Related-key differential analysis of the AES

Margot Funk¹

Joint work with Christina Boura¹ and Patrick Derbez²

¹Paris-Saclay University - Versailles University

²University of Rennes 1

October 2023

Differential cryptanalysis

• Exploits a high probability differential distinguisher

single-key differential

Differential cryptanalysis

• Exploits a high probability differential distinguisher

related-key differential

AES differential trails

active S-boxes, max DP of the AES S-box = 2^{-6}

 \hookrightarrow bound on the differential probability

4-round truncated differential trail of AES with 25 active S-boxes: $p \leq 2^{-25 \times 6}$

Single-key model VS Related-key model

- Single-key: simple and powerful security proofs.
- Related-key: much weaker.

Related-key attacks on the full AES-192 and AES-256, Biryukov et al., 2009

Modeling the AES truncated trails

Use of generic solvers (Wu and Wang, 2009 and Mouha et al., 2011)

$$\overrightarrow{\mathsf{Problem of finding differential trails}} \longrightarrow \overrightarrow{\mathsf{Model}} \longrightarrow \overrightarrow{\mathsf{Solver}}$$

Model

- Variables: byte of the truncated trail \leftrightarrow var $\in \{0,1\} \subset \mathbb{Z}.$
- Objective function: minimize the sum of variables that pass through an S-box.
- Set of constraints (ex: linear inequalities)

Modeling the AES truncated trails

Basic propagation rules ...

... do not necessarily lead to valid truncated trails.

Modeling the AES truncated trails

Gérault et al. (2018, 2020), Rouquette et al. (2022)

- Use a Constraint Programming (CP) solver.
- Few seconds or minutes for most of the instances.
- Outperforms previous works:
 - Branch & bound (Biryukov et al., 2010): several weeks for AES-192,
 - Dynamic programming for AES-128 (Fouque et al., 2013).

Dynamic programming for differential bounds on AES

Dynamic programming for differential bounds

Fouque et al., CRYPTO 2013

- Generic tool based on dynamic programming.
- Complexity easy to understand.
- Application for AES-128: 30 minutes, 60 GB.

Our work

- Extend the work of Fouque et al. (2013) for all versions of AES.
- Running time comparable to that of the CP approach of Gérault et al. (2018, 2020).

active S-boxes

Adapting the dynamic programming algorithm of [FJP13]

• Reduce the memory complexity

Truncated difference

Truncated differences

- AES-128:
$$2^{32}$$

- AES-192: 2^{40}
- AES-256: 2^{48}

Compressed difference

Compressed differences

- AES-128: 2^{18.58}
- AES-192: 2^{23.22}

Adapting the dynamic programming algorithm of [FJP13]

• Integrate constraints over several rounds in a second step.

Adapting the dynamic programming algorithm of [FJP13]

• Integrate constraints over several rounds in a second step.

- 1. Search for a **compressed trail** with *n* active S-boxes.
 - depth-first search approach in the backward direction
 - check some linear relations
- 2. Turn it, if possible, into a truncated trail.

Complexity and running time

• For the dynamic programming phase:

	Time complexity	Memory (Bytes)
AES-128	$r \times 2^{22.89}$	$(9r - 9) \times 2^{18.58}$
AES-192	$r \times 2^{27.53}$	$(3r-3) \times 2^{23.22}$
AES-256	$r \times 2^{32.18}$	$(3r-4) \times 2^{27.86}$

Complexity and running time

Algorithm	Rounds	Min nb of active S-boxes	# trails	Real time ⁽¹⁾ (User time)	Time [RGMS22] ⁽²⁾
AES-128	4	12	1	<mark>1s</mark> (1s)	31s
	5	17	81	<mark>40s</mark> (5m6s)	2h24m24s
	6	10	3	<mark>1s</mark> (8s)	17s
AES-192	7	14	2	<mark>1s</mark> (9s)	46s
	8	18	4	<mark>1m35s</mark> (12m37s)	1m23s
	9	24	6	<mark>4d5h</mark> (20d4h)	30m
	11	20	4	<mark>42s</mark> (4m30s)	5m30s
AES-256	12	20	4	<mark>42s</mark> (4m16s)	4m37s
	13	24	4	<mark>52s</mark> (5m24s)	7m
	14	24	4	<mark>50s</mark> (5m5s)	9m17s

(1) 8-core Ryzen 3700X processor, 3.6 GHz, 32 GB of RAM

(2) 1-core Intel Xeon E5-2630 v4, 3.10 Ghz with 10 cores under a Linux Debian 10 (Buster), 16 GB of RAM (default JVM configuration)

Alternative permutation-based key schedules for AES

Related works

Permutation-based key schedule for AES-128

- Khoo et al., ToSC 2017
- Derbez et al., SAC 2018

Goal: find a permutation ensuring *b* **active S-boxes**.

Generate P

Evaluate P

Ensure that P is a permutation.

Goal: find a permutation ensuring *b* **active S-boxes**.

Ensure that P is a permutation.

Goal: find a permutation ensuring *b* **active S-boxes**.

Goal: find a permutation ensuring *b* **active S-boxes**.

Removing a bad subkeys pattern

• 1^{rst} idea: forbide the exact trail.

0	1	2	3	
4	5	6	7	I
8	9	10	11	
12	13	14	15	

	0	1	2	3	
)	4	5	6	7	P_{i}
~	8	9	10	11	
	12	13	14	15	

	0	1	2	3
)	4	5	6	7
7	8	9	10	11
	12	13	14	15

At most 3 of these equalities should be true. $P(0) = 2 \qquad P(1) = 14$ $P(2) = 3 \qquad P(14) = 15$

Removing a bad subkeys pattern

• 2nd idea: forbide the subkeys pattern.

0	1	2	3	
4	5	6	7	-
8	9	10	11	
12	13	14	15	

	0	1	2	3	
) C	4	5	6	7	I
~	8	9	10	11	
	12	13	14	15	

	0	1	2	3
P_{i}	4	5	6	7
_	8	9	10	11
	12	13	14	15

At most 3 of these equalities						
should be true.						
P(0) = 2	P(1) = 14					
P(1) = 2	P(0) = 14					
P(2) = 3	P(14) = 15					
P(14) = 3	P(2) = 15					

Results

Rounds	3	4	5	6	7	8	9	10
AES-128	5	12	17					
Khoo et al.	5	10	14	19	23			
P_{128}	5	10	14	20	22			
AES-192	1	4	5	10	14	18	24	29
P_{192}	1	5	10	13	17	22	25	28
AES-256	1	3	3	5	5	10	15	16
P_{256}	1	2	5	10	14	16	22	26

Conclusion and perspectives

The key schedule is one of the less understood components in block ciphers.

Perspectives

- Clarify the security goals.
- Search for key schedules that are not permutations of bytes.