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Introduction



Notation

Let Fq be a finite field of characteristic p > 2.

Let A,B ∈ Fq such that 4A3 + 27B2 ̸= 0. We define an elliptic
curve E with:

E : y2 = x3 + Ax + B

There exists an additive group structure on the set of points on E .
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Curve-based cryptography

Let P ∈ E (Fq) with prime order r .

Secret: s ∈ Z/rZ

Public Key: sP ∈ E (Fq)

Discrete Logarithm Problem
Given P and sP , compute s.
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Pairings

Let G1,G2,GT be groups of exponent r . We call pairing an
application

e : G1 ×G2 −→ GT

which is:

▶ non-degenerate: ∀P ∈ G1, ∃Q ∈ G2, e(P,Q) ̸= 1
and ∀Q ∈ G2, ∃P ∈ G1, e(P,Q) ̸= 1.

▶ bilinear: ∀P1,P2 ∈ G1, ∀Q1,Q2 ∈ G2,
e(P1 + P2,Q1) = e(P1,Q1)e(P2,Q1) and
e(P1,Q1 + Q2) = e(P1,Q1)e(P1,Q2).

We denote the r -torsion of E by E [r ].
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Weil Pairing

Let µr be the set of r -th roots of unity in Fq. Then Fq(µr ) has
cardinal qk .

We call k the embedding degree of E (with respect to r).

Example:

eWeil : E [r ]× E [r ] −→ µr ⊂ Fqk
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Applications of pairings

Pairings have some interesting cryptographic applications:

▶ Identity-based encryption (Boneh–Franklin, 2003)

▶ Short signatures (Boneh–Lynn–Shacham, 2004)

▶ Flexible key-exchange protocols (Joux, 2004)
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DLP and pairings

In a cryptographic context, r is a prime such that log(r) ≈ log(q).

If a pairing can be computed quickly,

DLP in E [r ](Fq) −→ DLP in F×
qk

MOV-attack: when k is to small.
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Pairing-friendly curves

We want curves with k of a suitable size: pairing-friendly curves.

Pairing-friendly curves are rare, so we need to find ad hoc
constructions.
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Generation of pairing-friendly
curves



Describing PF curves with integers

Proposition
Fix k and D a squarefree integer. Let q, r and t be integers
satisfying:

▶ q is a prime (power).

▶ r is a prime.

▶ t is coprime to q.

▶ rh = q + 1 − t for some integer h.

▶ r divides Φk(t − 1) where Φk is the k-th cyclotomic polynomial.

▶ 4q − t2 = Dy2 for some integer y (CM equation).

Then there exists an ordinary curve E over Fqk with discriminant
D, trace t and a subgroup of order r with embedding degree k .
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Complete families of curves

Let Q, R , T , Y and H be polynomials in Q[X ]. Fix k and D. The
polynomials form a potential (complete) family of curves if:

▶ R is irreducible, non-constant, has positive leading coefficient.

▶ RH = Q + 1 − T .

▶ R divides Φk(T − 1).

▶ DY 2 = 4Q − T 2.

They form a (complete) family if they additionally satisfy:

▶ Q represents primes.

▶ Q, R , T , Y , H all take an integer value at a common integer.

Then you can generate q, r and t by evaluating at some x0 ∈ Z.
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KSS strategy

Algorithm 2.1: KSS method
Input: k > 0 and D > 0 squarefree.
Output: A potential family of elliptic curves.

1 Fix K a number field containing
√
−D and a primitive k-th root

of unity ζk .
2 Pick θ ∈ K such that Q(θ) = K .
3 Let R ∈ Q[X ] be the minimal polynomial of θ over Q.
4 Let T ∈ Q[X ] such that T (θ) = ζk + 1.
5 Let Y ∈ Q[X ] such that Y (θ) = ζk−1√

−D
.

6 Q = (T 2 + DY 2)/4 ∈ Q[X ]; H = (Q + 1 − T )/R ∈ Q[X ]

7 Return Q,R ,T ,Y ,H
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KSS16

Example:
The KSS16 family, k = 16, D = 1 and ρ = 5/4:

R = X 8 + 48x4 + 625,

T = 1
35(2X 5 + 41X + 35),

Y = 1
35

(
X 5 − 5X 4 + 38X − 120

)
,

Q = 1
980(X

10+2X 9+5X 8+48X 6+152X 5+240X 4+625X 2+

2398X + 3125).
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Good generators

By taking θ = αζk , α an element of F = Q(
√
−D), we generate

potential families of high quality. Let e be an integer such that
Q(θe) = F (for example, e = k), and define P1, P2, P3 in Q[X ]

such that:

- P1(θ
e) = 1/α.

- P2(θ
e) = 1/(α

√
−D).

- P3(θ
e) = 1/

√
−D.

Then:

- T (X ) = P1(X e)X + 1

- Y (X ) = P2(X e)X − P3(X e)
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Theoretical results

▶ We found a Q-vector space of good generators. We are able to
generate many families at any embedding degree k , for almost
any discriminant.

▶ Our method generalizes most previous works (not BN curves).

▶ The new families have larger denominators.
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New families

Our new curve GG22 for k = 22 and D = 7, from α = (1 +
√

7)/2:

T = (X 12 + 45X + 46)/46

Y = (X 12 − 4X 11 − 47X − 134)/322

R = (X 20 − X 19 − X 18 + 3X 17 − X 16 − 5X 15 + 7X 14 +

3X 13 − 17X 12 + 11X 11 + 23X 10 + 22X 9 − 68X 8 + 24X 7 +

112X 6 − 160X 5 − 64X 4 + 384X 3 − 256X 2 − 512X + 1024)/23

Q = (X 24 − X 23 + 2X 22 + 67X 13 + 94X 12 + 134X 11 +

2048X 2 + 5197X + 4096)/7406

Its ρ-value: ρ = degQ/ degR = 1.2 (previous was 1.3).
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New families

Our new GG20a curve for k = 20 and D = 1, from α = 1 − 2ζ4:

T = (2X 6 + 117X + 205)/205

Y = (X 6 − 5X 5 − 44X − 190)/205

R = (X 8 + 4X 7 + 11X 6 + 24X 5 + 41X 4 + 120X 3 + 275X 2 +

500X + 625)/25625

Q =

(X 12−2X 11+5X 10+76X 7+176X 6+380X 5+3125X 2+12938X
+15625)/33620

Its ρ-value: ρ = 1.5.
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New families

Our new GG20b curve for k = 20 and D = 1, from α = 1 + 2ζ4:

T = (−2X 6 + 117X + 205)/205

Y = (X 6 − 5X 5 + 44X + 190)/205

R = (X 8 − 4X 7 + 11X 6 − 24X 5 + 41X 4 − 120X 3 + 275X 2 −
500X + 625)/25625

Q =

(X 12−2X 11+5X 10−76X 7−176X 6−380X 5+3125X 2+12938X
+15625)/33620

Its ρ-value: ρ = 1.5.
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Conclusion

▶ For k = 16, k = 18, we obtain alternative choices of
comparable performances as the well-known KSS curves.

▶ For k = 20, we improve on the previous FST 6.4 curves with
parameters that are not vulnerable to a specific STNFS attack.

▶ For k = 22, we decrease the size of the field, allowing faster
computation.

▶ Sagemath code for generating families and
optimal ate pairing implementation.

▶ ArXiv
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