PROPAGATION OF SUBSPACES IN PRIMITIVES WITH MONOMIAL SBOXES
APPLICATIONS TO RESCUE AND VARIANTS OF THE AES

Aurélien Boeuf1, Anne Canteaut1, Léo Perrin1

1Inria Paris

Journées C2 2023, Najac
Which Round Functions?

- $s_i \in \mathbb{F}_q$ (finite field of size q).

The round function of an SPN (Substitution-Permutation Network) Block Cipher. Design basis for the AES, very popular.
Rescue [AABDS’20]

- Defined in \mathbb{F}_p with p prime $\simeq 2^{64}$ (unusually big!).

![Diagram of Rescue algorithm]

2 rounds of RESCUE (repeated $N \simeq 10$ times).

- Defined for any MDS matrix M and round constants c_i.

[Diagram showing the algorithm with input states S_0, S_1, S_2, and output states, with intermediate operations and round constants c_0, c_1, c_2, c_3, c_4, c_5.]
Definition

Differential uniformity of a function F:

$$\delta(F) = \max_{\sigma \neq 0, \beta} \left| \left\{ F(x + \sigma) - F(x) = \beta \text{ s.t. } x \in (\mathbb{F}_p)^m \right\} \right|$$
Definition

Differential uniformity of a function F:

$$
\delta(F) = \max_{\sigma \neq 0, \beta} \left| \{ F(x + \sigma) - F(x) = \beta \ \text{s.t.} \ x \in (\mathbb{F}_p)^m \} \right|
$$

→ This quantity must be minimized.
High Differential Uniformities in Rescue

Graph taken from eprint.iacr.org/2020/820.
High Differential Uniformities in Rescue

Graph taken from eprint.iacr.org/2020/820.
The cause? Affine spaces of dimension 1 nicely mapping from one to another.

\[\begin{pmatrix} z \\ X \end{pmatrix} \xrightarrow{2 \text{ rounds}} \begin{pmatrix} aX + b \\ cX + d \end{pmatrix} \xrightarrow{2 \text{ rounds}} \begin{pmatrix} eX + f \\ gX + h \end{pmatrix} \]
High Differential Uniformities in Rescue

The cause? Affine spaces of dimension 1 nicely mapping from one to another.

\[
\begin{pmatrix} z \\ X \end{pmatrix} \xrightarrow{\text{2 rounds}} \begin{pmatrix} aX + b \\ cX + d \end{pmatrix} \xrightarrow{\text{2 rounds}} \begin{pmatrix} eX + f \\ gX + h \end{pmatrix}
\]

- 1 round or 3 rounds: the function is not affine.
- Because \(p \) is big (\(\geq 2^{64} \)), affine spaces of dim 1 are also big.
Structure of our work

High Differential Uniformities in Rescue

Affine Space Chains
Affine Space Chains

Note $a + \langle v \rangle := \{ a + Xv \text{ such that } X \in \mathbb{F}_p \}$.

$$a_0 + \langle v_0 \rangle \xrightarrow{f} a_1 + \langle v_1 \rangle \xrightarrow{f} \ldots \xrightarrow{f} a_N + \langle v_N \rangle$$
Main Observation

![Diagram with labeled inputs and output]

Rescue round.

Write elements of \(
\begin{pmatrix}
0 \\
0 \\
a
\end{pmatrix}
\) + \(v\) \(\langle 1 \rangle\) as \(\begin{pmatrix} s_0 \\ s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} X \\ vX \\ a \end{pmatrix}\).
Main Observation

Rescue round.

\[
\begin{pmatrix}
 s_0 \\
 s_1 \\
 s_2
\end{pmatrix}
= \begin{pmatrix}
 X \\
 \nu X \\
 a
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 X^\alpha \\
 \nu^\alpha X^\alpha \\
 a^\alpha
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 0 \\
 a^\alpha
\end{pmatrix}
+ X^\alpha \begin{pmatrix}
 1 \\
 \nu^\alpha \\
 0
\end{pmatrix}
\]

This is the most important part! It only relies on the fact that the Sbox is a monomial.
Definition

An affine space of dimension 1 is **separable** if and only if there exists a representation of it denoted $a + \langle v \rangle$ such that:

\[
\forall 1 \leq i \leq m, \ a_i \cdot v_i = 0.
\]

or, equivalently, $\text{supp}(v) \cap \text{supp}(a) = \emptyset$.

• $(a_0, b) + \langle 0, b \rangle$ is a separable affine space for all a and b.

• $(0, 1) + \langle 1, 1 \rangle$ is not.
Definition

An affine space of dimension 1 is **separable** if and only if there exists a representation of it denoted \(\mathbf{a} + \langle \mathbf{v} \rangle \) such that:

\[
\forall 1 \leq i \leq m, \quad a_i \cdot v_i = 0.
\]

or, equivalently, \(\text{supp}(\mathbf{v}) \cap \text{supp}(\mathbf{a}) = \emptyset \).

Examples

- \(\begin{pmatrix} a \\ 0 \end{pmatrix} + \langle \begin{pmatrix} 0 \\ b \end{pmatrix} \rangle \) is a separable affine space for all \(a \) and \(b \).
Separable Affine Spaces

Definition

An affine space of dimension 1 is **separable** if and only if there exists a representation of it denoted \(a + \langle v \rangle \) such that:

\[
\forall 1 \leq i \leq m, \ a_i \cdot v_i = 0.
\]

or, equivalently, \(\text{supp}(v) \cap \text{supp}(a) = \emptyset \).

Examples

- \(\begin{pmatrix} a \\ 0 \end{pmatrix} + \langle \begin{pmatrix} 0 \\ b \end{pmatrix} \rangle \) is a separable affine space for all \(a \) and \(b \).
- \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} + \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle \) is not.
Main Observation

Rescue round.

\[
\begin{pmatrix}
0 \\
0 \\
a^\alpha
\end{pmatrix}
+ X^\alpha
\begin{pmatrix}
1 \\
v^\alpha \\
0
\end{pmatrix}
\rightarrow
M
\begin{pmatrix}
0 \\
0 \\
a^\alpha
\end{pmatrix}
+ X^\alpha M
\begin{pmatrix}
1 \\
v^\alpha \\
0
\end{pmatrix}
\]
Main Observation

Rescue round.

\[
M \begin{pmatrix} 0 \\ 0 \\ a^\alpha \end{pmatrix} + X^\alpha M \begin{pmatrix} 1 \\ v^\alpha \\ 0 \end{pmatrix} \rightarrow M \begin{pmatrix} 0 \\ 0 \\ a^\alpha \end{pmatrix} + \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} + X^\alpha M \begin{pmatrix} 1 \\ v^\alpha \\ 0 \end{pmatrix}
\]
Main Observation

\[
M \begin{pmatrix} 0 \\ 0 \\ a^\alpha \end{pmatrix} + \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} + \left\langle M \begin{pmatrix} 1 \\ \nu^\alpha \\ 0 \end{pmatrix} \right\rangle
\]
Main Observation

\[
M \begin{pmatrix} 0 \\ 0 \\ a^\alpha \end{pmatrix} + \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} + \left\langle M \begin{pmatrix} 1 \\ \nu^\alpha \\ 0 \end{pmatrix} \right\rangle
\]

For this space to be separable, we need that there exists \(\lambda \in \mathbb{F}_p \) such that

\[
M \begin{pmatrix} 1 \\ \nu^\alpha \\ 0 \end{pmatrix} \quad \text{and} \quad M \begin{pmatrix} 0 \\ 0 \\ a^\alpha \end{pmatrix} + \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} + \lambda M \begin{pmatrix} 1 \\ \nu^\alpha \\ 0 \end{pmatrix}
\]

have disjoint supports.
Main Result

Theorem

The image of a separable affine space \(\mathbf{a} + \langle \mathbf{v} \rangle \) by a round of a monomial SPN is an affine space. Also, the image is still separable if and only if there exists \(\lambda \) in \(\mathbb{F}_p \) such that:

\[
\forall i \in \text{supp}(M \circ S)(\mathbf{v}), c_i = \lambda (M \circ S)(\mathbf{v})_i - (M \circ S)(\mathbf{a})_i
\]
Theorem

The image of a separable affine space \(\mathbf{a} + \langle \mathbf{v} \rangle \) by a round of a monomial SPN is an affine space. Also, the image is still separable if and only if there exists \(\lambda \) in \(\mathbb{F}_p \) such that:

\[
\forall i \in \text{supp}(M \circ S)(\mathbf{v}),
\]

\[
c_i = \lambda (M \circ S)(\mathbf{v})_i - (M \circ S)(\mathbf{a})_i;
\]
This differential uniformity graph spells “. . -. -. --. . -. . -. - -. -” (ILOVENAJAC) over 71 rounds ($m = 2$, \mathbb{F}_{2^6}).
Conclusion

• Bad choice of round constants may lead to affine space chains or high differential uniformities.
• It's possible to define "backdoored" primitives that enforce this kind of behaviour.
• Such weak designs satisfy state-of-the-art security arguments (APN Sbox, MDS matrix, wide-trail strategy...). Usual security arguments are not sufficient in the AO context.
• Look out for similar algebraic patterns in AO primitives; they can improve algebraic attacks.
Conclusion

- Bad choice of round constants may lead to affine space chains or high differential uniformities.
Conclusion

- Bad choice of round constants may lead to affine space chains or high differential uniformities.
- It’s possible to define “backdoored” primitives that enforce this kind of behaviour.
Conclusion

• Bad choice of round constants may lead to affine space chains or high differential uniformities.

• It’s possible to define “backdoored” primitives that enforce this kind of behaviour.

• Such weak designs satisfy state-of-the art security arguments (APN Sbox, MDS matrix, wide-trail strategy...). Usual security arguments are not sufficient in the AO context.
Conclusion

• Bad choice of round constants may lead to affine space chains or high differential uniformities.

• It’s possible to define “backdoored” primitives that enforce this kind of behaviour.

• Such weak designs satisfy state-of-the art security arguments (APN Sbox, MDS matrix, wide-trail strategy...). Usual security arguments are not sufficient in the AO context.

• Look out for similar algebraic patterns in AO primitives; they can improve algebraic attacks.
Thank you for listening!

Questions?
High Differential Uniformities in Rescue

\[\delta(F) = \max_{\sigma \neq 0, \beta} |\{ F(x + \sigma) - F(x) = \beta \text{ s.t. } x \in (\mathbb{F}_p)^m \}|. \]

\[\forall X \in \mathbb{F}_p, F \begin{pmatrix} z \\ X \end{pmatrix} = \begin{pmatrix} eX + f \\ gX + h \end{pmatrix}. \]
\[
\delta(F) = \max_{\sigma \neq 0, \beta} \left| \{ F(x + \sigma) - F(x) = \beta \ \text{s.t.} \ x \in (\mathbb{F}_p)^m \} \right|.
\]

\[
\forall X \in \mathbb{F}_p, F \begin{pmatrix} z \\ X \end{pmatrix} = \begin{pmatrix} eX + f \\ gX + h \end{pmatrix}.
\]

\[
F \begin{pmatrix} z \\ X + 1 \end{pmatrix} - F \begin{pmatrix} z \\ X \end{pmatrix} = \begin{pmatrix} e(X + 1) + f \\ g(X + 1) + h \end{pmatrix} - \begin{pmatrix} eX + f \\ gX + h \end{pmatrix}
\]

\[
= \begin{pmatrix} e \\ g \end{pmatrix} = \beta
\]
High Differential Uniformities in Rescue

\[\delta(F) = \max_{\sigma \neq 0, \beta} |\{ F(x + \sigma) - F(x) = \beta \ \text{s.t.} \ x \in (\mathbb{F}_p)^m \}|. \]

\[\forall X \in \mathbb{F}_p, F \begin{pmatrix} z \\ X \end{pmatrix} = \begin{pmatrix} eX + f \\ gX + h \end{pmatrix}. \]

\[F \begin{pmatrix} z \\ X + 1 \end{pmatrix} - F \begin{pmatrix} z \\ X \end{pmatrix} = \begin{pmatrix} e(X + 1) + f \\ g(X + 1) + h \end{pmatrix} - \begin{pmatrix} eX + f \\ gX + h \end{pmatrix} \]

\[= \begin{pmatrix} e \\ g \end{pmatrix} = \beta \]

\[\rightarrow \delta(F) \geq p \]
Arithmetization-Oriented Symmetric Primitives

- Term coined for the first time in a 2020 paper from Aly et al.
- Symmetric primitives with a “simple” arithmetic description.
- Minimize verification cost in Zero-Knowledge schemes and other advanced protocols.
- Generally defined over a large finite field \mathbb{F}_q. ($q \geq 2^{64}$ or so.)
- Heavy use of monomials for nonlinear functions as random permutations are hard to analyze.
Arithmetization-Oriented Symmetric Primitives

- Term coined for the first time in a 2020 paper from Aly et al.
- Symmetric primitives with a “simple” arithmetic description.
- Minimize verification cost in Zero-Knowledge schemes and other advanced protocols.
- Generally defined over a large finite field \mathbb{F}_q. ($q \geq 2^{64}$ or so.)
- Heavy use of monomials for nonlinear functions as random permutations are hard to analyze.

Example

Primitives using the nonlinear component $S : x \mapsto x^3$ (MIMC and variants, RESCUE...).
Rescue’s Design Choices

- Alternate x^α and x^{α^1} for resistance against algebraic attacks.
- x^α has good cryptographic properties (APN for $\alpha = 3$).
- Wide-trail strategy is used, like in the AES, as a security argument.
- For the Sbox, having a monomial followed by an affine transformation of the representation like in the AES may be nice, but... no subfield in \mathbb{F}_p.

Main motivation: Are the usual security arguments sufficient?
Rescue’s Design Choices

- Alternate x^α and $x^{\frac{1}{\alpha}}$ for resistance against algebraic attacks.
Rescue’s Design Choices

- Alternate x^α and $x^{\frac{1}{\alpha}}$ for resistance against algebraic attacks.
- x^α has good cryptographic properties (APN for $\alpha = 3$).
Rescue’s Design Choices

- Alternate x^α and $\frac{1}{\alpha}$ for resistance against algebraic attacks.
- x^α has good cryptographic properties (APN for $\alpha = 3$).
- Wide-trail strategy is used, like in the AES, as a security argument.

For the Sbox, having a monomial followed by an affine transformation of the representation like in the AES may be nice, but... no subfield in \mathbb{F}_p. Main motivation: Are the usual security arguments sufficient?
Rescue’s Design Choices

- Alternate x^α and $x^{\frac{1}{\alpha}}$ for resistance against algebraic attacks.
- x^α has good cryptographic properties (APN for $\alpha = 3$).
- Wide-trail strategy is used, like in the AES, as a security argument.
- For the Sbox, having a monomial followed by an affine transformation of the representation like in the AES may be nice, but... no subfield in \mathbb{F}_p.
Rescue’s Design Choices

- Alternate x^α and $x^{\frac{1}{\alpha}}$ for resistance against algebraic attacks.
- x^α has good cryptographic properties (APN for $\alpha = 3$).
- Wide-trail strategy is used, like in the AES, as a security argument.
- For the Sbox, having a monomial followed by an affine transformation of the representation like in the AES may be nice, but... no subfield in \mathbb{F}_p.

Main motivation: Are the usual security arguments sufficient?
Our Designs

- **Stir**, a weak instance of **Rescue**.

1Thomas Peyrin and Haoyang Wang, *The MALICIOUS Framework: Embedding Backdoors into Tweakable Block Ciphers*
Our Designs

- **Stir**, a weak instance of **Rescue**.
- **Snare**, a tweakable cipher with a secret weak tweak. Directly based on the MALICIOUS framework \(^1\).

\(^1\)Thomas Peyrin and Haoyang Wang, *The MALICIOUS Framework: Embedding Backdoors into Tweakable Block Ciphers*
Our Designs

- **Stir**, a weak instance of **Rescue**.
- **Snare**, a tweakable cipher with a secret weak tweak. Directly based on the MALICIOUS framework\(^1\).

\(^1\)Thomas Peyrin and Haoyang Wang, *The MALICIOUS Framework: Embedding Backdoors into tweakable Block Ciphers*
Our Designs

- **Stir**, a weak instance of **Rescue**.
- **Snare**, a tweakable cipher with a secret weak tweak. Directly based on the MALICIOUS framework\(^1\).
- AES-like ciphers where we can introduce and control differential uniformity spikes.

\(^1\)Thomas Peyrin and Haoyang Wang, *The MALICIOUS Framework: Embedding Backdoors into Tweakable Block Ciphers*
- Based on RESCUE.
- MDS matrix M and round constants r are carefully chosen to impose one affine space chain over the whole permutation.
\[
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} + \left\langle \begin{pmatrix}
v_1 \\
v_2 \\
0
\end{pmatrix} \right\rangle \longrightarrow \begin{pmatrix} 0 \\ 0 \\ a_3 \end{pmatrix} + \left\langle \begin{pmatrix} v'_1 \\ v'_2 \\ 0 \end{pmatrix} \right\rangle \longrightarrow \ldots \longrightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \left\langle \begin{pmatrix} v''_1 \\ v''_2 \\ 0 \end{pmatrix} \right\rangle
\]

- Yields \(p \approx 2^{64} \) solutions to the “CICO problem”. This breaks security arguments in sponge constructions.
Snare

- H is some hash function, like SHAKE256.
- The t_i are the tweak hashes.
Idea: Choose $r_i = -H(T^*)_i$ for some secret tweak T^*.

→ When $T = T^*$, r_i and t_i annihilate one another and an invariant vector space appears.
Snare

\[\langle \begin{pmatrix} 1 \\ \rho \\ 0 \end{pmatrix} \rangle \xrightarrow{1 \text{ round}} \langle \begin{pmatrix} 1 \\ \rho \\ 0 \end{pmatrix} \rangle \rightarrow \ldots \rightarrow \langle \begin{pmatrix} 1 \\ \rho \\ 0 \end{pmatrix} \rangle \]
\begin{equation*}
\begin{pmatrix}
1 \\
\rho \\
0
\end{pmatrix}
\xrightarrow{1 \text{ round}}
P_1(K_0)
\begin{pmatrix}
1 \\
\rho \\
0
\end{pmatrix}
\rightarrow \ldots
\rightarrow
P_n(K_0)
\begin{pmatrix}
1 \\
\rho \\
0
\end{pmatrix}
\end{equation*}
\[
\begin{pmatrix}
1 \\
\rho \\
0
\end{pmatrix} \xrightarrow{\text{1 round}} P_1(K_0) \begin{pmatrix}
1 \\
\rho \\
0
\end{pmatrix} \longrightarrow \ldots \longrightarrow P_n(K_0) \begin{pmatrix}
1 \\
\rho \\
0
\end{pmatrix}
\]

- Retrieve K_0 with multivariate polynomial solving (Gröbner bases), with m times less equations as the general case.

→ Algebraic attack complexity put to the mth root!
Affine Space Chain vs Affine Function

- Last design is based on affine space chains.
- Having an affine space chain doesn’t mean that the function itself is affine.
- In the beginning we measured high differential uniformities because the function itself is affine on these subspaces.
- Can we recreate that?
Affine Space Chain vs Affine Function

- Last design is based on affine space chains.
- Having an affine space chain doesn’t mean that the function itself is affine.
- In the beginning we measured high differential uniformities because the function itself is affine on these subspaces.
- Can we recreate that?

\[
a_1 + Xv_1 \rightarrow a_2 + (X^\alpha + \lambda)v_2 \rightarrow a_3 + (X^\alpha + \lambda)^{\frac{1}{\alpha}}v_3
\]
Morse Code with Differential Uniformity

- Same thing as **Snare**, but with elements over \mathbb{F}_{2^n} and the inverse function $x \mapsto x^{-1}$ as an Sbox.
Morse Code with Differential Uniformity

Idea: Same strategy as Snare, but make it so that the mapping from the input to output affine space is itself affine every 2 or 3 rounds!
Morse Code with Differential Uniformity

Idea: Same strategy as Snare, but make it so that the mapping from the input to output affine space is itself affine every 2 or 3 rounds!

- For a 2-round delay, the coefficient X of the affine space basis verifies $X \rightarrow X^{-1} \rightarrow X$ (Case $\lambda = 0$).
- High differential uniformity every 2 or 3 rounds (controlled by our choices of r_i).