Truncated Boomerang Attacks and Application to AES-based Ciphers

Augustin Bariant, Gaëtan Leurent

INRIA, Paris

Journées C2 2023

Augustin Bariant, Gaëtan Leurent (Inria) Truncated Boomerang Attacks and Application to AES-based Ciphers

Conclusion 0

Block Ciphers

 $\forall K \in \{0, 1\}^k, E_K : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is a permutation.

The most famous one: AES.

[Daemen & Rijmen 1997]

Modes of operation

Split messages in chunks of *n* bits and combine for a secure encryption.

Augustin Bariant, Gaëtan Leurent (Inria) Truncated Boomerang Attacks and Application to AES-based Ciphers

The AES

AddKey

<i>x</i> ₀	<i>x</i> ₄	<i>x</i> 8	x ₁₂	<i>y</i> ₀	<i>y</i> 4	<i>y</i> 8	y ₁₂
<i>x</i> ₁	<i>x</i> 5	<i>x</i> 9	x ₁₃	<i>y</i> ₁	<i>y</i> 5	<i>y</i> 9	<i>Y</i> 13
<i>x</i> ₂	<i>x</i> 6	x ₁₀	x ₁₄	<i>y</i> ₂	<i>y</i> 6	<i>Y</i> 10	<i>y</i> 14
<i>x</i> 3	<i>x</i> ₇	<i>x</i> 11	x ₁₅	<i>y</i> 3	У 7	<i>Y</i> 11	y ₁₅

[Daemen & Rijmen, 1997]

rk: 16-byte round key

$$y_i \leftarrow x_i + rk_i$$

- Selected by the NIST. [FIPS 197]
- States of 4x4 bytes.
- Key schedule not studied here.
- AES-128: 10 rounds.
- Security studied with cryptanalysis.

SubBytes

x ₀	<i>x</i> ₄	<i>x</i> 8	x ₁₂	<i>y</i> ₀	<i>y</i> 4	<i>y</i> 8	y ₁₂
x ₁	<i>x</i> 5	<i>x</i> 9	x ₁₃	<i>y</i> ₁	<i>y</i> 5	<i>y</i> 9	<i>Y</i> 13
x ₂	<i>x</i> 6	x ₁₀	x ₁₄	<i>y</i> ₂	<i>y</i> ₆	<i>Y</i> 10	<i>Y</i> 14
x ₃	<i>x</i> ₇	x ₁₁	x ₁₅	<i>y</i> 3	У 7	<i>Y</i> 11	y ₁₅

$$S: \{0,1\}^8 o \{0,1\}^8$$

 $y_i \leftarrow S(x_i)$

ShiftRows

<i>x</i> ₀	<i>x</i> ₄	<i>x</i> 8	x ₁₂	<i>x</i> ₀	<i>x</i> ₄	<i>x</i> 8	x ₁₂
<i>x</i> ₁	<i>x</i> 5	<i>x</i> 9	x ₁₃	<i>x</i> 5	<i>x</i> 9	x ₁₃	<i>x</i> ₁
<i>x</i> ₂	<i>x</i> 6		x ₁₄	x ₁₀	x ₁₄	<i>x</i> ₂	<i>x</i> ₆
<i>x</i> 3	<i>x</i> 7	<i>x</i> ₁₁	x ₁₅	x ₁₅	<i>x</i> 3	<i>x</i> 7	<i>x</i> ₁₁

 $\operatorname{Row}_i \leftarrow \operatorname{Row}_i \ll i$

<i>x</i> ₀	x_4	<i>x</i> 8	x ₁₂	<i>y</i> ₀	<i>y</i> ₄	<i>y</i> ₈	<i>Y</i> 12
<i>x</i> ₁	<i>x</i> 5	X ₉	x ₁₃	<i>y</i> 1	У 5	<i>y</i> 9	<i>Y</i> 13
<i>x</i> ₂	<i>x</i> 6	x ₁₀	x ₁₄	<i>y</i> ₂	<i>y</i> 6		<i>Y</i> 14
<i>x</i> 3	<i>x</i> 7	<i>x</i> 11	x ₁₅	<i>y</i> 3	y 7	<i>У</i> 11	<i>Y</i> 15

M: 4x4 matrix (MDS)

Augustin Bariant, Gaëtan Leurent (Inria)

 $\Pr_{P \leftarrow \$} [E(P) + E(P \oplus \Delta_0) = \Delta_r] = \rho \approx \prod \rho_i.$

• Distinguisher if $p \gg 2^{-n}$.

Augustin Bariant, Gaëtan Leurent (Inria)

The Truncated Boomerang Attack

Conclusion 0

D_i subspaces of 𝔽ⁿ₂.
Trail probability *p* ≈ ∏ *p_i*.

Augustin Bariant, Gaëtan Leurent (Inria)

D_i subspaces of *F*ⁿ₂.
Trail probability *p* ≈ ∏ *p_i*.

Structures (*if* \mathcal{D}_0 *is a vectorial subspace*)

- Encrypt an affine space $P \oplus \mathcal{D}_0$.
- ► Look for $C, C' \in E(P \oplus D_0)$ s.t. $C \oplus C' \in D_r$.
- $|\mathcal{D}_0|$ encryptions but $|\mathcal{D}_0|^2/2$ pairs.

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated differentials: TLDR

Thanks to sets of differences:

- Capture multiple differentials \rightarrow increased probability.
- Structures \rightarrow reduce complexity.

The Truncated Boomerang Attack

Conclusion 0

A Truncated differential of the AES

Conclusion 0

The Boomerang Attack

Prerequisites for the attack:

$$\blacktriangleright E = E_1 \circ E_0$$

•
$$\Delta_{\text{in}} \xrightarrow{\rho} \Delta_{\text{out}}$$

$$\blacktriangleright \nabla_{\text{in}} \xrightarrow{q} \nabla_{\text{out}}$$

Augustin Bariant, Gaëtan Leurent (Inria)

The Truncated Boomerang Attack 0000000

Conclusion 0

The Boomerang Attack

Select a random *P*.

Select P' s.t. $P \oplus P' = \Delta_{in}$.

Augustin Bariant, Gaëtan Leurent (Inria) Truncated Boomerang Attacks and Application to AES-based Ciphers

The Truncated Boomerang Attack 0000000

Conclusion 0

The Boomerang Attack

 $\Delta_{\text{in}} \xrightarrow{p} \Delta_{\text{out}}$

- Select a random *P*.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.

▶
$$\Pr[X \oplus X' = \Delta_{out}] = p.$$

The Truncated Boomerang Attack 0000000

Conclusion 0

The Boomerang Attack

 $\Delta_{\text{in}} \xrightarrow{p} \Delta_{\text{out}}$

- Select a random *P*.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.

▶
$$\Pr[X \oplus X' = \Delta_{out}] = p.$$

The Truncated Boomerang Attack 0000000

Conclusion 0

The Boomerang Attack

Augustin Bariant, Gaëtan Leurent (Inria)

The Truncated Boomerang Attack 0000000

Conclusion 0

The Boomerang Attack

- Select a random P.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.

$$\blacktriangleright \Pr[X \oplus X' = \Delta_{out}] = p.$$

• Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{out}.$

$$\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{in}] = q.$$

▶
$$\Pr[X' \oplus \overline{X'} = \nabla_{in}] = q.$$

Augustin Bariant, Gaëtan Leurent (Inria)

The Truncated Boomerang Attack 0000000

Conclusion 0

The Boomerang Attack

- Select a random P.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.
- ▶ $\Pr[X \oplus X' = \Delta_{out}] = p.$
- Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{out}.$

$$\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{in}] = q.$$

- ▶ $\Pr[X' \oplus \overline{X'} = \nabla_{in}] = q.$
- If this holds, then $\overline{X} \oplus \overline{X'} = \Delta_{\text{out}}$.

The Boomerang Attack

 $\Delta_{\text{in}} \xrightarrow{p}{E_0} \Delta_{\text{out}}$

- Select a random P.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.

$$\blacktriangleright \operatorname{Pr}[X \oplus X' = \Delta_{\operatorname{out}}] = p.$$

Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{\text{out.}}$

$$\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{in}] = q.$$

▶
$$\Pr[X' \oplus \overline{X'} = \nabla_{in}] = q.$$

If this holds, then $\overline{X} \oplus \overline{X'} = \Delta_{out}$.

$$\blacktriangleright \operatorname{Pr}[\overline{P} \oplus \overline{P'} = \Delta_{\operatorname{in}}] = \rho.$$

Augustin Bariant, Gaëtan Leurent (Inria)

Conclusion 0

The Boomerang Attack

- Select a random *P*.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.

$$\blacktriangleright \operatorname{Pr}[X \oplus X' = \Delta_{\operatorname{out}}] = p.$$

• Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{out}.$

$$\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{in}] = q.$$

▶
$$\Pr[X' \oplus \overline{X'} = \nabla_{in}] = q.$$

• If this holds, then
$$\overline{X} \oplus \overline{X'} = \Delta_{\text{out}}$$
.

$$\blacktriangleright \operatorname{Pr}[\overline{P} \oplus \overline{P'} = \Delta_{\operatorname{in}}] = p.$$

Total boomerang probability: p^2q^2 .

 $p^2 q^2 \gg 2^{-n} \rightarrow \text{Distinguisher}$

Our results

1 Analysis of boomerangs with truncated differentials.

[Wagner, FSE'99]

- 2 Application: improved boomerang attack on 6-round AES.
- <u>3 Best attacks on several AES-based tweakable block ciphers:</u>
 - ► TNT-AES.
 - Kiasu-BC.
 - Deoxys-BC.

[Bao, Guo, Guo & Song, EC'20] [Jean, Nikolić & Peyrin, AC'14] [Jean, Nikolić & Peyrin, AC'14]

The Truncated Boomerang Framework

[This work]

Pick a P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.

$$\mathcal{D}_{\text{in}}^{0} \xleftarrow{p}{E_{0}} \mathcal{D}_{\text{out}}^{0}$$

The Truncated Boomerang Framework

[This work]

• Pick a P_0 and encrypt a structure $P_0 \oplus D_{in}^0$.

► For
$$P, P' \in P_0 \oplus D_{in}^0$$
, $\Pr[X \oplus X' \in D_{out}^0] = \vec{p}$.

The Truncated Boomerang Framework

[This work]

• Pick a P_0 and encrypt a structure $P_0 \oplus D_{in}^0$.

► For
$$P, P' \in P_0 \oplus \mathcal{D}_{in}^0$$
, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.

 $\in \mathcal{D}_{in}^{0}$

The Truncated Boomerang Framework

- ▶ Pick a P_0 and encrypt a structure $P_0 \oplus D_{in}^0$.
- ► For $P, P' \in P_0 \oplus \mathcal{D}_{in}^0$, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.
- For each $C \in E(P_0 \oplus D_{in}^0)$, decrypt a structure $C \oplus D_{out}^1$.

P'

 $\in \mathcal{D}_{in}^{0}$

The Truncated Boomerang Framework

- ▶ Pick a P_0 and encrypt a structure $P_0 \oplus D_{in}^0$.
- ► For $P, P' \in P_0 \oplus D_{in}^0$, $\Pr[X \oplus X' \in D_{out}^0] = \vec{p}$.
- For each $C \in E(P_0 \oplus D_{in}^0)$, decrypt a structure $C \oplus D_{out}^1$.
- For $\overline{C} \in C \oplus \mathcal{D}_{out}^1$, $\Pr[X \oplus \overline{X} \in \mathcal{D}_{in}^1] = \overline{q}$

► For
$$\overline{C'} \in C' \oplus \mathcal{D}_{out}^1$$
, $\Pr[X' \oplus \overline{X'} \in \mathcal{D}_{in}^1] = \bar{q}$.

P

The Truncated Boomerang Framework

- Pick a P_0 and encrypt a structure $P_0 \oplus D_{in}^0$.
 - ► For $P, P' \in P_0 \oplus D_{in}^0$, $\Pr[X \oplus X' \in D_{out}^0] = \vec{p}$.
 - For each $C \in E(P_0 \oplus D_{in}^0)$, decrypt a structure $C \oplus D_{out}^1$.
 - For $\overline{C} \in C \oplus \mathcal{D}_{out}^1$, $\Pr[X \oplus \overline{X} \in \mathcal{D}_{in}^1] = \overline{q}$
 - ► For $\overline{C'} \in C' \oplus \mathcal{D}_{out}^1$, $\Pr[X' \oplus \overline{X'} \in \mathcal{D}_{in}^1] = \bar{q}$.

•
$$\Pr[\overline{X} \oplus \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$$

Augustin Bariant, Gaëtan Leurent (Inria)

The Truncated Boomerang Framework

[This work]

 $\in \mathcal{D}_{in}^{0}$ D $\in \mathcal{D}_{in}^0$ \overline{P} $\overline{P'}$ $\mathcal{D}_{in}^{0} \xleftarrow{p}{F_{0}} \mathcal{D}_{out}^{0}$ E_0 E_0 E_0 E_0 $\in \mathcal{D}_{out}^0$ Х $\mathcal{\overline{P}}_{in}^{1}\in\mathcal{D}_{out}^{0}$ \overline{X} $\overline{X'}$ $\mathcal{D}_{\text{out}}^1 \xleftarrow{\mathsf{Y}}_{\mathsf{F}_*^{-1}}$ \mathcal{D}_{in}^1 E₁ E1 E_1 E_1 C' \mathcal{D} 011 out

 $\overline{C'}$

- Pick a P_0 and encrypt a structure $P_0 \oplus D_{in}^0$.
- ► For $P, P' \in P_0 \oplus D_{in}^0$, $\Pr[X \oplus X' \in D_{out}^0] = \vec{p}$.
- For each $C \in E(P_0 \oplus D_{in}^0)$, decrypt a structure $C \oplus D_{out}^1$.
- For $\overline{C} \in C \oplus \mathcal{D}_{out}^1$, $\Pr[X \oplus \overline{X} \in \mathcal{D}_{in}^1] = \overline{q}$
- ► For $\overline{C'} \in C' \oplus \mathcal{D}_{out}^1$, $\Pr[X' \oplus \overline{X'} \in \mathcal{D}_{in}^1] = \bar{q}$.

▶
$$\Pr[\overline{X} \oplus \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$$

•
$$\Pr[\overline{P} \oplus \overline{P'} \in \mathcal{D}_{in}^0] = \overline{p}.$$

 E_0

E₁

Х

The Truncated Boomerang Framework

 $\in \mathcal{D}_{in}^{0}$ $\in \mathcal{D}_{in}^0$ \overline{P} $\mathcal{D}_{in}^{0} \xleftarrow{p}{F_{0}} \mathcal{D}_{out}^{0}$ E_0 E_0 E_0 $\in \mathcal{D}_{out}^0$ $\mathcal{D}_{\text{in}}^{1} \in \mathcal{D}_{\text{out}}^{0}$ $\overline{X'}$ $\mathcal{D}_{\text{out}}^1 \xleftarrow{\mathsf{Y}}_{F_*^{-1}}$ E1 E_1 E_1

 $\overline{C'}$

- Pick a P_0 and encrypt a structure $P_0 \oplus D_{in}^0$.
- ► For $P, P' \in P_0 \oplus \mathcal{D}_{in}^0$, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.
- For each $C \in E(P_0 \oplus D_{in}^0)$, decrypt a structure $C \oplus D_{out}^1$.
- ► For $\overline{C} \in C \oplus \mathcal{D}_{out}^1$, $\Pr[X \oplus \overline{X} \in \mathcal{D}_{in}^1] = \overline{q}$
- ► For $\overline{C'} \in C' \oplus \mathcal{D}_{out}^1$, $\Pr[X' \oplus \overline{X'} \in \mathcal{D}_{in}^1] = \bar{q}$.

•
$$\Pr[\overline{X} \oplus \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$$

•
$$\Pr[\overline{P} \oplus \overline{P'} \in \mathcal{D}_{in}^0] = \overline{p}.$$

• Total probability: $p_b = \vec{p} \cdot \vec{q}^2 \cdot \mathbf{r} \cdot \vec{p}$.

The Truncated Boomerang Framework

Summary

- **1** Select a random P_0 and encrypt a structure $P_0 \oplus D_{in}^0$
- 2 For each $C \in E(P_0 \oplus D_{in}^0)$, decrypt a structure $C \oplus D_{out}^1$.
- 3 Look for \overline{P} , $\overline{P'} \in E^{-1}(E(P_0 \oplus \mathcal{D}_{in}^0) \oplus \mathcal{D}_{out}^1)$ s.t. $\overline{P} \oplus \overline{P'} \in \mathcal{D}_{in}^0$.

[This work]

- 4 If needed, repeat with a new P_0 .
- Total probability: $p_b = \vec{p} \cdot \vec{q}^2 \cdot \mathbf{r} \cdot \vec{p}$.
- Random probability: $p_{\$} = |\mathcal{D}_{in}^0| \cdot 2^{-n}$.
- Total structure size: $|\mathcal{D}_{in}^0||\mathcal{D}_{out}^1|$.

Augustin Bariant, Gaëtan Leurent (Inria)

Distinguisher: Distinguishing property

- Boomerang probability $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$.
- Random probability $p_{\$} = |\mathcal{D}_{in}^0| \cdot 2^{-n}$.

Distinguishing property

Probability that a quartet returns:

- Cipher $E \rightarrow p_{\$} + p_b$.
- **•** Random function $\rightarrow p_{\$}$.

Conclusion 0

Distinguisher: Analysis

- Signal to noise $\sigma = p_b / p_{\$}$.
- S structures of size $|\mathcal{D}_{in}^0| \cdot |\mathcal{D}_{out}^1|$.
- $Q = S \times |\mathcal{D}_{in}^0|^2 \cdot |\mathcal{D}_{out}^1|^2/2$ quartets.

Conclusion 0

Distinguisher: Analysis

- Signal to noise $\sigma = \rho_b / \rho_{\$}$.
- S structures of size $|\mathcal{D}_{in}^0| \cdot |\mathcal{D}_{out}^1|$.
- $Q = S \times |\mathcal{D}_{in}^0|^2 \cdot |\mathcal{D}_{out}^1|^2/2$ quartets.

If $\sigma \gg 1$

- A few good quartets are sufficient.
- $Q = O(1/p_b)$ quartets needed.

If $\sigma \ll 1$

- More wrong quartets than good.
- $Q = O(1/\sigma p_b)$ quartets needed.

Time and data complexity:

$$T = D = \frac{2Q}{|\mathcal{D}_{in}^{0}| \cdot |\mathcal{D}_{out}^{1}|}$$

Augustin Bariant, Gaëtan Leurent (Inria)

Conclusion 0

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

Conclusion 0

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

Conclusion 0

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

Conclusion 0

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

Conclusion 0

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

Augustin Bariant, Gaëtan Leurent (Inria) Truncated Boomerang Attacks

Conclusion 0

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

• Choose $Q = 2^{160}$ quartets.

Augustin Bariant, Gaëtan Leurent (Inria)

Conclusion 0

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

• Choose $Q = 2^{160}$ quartets.

Q · *p_b* = 2³² good returning quartets.
 Q · *p*_{\$} = 2⁶⁴ wrong returning quartets.

Augustin Bariant, Gaëtan Leurent (Inria)

Conclusion 0

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

• Choose $Q = 2^{160}$ quartets.

Q · p_b = 2³² good returning quartets.
 Q · p_{\$} = 2⁶⁴ wrong returning quartets.

Possible to detect signal from noise.

Augustin Bariant, Gaëtan Leurent (Inria)

Conclusion 0

Example: 6-round AES distinguisher

Distinguisher

Throw $Q = 2^{160}$ quartets using structures of size $|\mathcal{D}_{in}^0| |\mathcal{D}_{out}^1| = 2^{64}$:

- If $\approx 2^{64}$ quartets return \rightarrow random function.
- If $> 2^{64} + 2^{31}$ quartets return \rightarrow 6R AES.

$$T = D \approx rac{Q}{|\mathcal{D}_{in}^0||\mathcal{D}_{out}^1|} = 2^{96}.$$

Augustin Bariant, Gaëtan Leurent (Inria)

Conclusion 0

Including Key recovery

- Usual approach: add rounds before/after distinguisher.
- Our approach: same number of rounds, use key as extra distinguisher.

Conclusion 0

Including Key recovery

- Usual approach: add rounds before/after distinguisher.
- Our approach: same number of rounds, use key as extra distinguisher.
- Deduce key information from a returning quartet.
 - ► Example: $(P, P') \rightarrow (X, X')$ follows $E_0 \rightarrow$ only possible for certain keys.
 - Generalization: $(P, P', \overline{P}, \overline{P'})$ suggests ℓ candidates of κ key bits ($\ell \ll 2^{\kappa}$).

Including Key recovery

- ► Usual approach: add rounds before/after distinguisher.
- Our approach: same number of rounds, use key as extra distinguisher.
- Deduce key information from a returning quartet.
 - ► Example: $(P, P') \rightarrow (X, X')$ follows $E_0 \rightarrow$ only possible for certain keys.
 - Generalization: $(P, P', \overline{P}, \overline{P'})$ suggests ℓ candidates of κ key bits ($\ell \ll 2^{\kappa}$).

If $\sigma \gg 1$

- Collect a few right quartets.
- For each quartet, recover *l* candidates for *κ* key bits.
- Select the candidate suggested each time.

If $\sigma \ll 1$

- Initialize 2^{κ} key counters.
- Collect many quartets.
- For each quartet:
 - Increment ℓ key counters.
- Right key counter higher than random.

Example: 6-round AES boomerang

First round

- Diagonal of k_0 (32 bits):
 - $(\underline{P}, \underline{P'}) \rightarrow 2^8$ candidates. $(\overline{P}, \overline{P'}) \rightarrow 2^8$ candidates.

 - ▶ 2⁻¹⁶ candidates for both.

Conclusion 0

Example: 6-round AES boomerang

Augustin Bariant, Gaëtan Leurent (Inria)

Conclusion 0

Example: 6-round AES boomerang

• Total: $\ell = 2^{-32}$ candidates for $\kappa = 64$ bits of key.

Augustin Bariant, Gaëtan Leurent (Inria)

Conclusion 0

Example: 6-round AES boomerang

- Total: $\ell = 2^{-32}$ candidates for $\kappa = 64$ bits of key.
- Random counter increased with probability $\frac{\ell}{2^{\kappa}} = 2^{-96}$.
- High probability of success with 4 right quartets ($D = T = 2^{67}$).

Augustin Bariant, Gaëtan Leurent (Inria)

6-round AES results

	Туре	Data		Time	Ref
Distinguishers	Yoyo Exchange attack Exchange attack Truncated differential	2 ^{122.8} 2 ^{88.2} 2 ⁸⁴ 2 ^{89.4} 2 ⁸⁷	ACC CP ACC CP	2 ^{121.8} 2 ^{88.2} 2 ⁸³ 2 ^{96.5} 2 ⁸⁷	[AC:RonBarHel17] [AC:BarRon19] [EPRINT:Bardeh19] [ToSC:BaoGuoLis20]
Key-recovery	Square Partial-sum Boomerang Mixture Retracing boomerang Boomeyong	2 ³² 2 ³² 2 ⁷¹ 2 ²⁶ 2 ⁵⁵ 2 ^{79.7}	CP CP ACC CP ACC ACC	2 ⁷¹ 2 ⁴⁸ 2 ⁷¹ 2 ⁸⁰ 2 ⁸⁰ 2 ⁷⁸ 2 ⁶¹	[FSE:DaeKnuRij97] [FSE:FKLSSWW00] [biryukov2004boomerang] [JC:BDKRS20] [EC:DKRS20] [ToSC:RahSahPau21]
	Truncated boomerang	2 ⁵⁹	ACC	2 ⁶¹	This work

Conclusion

- Analysis of truncated bommerang attacks.
- 2 Improving boomerangs on 6-round AES.
- 3 Applications
 - Best attack on KIASU-BC.
 - Best attacks on Deoxys-BC using MILP.
 - Distinguisher on full TNT-AES.

Thank you for your attention