

\[E \text{ and } \theta \in \text{End}(E) \setminus \mathbb{Z} \]

\[E \text{ and } \iota : \mathbb{Z}[\theta] \hookrightarrow \text{End}(E) \]

\[E \text{ and } \iota : \mathbb{Z}[\theta] \hookrightarrow \text{End}(E) \text{ primitive} \]

\[\mathcal{O}\text{-EndRing} \]

\[\text{A basis of End}(E) \]
EndRing given an endomorphism

1. E and $\theta \in \text{End}(E) \setminus \mathbb{Z}$

2. Primitivisation

 E and $\iota : \mathbb{Z}[\theta] \hookrightarrow \text{End}(E)$

3. \mathcal{O}-EndRing

 A basis of $\text{End}(E)$

① Immediate.

② Hard problem with a subexponential quantum complexity. [Arp+23]
 Polynomial time given the factorisation of the discriminant of $\mathbb{Z}[\theta]$.

③ Known complexity under some heuristics. [Wes22a]
 Rigorous complexity analysis.
What’s next?
What’s next?

- Constructive applications
What’s next?

- Constructive applications
- Attacks by climbing volcanoes of ℓ-isogenies
What’s next?

- Constructive applications
- Attacks by climbing volcanoes of ℓ-isogenies

Thanks for your attention!
https://eprint.iacr.org/2023/1448

