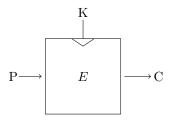
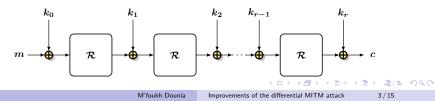
Improvements of the differential MITM attack

M'foukh Dounia

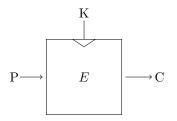

Table of contents

- 1 Introduction to symmetric cryptanalysis
- 2 Differential MITM attack
- 3 Improvement of the differential MITM attack
- 4 Application to the block cipher CRAFT

5 Conclusion

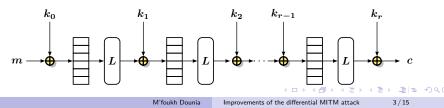

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Block Cipher

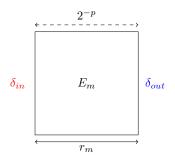


- Block of size *n* of 64 or 128 bits in general.
- Key size k of 128 or 256 bits in general.

Example of a round function :

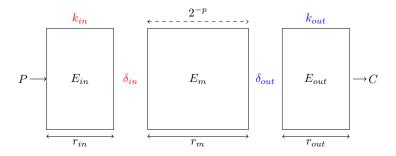


Block Cipher


- Block of size *n* of 64 or 128 bits in general.
- Key size k of 128 or 256 bits in general.

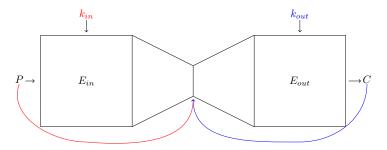
Example of a round function :

Differential cryptanalysis

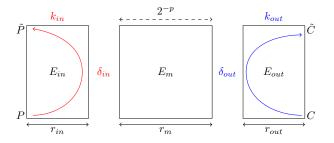

Introduced to the public by Biham and Shamir in 1990 in [BS90]

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Differential cryptanalysis


Introduced to the public by Biham and Shamir in 1990 in [BS90]

<□> < => < => < => < =| = <0 < 0


Meet-In-The-Middle (MITM) attack

Introduced by Diffie and Hellman in 1977 in [DH77]

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

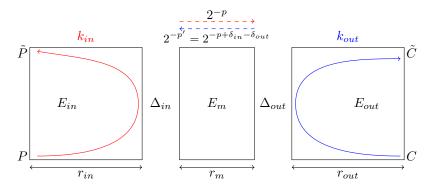
Differential Meet-In-The-Middle [BDD⁺23]

We generate 2^p pairs (P, C).

 $P \rightarrow 2^{|k_{in}|} \tilde{P}$ and $C \rightarrow 2^{|k_{out}|} \tilde{C}$.

We keep k_{in} and k_{out} such that $\tilde{P} = E^{-1}(\tilde{C})$.

Improvement of the differential MITM attack


Improvement of the differential MITM attack

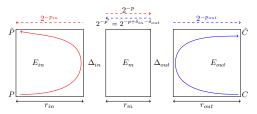
- Extension to truncated differential MITM attack.
- Improved structures.
- State-test technique.
- Probability in the key recovery part.

▲□ ▶ ▲ ∃ ▶ ▲ ∃ ▶ □ 目 ○ ○ ○

Truncated differential MITM

Instead of fixed differences δ_{in} and δ_{out} , we consider sets of differences Δ_{in} and Δ_{out} .

< 6 b


Key guessing improvement : Probability and State-test technique

- State test technique :
 - Technique inherited from impossible differential cryptanalysis in [BLNS18]
 - Test a part of the internal state defining a partition of the involved key bits.

▲□ ▶ ▲ ∃ ▶ ▲ ∃ ▶ □ 目 ○ ○ ○

Key guessing improvement : Probability and State-test technique

- State test technique :
 - Technique inherited from impossible differential cryptanalysis in [BLNS18]
 - Test a part of the internal state defining a partition of the involved key bits.
- Probabilistic key recovery

The probability for a random pair to follow the differential path is now $2^{-p-p_{in}-p_{out}}$

Application of the improvements

Application of the improvements

- 23 rounds of SKINNY-64-192;
- 25 rounds of SKINNY-128-384;
- 23 rounds out of 31 rounds of CRAFT.

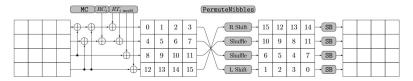

Cipher	Rounds	Time	Data	Memory	Attack	Ref.
CRAFT	21	2 ^{106.53}	2 ^{60.99}	2 ¹⁰⁰	ID	[HSE23]
	23	2 ¹²⁵	2 ⁶⁰	2 ⁶⁸	Tr-Diff-MITM	
	23	2 ¹⁸⁸	2 ⁵²	2 ⁴	MITM	[DHS ⁺ 21]
SKINNY-64-192	23	2 ¹⁸⁴	2 ⁶⁰	2 ⁸	MITM	[DHS ⁺ 21]
	23	2 ¹⁸⁸	2 ⁵⁶	2 ¹⁰⁴	Tr-Diff-MITM	
	24	2 ^{361.9}	2^{117}	2 ¹⁸³	Diff-MITM	[BDD ⁺ 23]
	25	$2^{372.5}$	$2^{122.3}$	2 ^{188.3}	Diff-MITM	[BDD ⁺ 23]
SKINNY-128-384	25	2 ^{378.9}	2 ¹¹⁷	2 ¹⁶⁵	Diff-MITM	
	25	2 ³⁶⁶	2 ^{122.3}	2 ^{188.3}	Diff-MITM	
MITM: Meet In the Middle				ID: Impossible Differential		
Diff-MITM: Differential MITM				Tr-Diff-MITM: Truncated Differential MITM		

 Table: Summary of the best known cryptanalysis on CRAFT, SKINNY-64-192

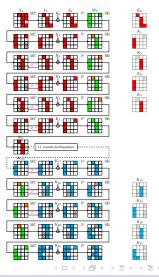
 and SKINNY-128-384 in the single tweak setting.

Description of CRAFT

CRAFT [BLMR19], published in TOSC in 2019, is a lightweight tweakable block cipher operating on a 64-bit block, a 128-bit key $(K_0||K_1)$, and a 64-bit tweak T.

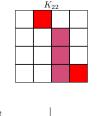
▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

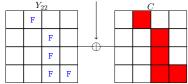
Attack against 22+1 rounds of CRAFT


- We use a truncated differential characteristic over 11 rounds.
- Parameters :

$$p = 44,$$

$$p_{in} = 16, p_{out} = 12,$$


$$|\Delta_{in}| = |\Delta_{out}| = 16,$$


$$|k_{in}| = 48, |k_{out}| = 44,$$
and $|k_{in} \cap k_{out}| = 24.$

ELE DQA

Extension of one round

We fix the 5 words F, thus the structure will be of size 2^{44} . The purple subkey words are already known for both the lower and upper part and the red subkey words are known for the upper part.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Complexities

Time complexity to recover information on the key

$$\mathcal{T} = 2^{12} \times 2^{24} (2^{44} \times 2^{24} \times 2^{16-16} + 2^{44} \times 2^{20} \times 2^{16-12} + 2^{68+68-20-44})$$

= 2¹⁰⁸.

The time complexity to recover the whole key is finally $\mathcal{T} = 2^{125}$.

Complexities

Time complexity to recover information on the key

$$\mathcal{T} = 2^{12} \times 2^{24} (2^{44} \times 2^{24} \times 2^{16-16} + 2^{44} \times 2^{20} \times 2^{16-12} + 2^{68+68-20-44})$$

= 2¹⁰⁸.

The time complexity to recover the whole key is finally $\mathcal{T}=2^{125}.$

Memory and data complexities

 $\mathcal{M}=2^{68}$ and $\mathcal{D}=2^{60}.$

Conclusion

Conclusion

- Several new attacks leading to best known applications.
- Differential MITM attacks have a different nature than differential attacks.

Reference I

Christina Boura, Nicolas David, Patrick Derbez, Gregor Leander, and María Naya-Plasencia.

Differential meet-in-the-middle cryptanalysis.

In Helena Handschuh and Anna Lysyanskaya, editors, *Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part III,* volume 14083 of *Lecture Notes in Computer Science,* pages 240–272. Springer, 2023.

Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.

CRAFT: lightweight tweakable block cipher with efficient protection against DFA attacks.

IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

▲◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ■ ■ ● の Q @

Reference II

Christina Boura, Virginie Lallemand, María Naya-Plasencia, and Valentin Suder. Making the impossible possible. J. Cryptol., 31(1):101–133, 2018. Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology - CRYPTO '90, 10th Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990. Proceedings, volume 537 of Lecture Notes in Computer Science, pages 2-21. Springer, 1990. Whitfield Diffie and Martin F. Hellman.

Special feature exhaustive cryptanalysis of the NBS data encryption standard.

Computer, 10(6):74-84, 1977.

Reference III

Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, and Lei Hu.

Meet-in-the-middle attacks revisited: Key-recovery, collision, and preimage attacks.

In Tal Malkin and Chris Peikert, editors, Advances in Cryptology -CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture Notes in Computer Science, pages 278–308. Springer, 2021.

Reference IV

Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the impossible: Automated search for full impossible-differential, zero-correlation, and integral attacks. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part IV, volume 14007 of Lecture Notes in Computer Science, pages 128–157. Springer, 2023.

A = A = A = A = A = A