An Algebraic Point of View on the Generation of Pairing-Friendly Curves

Jean Gasnier ${ }^{1}$ Aurore Guillevic ${ }^{2}$
October 16, 2023
${ }^{1}$ CANARI, Université de Bordeaux, CNRS, Inria, Bordeaux INP, IMB
${ }^{2}$ CARAMBA, Université de Lorraine, CNRS, Inria, LORIA

Introduction

Notation

Let \mathbb{F}_{q} be a finite field of characteristic $p>2$.
Let $A, B \in \mathbb{F}_{q}$ such that $4 A^{3}+27 B^{2} \neq 0$. We define an elliptic curve E with:

$$
E: y^{2}=x^{3}+A x+B
$$

There exists an additive group structure on the set of points on E.

Curve-based cryptography

Let $P \in E\left(\mathbb{F}_{q}\right)$ with prime order r.
Secret: $s \in \mathbb{Z} / r \mathbb{Z}$
Public Key: $s P \in E\left(\mathbb{F}_{q}\right)$
Discrete Logarithm Problem
Given P and $s P$, compute s.

Pairings

Let $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ be groups of exponent r. We call pairing an application

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}
$$

which is:

- non-degenerate: $\forall P \in \mathbb{G}_{1}, \exists Q \in \mathbb{G}_{2}, e(P, Q) \neq 1$

$$
\text { and } \forall Q \in \mathbb{G}_{2}, \exists P \in \mathbb{G}_{1}, e(P, Q) \neq 1
$$

- bilinear: $\forall P_{1}, P_{2} \in \mathbb{G}_{1}, \forall Q_{1}, Q_{2} \in \mathbb{G}_{2}$,

$$
\begin{aligned}
& e\left(P_{1}+P_{2}, Q_{1}\right)=e\left(P_{1}, Q_{1}\right) e\left(P_{2}, Q_{1}\right) \text { and } \\
& e\left(P_{1}, Q_{1}+Q_{2}\right)=e\left(P_{1}, Q_{1}\right) e\left(P_{1}, Q_{2}\right)
\end{aligned}
$$

We denote the r-torsion of E by $E[r]$.

Weil Pairing

Let μ_{r} be the set of r-th roots of unity in $\overline{\mathbb{F}_{q}}$. Then $\mathbb{F}_{q}\left(\mu_{r}\right)$ has cardinal q^{k}.

We call k the embedding degree of E (with respect to r).
Example:

$$
e_{\text {Weil }}: E[r] \times E[r] \longrightarrow \mu_{r} \subset \mathbb{F}_{q^{k}}
$$

Applications of pairings

Pairings have some interesting cryptographic applications:

- Identity-based encryption (Boneh-Franklin, 2003)
- Short signatures (Boneh-Lynn-Shacham, 2004)
- Flexible key-exchange protocols (Joux, 2004)

DLP and pairings

In a cryptographic context, r is a prime such that $\log (r) \approx \log (q)$.
If a pairing can be computed quickly,

$$
\operatorname{DLP} \text { in } E[r]\left(\mathbb{F}_{q}\right) \longrightarrow \operatorname{DLP} \text { in } \mathbb{F}_{q^{k}}^{\times}
$$

MOV-attack: when k is to small.

Pairing-friendly curves

We want curves with k of a suitable size: pairing-friendly curves.
Pairing-friendly curves are rare, so we need to find ad hoc constructions.

Generation of pairing-friendly

curves

Describing PF curves with integers

Proposition

Fix k and D a squarefree integer. Let q, r and t be integers satisfying:

- q is a prime (power).
- r is a prime.
- t is coprime to q.
- $r h=q+1-t$ for some integer h.
- r divides $\Phi_{k}(t-1)$ where Φ_{k} is the k-th cyclotomic polynomial.
- $4 q-t^{2}=D y^{2}$ for some integer y (CM equation).

Then there exists an ordinary curve E over $\mathbb{F}_{q^{k}}$ with discriminant D, trace t and a subgroup of order r with embedding degree k.

Complete families of curves

Let Q, R, T, Y and H be polynomials in $\mathbb{Q}[X]$. Fix k and D. The polynomials form a potential (complete) family of curves if:

- R is irreducible, non-constant, has positive leading coefficient.
- $R H=Q+1-T$.
- R divides $\Phi_{k}(T-1)$.
- $D Y^{2}=4 Q-T^{2}$.

They form a (complete) family if they additionally satisfy:

- Q represents primes.
- Q, R, T, Y, H all take an integer value at a common integer.

Then you can generate q, r and t by evaluating at some $x_{0} \in \mathbb{Z}$.

KSS strategy

Algorithm 2.1: KSS method
Input: $k>0$ and $D>0$ squarefree.
Output: A potential family of elliptic curves.
1 Fix K a number field containing $\sqrt{-D}$ and a primitive k-th root of unity ζ_{k}.
2 Pick $\theta \in K$ such that $\mathbb{Q}(\theta)=K$.
3 Let $R \in \mathbb{Q}[X]$ be the minimal polynomial of θ over \mathbb{Q}.
4 Let $T \in \mathbb{Q}[X]$ such that $T(\theta)=\zeta_{k}+1$.
5 Let $Y \in \mathbb{Q}[X]$ such that $Y(\theta)=\frac{\zeta_{k}-1}{\sqrt{-D}}$.
$6 Q=\left(T^{2}+D Y^{2}\right) / 4 \in \mathbb{Q}[X] ; H=(Q+1-T) / R \in \mathbb{Q}[X]$
7 Return Q, R, T, Y, H

KSS16

Example:

The KSS16 family, $k=16, D=1$ and $\rho=5 / 4$:

$$
\begin{aligned}
& R=X^{8}+48 X^{4}+625 \\
& T=\frac{1}{35}\left(2 X^{5}+41 X+35\right) \\
& Y=\frac{1}{35}\left(X^{5}-5 X^{4}+38 X-120\right) \\
& Q=\frac{1}{980}\left(X^{10}+2 X^{9}+5 X^{8}+48 X^{6}+152 X^{5}+240 X^{4}+625 X^{2}+\right. \\
& 2398 X+3125)
\end{aligned}
$$

Good generators

By taking $\theta=\alpha \zeta_{k}, \alpha$ an element of $F=\mathbb{Q}(\sqrt{-D})$, we generate potential families of high quality. Let e be an integer such that $\mathbb{Q}\left(\theta^{e}\right)=F$ (for example, $e=k$), and define P_{1}, P_{2}, P_{3} in $\mathbb{Q}[X]$ such that:

- $P_{1}\left(\theta^{e}\right)=1 / \alpha$.
- $P_{2}\left(\theta^{e}\right)=1 /(\alpha \sqrt{-D})$.
- $P_{3}\left(\theta^{e}\right)=1 / \sqrt{-D}$.

Then:

- $T(X)=P_{1}\left(X^{e}\right) X+1$
- $Y(X)=P_{2}\left(X^{e}\right) X-P_{3}\left(X^{e}\right)$

Theoretical results

- We found a \mathbb{Q}-vector space of good generators. We are able to generate many families at any embedding degree k, for almost any discriminant.
- Our method generalizes most previous works (not BN curves).
- The new families have larger denominators.

New families

Our new curve GG22 for $k=22$ and $D=7$, from $\alpha=(1+\sqrt{7}) / 2$:

$$
\begin{aligned}
& T=\left(X^{12}+45 X+46\right) / 46 \\
& Y=\left(X^{12}-4 X^{11}-47 X-134\right) / 322 \\
& R=\left(X^{20}-X^{19}-X^{18}+3 X^{17}-X^{16}-5 X^{15}+7 X^{14}+\right. \\
& 3 X^{13}-17 X^{12}+11 X^{11}+23 X^{10}+22 X^{9}-68 X^{8}+24 X^{7}+ \\
& \left.112 X^{6}-160 X^{5}-64 X^{4}+384 X^{3}-256 X^{2}-512 X+1024\right) / 23 \\
& Q=\left(X^{24}-X^{23}+2 X^{22}+67 X^{13}+94 X^{12}+134 X^{11}+\right. \\
& \left.2048 X^{2}+5197 X+4096\right) / 7406
\end{aligned}
$$

Its ρ-value: $\rho=\operatorname{deg} Q / \operatorname{deg} R=1.2$ (previous was 1.3).

New families

Our new GG20a curve for $k=20$ and $D=1$, from $\alpha=1-2 \zeta_{4}$:

$$
\begin{aligned}
& T=\left(2 X^{6}+117 X+205\right) / 205 \\
& Y=\left(X^{6}-5 X^{5}-44 X-190\right) / 205 \\
& R=\left(X^{8}+4 X^{7}+11 X^{6}+24 X^{5}+41 X^{4}+120 X^{3}+275 X^{2}+\right. \\
& 500 X+625) / 25625 \\
& Q= \\
& \left(X^{12}-2 X^{11}+5 X^{10}+76 X^{7}+176 X^{6}+380 X^{5}+3125 X^{2}+12938 X\right. \\
& +15625) / 33620
\end{aligned}
$$

Its ρ-value: $\rho=1.5$.

New families

Our new GG20b curve for $k=20$ and $D=1$, from $\alpha=1+2 \zeta_{4}$:

$$
\begin{aligned}
& T=\left(-2 X^{6}+117 X+205\right) / 205 \\
& Y=\left(X^{6}-5 X^{5}+44 X+190\right) / 205 \\
& R=\left(X^{8}-4 X^{7}+11 X^{6}-24 X^{5}+41 X^{4}-120 X^{3}+275 X^{2}-\right. \\
& 500 X+625) / 25625 \\
& Q= \\
& \left(X^{12}-2 X^{11}+5 X^{10}-76 X^{7}-176 X^{6}-380 X^{5}+3125 X^{2}+12938 X\right. \\
& +15625) / 33620
\end{aligned}
$$

Its ρ-value: $\rho=1.5$.

Conclusion

- For $k=16, k=18$, we obtain alternative choices of comparable performances as the well-known KSS curves.
- For $k=20$, we improve on the previous FST 6.4 curves with parameters that are not vulnerable to a specific STNFS attack.
- For $k=22$, we decrease the size of the field, allowing faster computation.
- Sagemath code for generating families and optimal ate pairing implementation.
- ArXiv

References i

Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pairings. Journal of Cryptology, 32(4):1298-1336, October 2019.

图 Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil pairing. SIAM Journal on Computing, 32(3):586-615, 2003.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of Cryptology, 17(4):297-319, September 2004.

References ii

- David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology, 23(2):224-280, April 2010.

围 Aurore Guillevic.
Pairing-friendly curves.
https://members.loria.fr/AGuillevic/
pairing-friendly-curves/, 92020.
Last updated October 9, 2020.

References iii

围 Aurore Guillevic.
A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of
LNCS, pages 535-564. Springer, Heidelberg, May 2020.
圊 Aurore Guillevic and Shashank Singh.
On the alpha value of polynomials in the tower number field sieve algorithm.
Mathematical Cryptology, 1(1):1-39, Feb. 2021.

References iv

圊 Antoine Joux.
A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology, 17(4):263-276, September 2004.

Ezekiel J. Kachisa, Edward F. Schaefer, and Michael Scott.
Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field.
In Steven D. Galbraith and Kenneth G. Paterson, editors,
PAIRING 2008, volume 5209 of LNCS, pages 126-135. Springer, Heidelberg, September 2008.

References v

Taechan Kim and Razvan Barbulescu.
Extended tower number field sieve: A new complexity for the medium prime case.
In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 543-571.
Springer, Heidelberg, August 2016.
R Alfred Menezes, Tasuaki Okamoto, and Scott Vanstone.
Reducing elliptic curve logarithms to logarithms in a finite field.
In STOC '91: Proceedings of the twenty-third annual ACM symposium on Theory of Computing, pages 80-89, 1991. https://doi.org/10.1145/103418.103434.

