

Boissier Cryptanalysis of Elisabeth-4

Henri Gilbert^{1,2}, <u>Rachelle Heim Boissier</u>², Jérémy Jean¹, Jean-René Reinhard¹ ¹ANSSI, ²UVSQ

Journées C2 2023, Najac

Introduction

About Elisabeth-4

- Stream cipher published at ASIACRYPT 2022.
- Designed by Cosseron, Hoffman, Méaux, Standaert.
- Tailored for Fully Homomorphic Encryption (FHE) use cases.
- 128-bit security claim.

Our contribution (ASIACRYPT 2023)

- Full break of Elisabeth-4.
- Linearization attack that exploits:
 - Sparsity of the linear system;
 - Rank defects;
 - Filtering techniques.

1 Introduction

- 2 Specification of Elisabeth-4
- 3 Basic linearisation
- 4 Exploiting the rank defect
- 5 Filtering collected equations

A stream cipher uses an IV and a secret key to produce a keystream sequence of arbitrary length.

A stream cipher uses an IV and a secret key to produce a keystream sequence of arbitrary length.

- The attacker has access to the keystream sequence;
- The *IV* is public.

A classical cryptanalysis technique: Linearisation

A classical cryptanalysis technique: Linearisation

• consider non-linear equations $Z_i = F_i(K_0, \cdots, K_{n-1})$.

A classical cryptanalysis technique: Linearisation

- consider non-linear equations $Z_i = F_i(K_0, \cdots, K_{n-1})$.
- view them as linear equations: view each **monomial** in the key bits as an independant variable.

A classical cryptanalysis technique: Linearisation

- consider non-linear equations $Z_i = F_i(K_0, \cdots, K_{n-1})$.
- view them as linear equations: view each monomial in the key bits as an independant variable.
- solve the linear system.

Hybrid Homomorphic Encryption

Symmetric cryptography for FHE

Encryption algorithms for FHE

- Classical sym. enc. algorithms (e.g. AES): not efficient in FHE.
- This led to the design of new algorithms:
 Ex: LowMC [ARSTZ16], Kreyvium [CCFLNPS16], FLIP [CMJS16]
- **Elisabeth-4** is a recent example (ASIACRYPT2022).

Elisabeth-4 is tailored for **practically relevant FHE applications** (e.g. machine learning algorithms).

Elisabeth-4 FHE dedicated features

Elisabeth-4 is...

- specified using operations over \mathbb{Z}_q with $q = 2^4 = 16$;
- uses *negacyclic look-up tables*: $\forall X \in \mathbb{Z}_{16}$, $S[X + 2^3] = S[-X]$;
- slightly different structure as compared to classical stream ciphers.

1 Introduction

2 Specification of Elisabeth-4

3 Basic linearisation

- 4 Exploiting the rank defect
- 5 Filtering collected equations

Elisabeth-4: overall structure

The filtering function *f*

Structure of *f*

- 12 parallel calls to a 5-to-1 function g.
- $g(X_1, X_2, X_3, X_4, X_5) = h(X_1, X_2, X_3, X_4) + X_5$
- h is non-linear.
 - \blacksquare ingredients: \boxplus and negacyclic look-up tables.

1 Introduction

2 Specification of Elisabeth-4

3 Basic linearisation

- 4 Exploiting the rank defect
- 5 Filtering collected equations

Basic linearisation in \mathbb{F}_2

The filtering function *f*

Basic linearisation in \mathbb{F}_2

The filtering function *f*

 \rightarrow On the LSB, the addition in \mathbb{Z}_{16} acts as a XOR

Basic linearisation in \mathbb{F}_2

The filtering function *f*

How many monomials can appear in the ANF of the LSB*? *regardless of the choice of subset/permutation/whitening!

Bounding the number of monomials

I For any 4-tuple a < b < c < d of key register positions, the number of monomials in **all** variations $\tilde{h}_{\sigma,M}$ of *h* is bounded by 2¹⁶.

Bounding the number of monomials

- **1** For any 4-tuple a < b < c < d of key register positions, the number of monomials in **all** variations $\tilde{h}_{\sigma,M}$ of *h* is bounded by 2¹⁶.
- 2 How many possible choices of (K_a, K_b, K_c, K_d) in the 256-nibble key register?
 (²⁵⁶)

Bounding the number of monomials

- I For any 4-tuple a < b < c < d of key register positions, the number of monomials in **all** variations $\tilde{h}_{\sigma,M}$ of *h* is bounded by 2¹⁶.
- 2 How many possible choices of (K_a, K_b, K_c, K_d) in the 256-nibble key register?
 (²⁵⁶)

Total number of monomials $\leq \mu = \binom{256}{4} 2^{16}$.

Building a linearization matrix

Linearization matrix A

- $\binom{256}{4} 2^{16} \approx 2^{43.4}$ columns.
- Each set of 2¹⁶ columns corresponds to the monomials of a (*K_a*, *K_b*, *K_c*, *K_d*), *a* < *b* < *c* < *d*.

Building a linearization matrix

At each iteration of the stream cipher, the XOF outputs

- a subset and a permutation \rightarrow selects 12 sets of 2¹⁶ columns;
- a **permutation** and a **whitening vector** → used to compute the ANF corresponding to this XOF output.

Resulting linearization attack

Basic linearization attack

- After at most $\mu = \binom{256}{4} \cdot 2^{16} \approx 2^{43.4}$ iterations, the linear system is solved in μ^{ω} operations.
 - Straightforward Gaussian elimination, $\omega = 3$, $T \approx 2^{131}$ operations.
- **Data complexity** is μ nibbles.

Crucial observation: A is sparse.

 \rightarrow at most $\textit{s} = 12 \cdot 2^{16} \ll \mu$ active bits on each row.

- Memory complexity: $s \cdot \mu \approx 2^{63}$ bits.
- Sparse linear algebra: Coppersmith's Block-Wiedemann algorithm.
- Improved time complexity: $\mu^3 \rightarrow \frac{6}{64} \cdot s \cdot \mu^2$.
- $T \approx 2^{103}$ operations.

1 Introduction

2 Specification of Elisabeth-4

3 Basic linearisation

4 Exploiting the rank defect

5 Filtering collected equations

Identification of a rank defect

We pre-computed and stored the ANF of $2^{16}\cdot 4!$ variations $\tilde{h}_{\sigma,M}$ of h constructed by

- restricting the output to the LSB;
- considering the 4! possible orderings of the variables;
- adding the 2¹⁶ possible masks.

We computed the rank and obtained

$$\dim\left(<\tilde{h}_{IV,i}>\right)\leq\dim\left(<\tilde{h}_{M,\sigma}>\right)=\rho=8705\ll2^{16}\,.$$

Our results

- We prove a theoretical bound $2^{14.01}$, with $\rho = 2^{13.08} < 2^{14.01} \ll 2^{16}$.
- The proof is *partially* elegant.

Our results

- We prove a theoretical bound $2^{14.01}$, with $\rho = 2^{13.08} < 2^{14.01} \ll 2^{16}$.
- The proof is *partially* elegant.

Some algebraic parts of the proof are not too elegant... but it's all fun, check out the paper :)

Our results

- We prove a theoretical bound $2^{14.01}$, with $\rho = 2^{13.08} < 2^{14.01} \ll 2^{16}$.
- The proof is *partially* elegant.

Some algebraic parts of the proof are not too elegant... but it's all **fun**, check out the paper :)

Our analysis

- The rank defect is caused by **HHE-dedicated features**.
- Interaction between
 - Negacyclic look-up tables;
 - Addition in \mathbb{Z}_{16} .

Our results

- We prove a theoretical bound $2^{14.01}$, with $\rho = 2^{13.08} < 2^{14.01} \ll 2^{16}$.
- The proof is *partially* elegant.

Some algebraic parts of the proof are not too elegant... but it's all **fun**, check out the paper :)

Our analysis

- The rank defect is caused by **HHE-dedicated features**.
- Interaction between
 - Negacyclic look-up tables;
 - Addition in \mathbb{Z}_{16} .

We also identify and *fully* prove a **degree** defect:

$$\text{For any } IV, i, \ \, \deg\left(\tilde{h}_{IV,i}\right) \leq 12 < 16\,.$$

Exploiting the rank defect

Writing each ANF in the basis of size $\rho...$

Exploiting the rank defect

• A has now only $\mu' = \binom{256}{4}\rho$ columns

• Each row has at most $s' = 12 \cdot \rho$ active bits.

- **Time complexity:** $\frac{6}{64} \cdot s \cdot \mu^2$
- \blacksquare Data complexity: μ
- Memory complexity: $s \cdot \mu$

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^2 \rightarrow \frac{6}{64} \cdot s' \cdot (\mu')^2 \approx 2^{94}$ operations.
- **Data complexity:** μ
- Memory complexity: $s \cdot \mu$

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^2 \rightarrow \frac{6}{64} \cdot s' \cdot (\mu')^2 \approx 2^{94}$ operations.
- **Data complexity:** $\mu \rightarrow \mu' = 2^{41}$ nibbles.
- Memory complexity: $s \cdot \mu$

- Time complexity: $\frac{6}{64} \cdot s \cdot \mu^2 \rightarrow \frac{6}{64} \cdot s' \cdot (\mu')^2 \approx 2^{94}$ operations.
- **Data complexity:** $\mu \rightarrow \mu' = 2^{41}$ nibbles.
- Memory complexity: $s \cdot \mu \rightarrow s' \cdot \mu' = 2^{57}$ bits.

1 Introduction

- 2 Specification of Elisabeth-4
- 3 Basic linearisation
- 4 Exploiting the rank defect
- 5 Filtering collected equations

Considering only convenient XOF outputs

Total number of monomials: $\binom{256}{4}\rho$.

Considering only convenient XOF outputs

Total number of monomials: $\mu_N = {\binom{N}{4}}\rho$.

The nibbles are all selected in a subset of size N with probability $p_N \approx {N \choose 48} / {256 \choose 48} \rightarrow$ data complexity: μ_N / p_N nibbles.

Trade-off: N = 137.

Known-IV attack

- **Data complexity**: $\mu' = 2^{41} \rightarrow \mu_N / p_N = 2^{87}$ nibbles.
- Time complexity: $\frac{6}{64} \cdot s' \cdot (\mu')^2 = 2^{94} \rightarrow \frac{12}{64} \cdot s' \cdot (\mu_N)^2 = 2^{88}$ operations.
- Memory complexity: $s' \cdot \mu' = 2^{57} \rightarrow s' \cdot \mu_N = 2^{54}$ bits.

The nibbles are all selected in a subset of size N with probability $p_N \approx {N \choose 48} / {256 \choose 48} \rightarrow$ data complexity: μ_N / p_N nibbles.

Trade-off: N = 137.

Known-IV attack

- **Data complexity**: $\mu' = 2^{41} \rightarrow \mu_N / p_N = 2^{87}$ nibbles.
- Time complexity: $\frac{6}{64} \cdot s' \cdot (\mu')^2 = 2^{94} \rightarrow \frac{12}{64} \cdot s' \cdot (\mu_N)^2 = 2^{88}$ operations.
- Memory complexity: $s' \cdot \mu' = 2^{57} \rightarrow s' \cdot \mu_N = 2^{54}$ bits.

The nibbles are all selected in a subset of size N with probability $p_N \approx {N \choose 48} / {256 \choose 48} \rightarrow$ data complexity: μ_N / p_N nibbles.

Trade-off: N = 137.

Known-IV attack

- **Data complexity**: $\mu' = 2^{41} \rightarrow \mu_N / p_N = 2^{87}$ nibbles.
- Time complexity: $\frac{6}{64} \cdot s' \cdot (\mu')^2 = 2^{94} \rightarrow \frac{12}{64} \cdot s' \cdot (\mu_N)^2 = 2^{88}$ operations.
- Memory complexity: $s' \cdot \mu' = 2^{57} \rightarrow s' \cdot \mu_N = 2^{54}$ bits.

Chosen-IV attack

- Pre-compute convenient IVs, then query these IVs only.
- Improved data complexity: 2³⁷ nibbles.

Small-scale experiments

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4

Toy Elisabeth-4

- Operates on \mathbb{Z}_8 rather than \mathbb{Z}_{16} .
- **Subset** selects 10 key nibbles among 32.
- Still has a rank defect, with $\rho = 254 \ll 2^{12}$.

Implemented attack

- Two main things we checked:
 - Block-Wiedemann allows to solve an Elisabeth-4 type linear system.
 - Solving the system allows to recover the key.
- BW implem. from CADO-NFS project for integer factorization.
- With these parameters, the attack required 44 hours.

Thank you for your attention :)

Questions?