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Introduction



Notation

Let IF; be a finite field of characteristic p > 2.

Let A, B € Fy such that 4A3 + 2782 2 0. We define an elliptic

curve E with:
E: y’=x>+Ax+B

There exists an additive group structure on the set of points on E.



Curve-based cryptography

Let P € E(F,) with prime order r.
Secret: s € Z/rZ
Public Key: sP € E(Fq)

Discrete Logarithm Problem
Given P and sP, compute s.



Pairings

Let G1,Go, Gt be groups of exponent r. We call pairing an
application
@ : Gl X Gz — GT

which is:
» non-degenerate: VP € G1,3Q € Gy, e(P,Q) #1
and VQ € G,3P € Gy1,e(P, Q) # 1.

» bilinear: VPl, P> € Gl,VQl, Q2 S GQ,
e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1) and
e(P1, Q1 + Q) = e(P1, Qi)e(P1, Qo).

We denote the r-torsion of E by E[r].



Weil Pairing

Let p, be the set of r-th roots of unity in Fy. Then Fy(u,) has
cardinal g*.

We call k the embedding degree of E (with respect to r).

eweil © E[r] X E[r] — pr C Ty



Applications of pairings

Pairings have some interesting cryptographic applications:

» ldentity-based encryption (Boneh—Franklin, 2003)
» Short signatures (Boneh—Lynn—Shacham, 2004)
» Flexible key-exchange protocols (Joux, 2004)



DLP and pairings

In a cryptographic context, r is a prime such that log(r) ~ log(q).

If a pairing can be computed quickly,
DLP in E[r](Fq) — DLP in ]F;k

MOV-attack: when k is to small.



Pairing-friendly curves

We want curves with k of a suitable size: pairing-friendly curves.

Pairing-friendly curves are rare, so we need to find ad hoc
constructions.



Generation of pairing-friendly
curves



Describing PF curves with integers

Proposition
Fix k and D a squarefree integer. Let g, r and t be integers
satisfying:
» g is a prime (power).
> ris a prime.
» tis coprime to g.
» rh=q+ 1—t for some integer h.
» r divides ®4(t — 1) where &, is the k-th cyclotomic polynomial.
» 4q — t> = Dy? for some integer y (CM equation).

Then there exists an ordinary curve E over F « with discriminant
D, trace t and a subgroup of order r with embedding degree k.



Complete families of curves
Let Q, R, T, Y and H be polynomials in Q[X]. Fix k and D. The
polynomials form a potential (complete) family of curves if:

» R is irreducible, non-constant, has positive leading coefficient.
» RH=Q+1-T.

» R divides &, (T —1).

» DY?=4Q - T2

They form a (complete) family if they additionally satisfy:

» Q@ represents primes.

> Q, R, T, Y, H all take an integer value at a common integer.

Then you can generate g, r and t by evaluating at some xg € Z.
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KSS strategy

a A~ W N

[=)]

Algorithm 2.1: KSS method
Input: kK > 0 and D > 0 squarefree.

Output: A potential family of elliptic curves.

Fix K a number field containing v/—D and a primitive k-th root
of unity (.

Pick 0 € K such that Q(0) = K.

Let R € Q[X] be the minimal polynomial of 6 over Q.

Let T € Q[X] such that T(6) = {x + 1.

Let Y € Q[X] such that Y (0) = f/k%.
Q=(T2+DY?)/4cQX]; H=(Q+1—-T)/R e Q[X]

Return Q,R, T,Y ,H
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KSS16

The KSS16 family, k =16, D =1 and p = 5/4:

R = X8 + 48x* + 625,
T = 3(2X® + 41X + 35),
Y = 3 (X5 —5X* +38X — 120),

Q = ga5(X10+2X% +5X8 4+ 48X° +152X5 +240X* 4 625X2 +

2398X + 3125).
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Good generators

By taking 6 = a(y, « an element of F = Q(+/—D), we generate
potential families of high quality. Let e be an integer such that
Q(6°¢) = F (for example, e = k), and define P1, P>, P53 in Q[X]
such that:

- P1(6°) =1/a.

- Py(0¢) =1/(a/—D).

- P3(0¢) = 1/+/-D.

Then:
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Theoretical results

» We found a Q-vector space of good generators. We are able to

generate many families at any embedding degree k, for almost
any discriminant.

» Our method generalizes most previous works (not BN curves).

» The new families have larger denominators.
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New families

Our new curve GG22 for k =22 and D =7, from ao = (1 + \ﬁ)/Q:

T = (X' 4+ 45X + 46)/46

Y = (X12 —4X11 — 47X — 134)/322

R = (X20 _ X19 _ X18 + 3X17 _ X16 _ 5X15 + 7X14 +

3X13 —17X12 4 11X +23X10 - 22X° — 68X8 + 24X7 +
112X° — 160X°> — 64X+ + 384X3 — 256 X2 — 512X + 1024)/23
Q = (X?* — X2 +2X22 + 67X13 + 94X12 4 134X11 +
2048X? 4 5197X + 4096) /7406

Its p-value: p = deg Q/deg R = 1.2 (previous was 1.3).
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New families

Our new GG20a curve for k =20 and D =1, from a = 1 — 2{4:

T = (2X° 4+ 117X + 205)/205

Y = (X® —5X5 — 44X —190)/205

R = (X% 4 4X" + 11X° 4 24X° + 41X* + 120X3 + 275X? +
500X + 625) /25625

Q=
(X12-2X11 1 5X10476 X7 +176X5+380X5+3125X2+12938X

+15625)/33620

Its p-value: p = 1.5.
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New families

Our new GG20b curve for k =20 and D =1, from a = 1 + 2{y:

T = (—2X® + 117X + 205)/205

Y = (X® — 5X° + 44X + 190)/205

R = (X% —4X" +11X°% — 24X5 + 41X* — 120X3 + 275X2 —
500X + 625) /25625

Q=
(X12—2X11 4 5X10_76X7—176X5—380X5+3125X2+12938X

+15625)/33620

Its p-value: p = 1.5.
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Conclusion

» For k = 16, k = 18, we obtain alternative choices of
comparable performances as the well-known KSS curves.

» For k =20, we improve on the previous FST 6.4 curves with
parameters that are not vulnerable to a specific STNFS attack.

» For k = 22, we decrease the size of the field, allowing faster

computation.

» Sagemath code for generating families and

optimal ate pairing implementation.

» ArXiv
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https://gitlab.inria.fr/jgasnier/subfield-method
https://gitlab.inria.fr/guillevi/pairings-on-gasnier-g-curves
https://hal.science/hal-04205681
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