

## Boissier Cryptanalysis of Elisabeth-4

Henri Gilbert ${ }^{1,2}$, Rachelle Heim Boissier ${ }^{2}$, Jérémy Jean ${ }^{1}$, Jean-René Reinhard ${ }^{1}$ ${ }^{1}$ ANSSI, ${ }^{2}$ UVSQ

Journées C2 2023, Najac

## Introduction

About Elisabeth-4

- Stream cipher published at ASIACRYPT 2022.

■ Designed by Cosseron, Hoffman, Méaux, Standaert.

- Tailored for Fully Homomorphic Encryption (FHE) use cases.
- 128-bit security claim.

Our contribution (ASIACRYPT 2023)

- Full break of Elisabeth-4.

■ Linearization attack that exploits:

- Sparsity of the linear system;
- Rank defects;
- Filtering techniques.


## Plan

## 1 Introduction

## 2 Specification of Elisabeth-4

3 Basic linearisation

4 Exploiting the rank defect

5 Filtering collected equations

## Stream ciphers



A stream cipher uses an IV and a secret key to produce a keystream sequence of arbitrary length.

## Stream ciphers



A stream cipher uses an IV and a secret key to produce a keystream sequence of arbitrary length.

- The attacker has access to the keystream sequence;
- The IV is public.


## Stream ciphers



A classical cryptanalysis technique: Linearisation

## Stream ciphers



A classical cryptanalysis technique: Linearisation

- consider non-linear equations $Z_{i}=F_{i}\left(K_{0}, \cdots, K_{n-1}\right)$.


## Stream ciphers



A classical cryptanalysis technique: Linearisation

- consider non-linear equations $Z_{i}=F_{i}\left(K_{0}, \cdots, K_{n-1}\right)$.
- view them as linear equations: view each monomial in the key bits as an independant variable.


## Stream ciphers



A classical cryptanalysis technique: Linearisation

- consider non-linear equations $Z_{i}=F_{i}\left(K_{0}, \cdots, K_{n-1}\right)$.
- view them as linear equations: view each monomial in the key bits as an independant variable.
- solve the linear system.


## Hybrid Homomorphic Encryption



## Server

- Encrypts $D$ under $K$ using symm. enc. algo
- Encrypts $K$ under $P K$ using hom. enc. algo

$$
\left(E_{P K}^{\text {hom }}(K), E_{K}(D)\right)
$$

- Transciphering:

Transforms $E_{K}(D)$ into $E_{P K}^{\text {hom }}(D)$ using $E_{P K}^{\text {hom }}(K)$

- Performs computations homomorphically. Obtains $R$
- Decrypts $R$ using $S K$, and obtains the result of the computation
$\left(E_{P K}^{h o m}(K), E_{K}(D)\right)$


## Symmetric cryptography for FHE

## Encryption algorithms for FHE

■ Classical sym. enc. algorithms (e.g. AES): not efficient in FHE.
■ This led to the design of new algorithms:
Ex: LowMC [ARSTZ16], Kreyvium [CCFLNPS16], FLIP [CMJS16]
■ Elisabeth-4 is a recent example (ASIACRYPT2022).

Elisabeth-4 is tailored for practically relevant FHE applications (e.g. machine learning algorithms).

## Elisabeth-4 FHE dedicated features

Elisabeth-4 is...

- specified using operations over $\mathbb{Z}_{q}$ with $q=2^{4}=16$;
- uses negacyclic look-up tables: $\forall X \in \mathbb{Z}_{16}, S\left[X+2^{3}\right]=S[-X]$;

■ slightly different structure as compared to classical stream ciphers.


Elisabeth-4


## Plan

## 1 Introduction

## 2 Specification of Elisabeth-4

## 3 Basic linearisation

4 Exploiting the rank defect

5 Filtering collected equations

Elisabeth-4: overall structure


## The filtering function $f$



Structure of $f$

- 12 parallel calls to a 5-to- 1 function $g$.
- $g\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)=h\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+X_{5}$
- $h$ is non-linear.
- ingredients: $\boxplus$ and negacyclic look-up tables.


## Plan

## 1 Introduction

2 Specification of Elisabeth-4

3 Basic linearisation

4 Exploiting the rank defect

5 Filtering collected equations

## Basic linearisation in $\mathbb{F}_{2}$

## The filtering function $f$



## Basic linearisation in $\mathbb{F}_{2}$

## The filtering function $f$



We focus on the LSB of the output nibble
$\rightarrow$ On the LSB, the addition in $\mathbb{Z}_{16}$ acts as a XOR

## Basic linearisation in $\mathbb{F}_{2}$

## The filtering function $f$



How many monomials can appear in the ANF of the LSB*?

* regardless of the choice of subset/permutation/whitening!


## Bounding the number of monomials



1 For any 4-tuple $a<b<c<d$ of key register positions, the number of monomials in all variations $\tilde{h}_{\sigma, M}$ of $h$ is bounded by $2^{16}$.

## Bounding the number of monomials



1 For any 4-tuple $a<b<c<d$ of key register positions, the number of monomials in all variations $\tilde{h}_{\sigma, M}$ of $h$ is bounded by $2^{16}$.

2 How many possible choices of ( $K_{a}, K_{b}, K_{c}, K_{d}$ ) in the 256-nibble key register?

## Bounding the number of monomials



1 For any 4-tuple $a<b<c<d$ of key register positions, the number of monomials in all variations $\tilde{h}_{\sigma, M}$ of $h$ is bounded by $2^{16}$.

2 How many possible choices of ( $K_{a}, K_{b}, K_{c}, K_{d}$ ) in the 256-nibble key register?

Total number of monomials $\leq \mu=\binom{256}{4} 2^{16}$.

## Building a linearization matrix

## Linearization matrix A

- $\binom{256}{4} 2^{16} \approx 2^{43.4}$ columns.
- Each set of $2^{16}$ columns corresponds to the monomials of a ( $K_{a}, K_{b}, K_{c}, K_{d}$ ), $a<b<c<d$.



## Building a linearization matrix

At each iteration of the stream cipher, the XOF outputs

- a subset and a permutation $\rightarrow$ selects 12 sets of $2^{16}$ columns;
- a permutation and a whitening vector $\rightarrow$ used to compute the ANF corresponding to this XOF output.
$\binom{256}{4}$



## Resulting linearization attack

## Basic linearization attack

- After at most $\mu=\binom{256}{4} \cdot 2^{16} \approx 2^{43.4}$ iterations, the linear system is solved in $\mu^{\omega}$ operations.

■ Straightforward Gaussian elimination, $\omega=3, T \approx 2^{131}$ operations.
■ Data complexity is $\mu$ nibbles.

Crucial observation: $\mathbf{A}$ is sparse.
$\rightarrow$ at most $s=12 \cdot 2^{16} \ll \mu$ active bits on each row.
■ Memory complexity: $s \cdot \mu \approx 2^{63}$ bits.

- Sparse linear algebra: Coppersmith's Block-Wiedemann algorithm.

■ Improved time complexity: $\mu^{3} \rightarrow \frac{6}{64} \cdot s \cdot \mu^{2}$.

- $T \approx 2^{103}$ operations.


## Plan

## 1 Introduction

2 Specification of Elisabeth-4

3 Basic linearisation

4 Exploiting the rank defect

5 Filtering collected equations

## Identification of a rank defect



We pre-computed and stored the ANF of $2^{16} \cdot 4$ ! variations $\tilde{h}_{\sigma, M}$ of $h$ constructed by

- restricting the output to the LSB;
- considering the 4 ! possible orderings of the variables;
- adding the $2^{16}$ possible masks.

We computed the rank and obtained

$$
\left.\operatorname{dim}\left(<\tilde{h}_{M, i}\right\rangle\right) \leq \operatorname{dim}\left(<\tilde{h}_{M, \sigma}>\right)=\rho=8705 \ll 2^{16} .
$$

## Explaining the rank defect (theoretically)

## Our results

$■$ We prove a theoretical bound $2^{14.01}$, with $\rho=2^{13.08}<2^{14.01} \ll 2^{16}$.

- The proof is partially elegant.


## Explaining the rank defect (theoretically)

## Our results

■ We prove a theoretical bound $2^{14.01}$, with $\rho=2^{13.08}<2^{14.01} \ll 2^{16}$.

- The proof is partially elegant.

Some algebraic parts of the proof are not too elegant... but it's all fun, check out the paper :)

## Explaining the rank defect (theoretically)

## Our results

■ We prove a theoretical bound $2^{14.01}$, with $\rho=2^{13.08}<2^{14.01} \ll 2^{16}$.

- The proof is partially elegant.

Some algebraic parts of the proof are not too elegant... but it's all fun, check out the paper :)

## Our analysis

- The rank defect is caused by HHE-dedicated features.
- Interaction between

■ Negacyclic look-up tables;
■ Addition in $\mathbb{Z}_{16}$.

## Explaining the rank defect (theoretically)

## Our results

$■$ We prove a theoretical bound $2^{14.01}$, with $\rho=2^{13.08}<2^{14.01} \ll 2^{16}$.

- The proof is partially elegant.

Some algebraic parts of the proof are not too elegant... but it's all fun, check out the paper :)

## Our analysis

■ The rank defect is caused by HHE-dedicated features.

- Interaction between

■ Negacyclic look-up tables;
■ Addition in $\mathbb{Z}_{16}$.

We also identify and fully prove a degree defect:

$$
\text { For any } I V, i, \operatorname{deg}\left(\tilde{h}_{M, i}\right) \leq 12<16
$$

## Exploiting the rank defect

Writing each ANF in the basis of size $\rho \ldots$
$\binom{256}{4}$


## Exploiting the rank defect

- A has now only $\mu^{\prime}=\binom{256}{4} \rho$ columns
- Each row has at most $s^{\prime}=12 \cdot \rho$ active bits.



## Improved attack

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^{2}$

■ Data complexity: $\mu$
■ Memory complexity: $s \cdot \mu$

## Improved attack

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^{2} \rightarrow \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \approx 2^{94}$ operations.

■ Data complexity: $\mu$
■ Memory complexity: $s \cdot \mu$

## Improved attack

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^{2} \rightarrow \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \approx 2^{94}$ operations.
- Data complexity: $\mu \rightarrow \mu^{\prime}=2^{41}$ nibbles.

■ Memory complexity: $s \cdot \mu$

## Improved attack

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^{2} \rightarrow \frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2} \approx 2^{94}$ operations.

■ Data complexity: $\mu \rightarrow \mu^{\prime}=2^{41}$ nibbles.
■ Memory complexity: $s \cdot \mu \rightarrow s^{\prime} \cdot \mu^{\prime}=2^{57}$ bits.

## 1 Introduction

2 Specification of Elisabeth-4

3 Basic linearisation

4 Exploiting the rank defect

5 Filtering collected equations

## Considering only convenient XOF outputs



Total number of monomials: $\binom{256}{4} \rho$. .

## Considering only convenient XOF outputs



Total number of monomials: $\mu_{N}=\binom{N}{4} \rho$.

## Improved attack

The nibbles are all selected in a subset of size $N$ with probability $p_{N} \approx\binom{N}{48} /\binom{256}{48} \rightarrow$ data complexity: $\mu_{N} / p_{N}$ nibbles.

Trade-off: $N=137$.

## Known-IV attack

■ Data complexity: $\mu^{\prime}=2^{41} \rightarrow \mu_{N} / p_{N}=2^{87}$ nibbles.

- Time complexity: $\frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2}=2^{94} \rightarrow \frac{12}{64} \cdot s^{\prime} \cdot\left(\mu_{N}\right)^{2}=2^{88}$ operations.
■ Memory complexity: $s^{\prime} \cdot \mu^{\prime}=2^{57} \rightarrow s^{\prime} \cdot \mu_{N}=2^{54}$ bits.


## Improved attack

The nibbles are all selected in a subset of size $N$ with probability $p_{N} \approx\binom{N}{48} /\binom{256}{48} \rightarrow$ data complexity: $\mu_{N} / p_{N}$ nibbles.

Trade-off: $N=137$.

## Known-IV attack

■ Data complexity: $\mu^{\prime}=2^{41} \rightarrow \mu_{N} / p_{N}=2^{87}$ nibbles.

- Time complexity: $\frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2}=2^{94} \rightarrow \frac{12}{64} \cdot s^{\prime} \cdot\left(\mu_{N}\right)^{2}=2^{88}$ operations.
■ Memory complexity: $s^{\prime} \cdot \mu^{\prime}=2^{57} \rightarrow s^{\prime} \cdot \mu_{N}=2^{54}$ bits.


## Improved attack

The nibbles are all selected in a subset of size $N$ with probability $p_{N} \approx\binom{N}{48} /\binom{256}{48} \rightarrow$ data complexity: $\mu_{N} / p_{N}$ nibbles.

Trade-off: $N=137$.

## Known-IV attack

■ Data complexity: $\mu^{\prime}=2^{41} \rightarrow \mu_{N} / p_{N}=2^{87}$ nibbles.

- Time complexity: $\frac{6}{64} \cdot s^{\prime} \cdot\left(\mu^{\prime}\right)^{2}=2^{94} \rightarrow \frac{12}{64} \cdot s^{\prime} \cdot\left(\mu_{N}\right)^{2}=2^{88}$ operations.
■ Memory complexity: $s^{\prime} \cdot \mu^{\prime}=2^{57} \rightarrow s^{\prime} \cdot \mu_{N}=2^{54}$ bits.


## Chosen-IV attack

■ Pre-compute convenient IVs, then query these IVs only.

- Improved data complexity: $2^{37}$ nibbles.


## Small-scale experiments

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4

## Toy Elisabeth-4

■ Operates on $\mathbb{Z}_{8}$ rather than $\mathbb{Z}_{16}$.
■ Subset selects 10 key nibbles among 32.

- Still has a rank defect, with $\rho=254 \ll 2^{12}$.


## Implemented attack

- Two main things we checked:

■ Block-Wiedemann allows to solve an Elisabeth-4 type linear system.

- Solving the system allows to recover the key.

■ BW implem. from CADO-NFS project for integer factorization.
■ With these parameters, the attack required 44 hours.

# Thank you for your attention :) 

## Questions?

