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Review Hash Functions

Definition

H : {0,1}∗ → {0,1}n

pad(M) = M1 M2 M3 M4

fh0 = IV f
h1

f
h2

f
h3

· · ·

It’s easy to compute H (M||L) given H (M)

SHA-1, SHA-2, MD5



2nd-preimage

• H : {0,1}∗ → {0,1}n

• Given, M and H (M) find L s.t. H (L) = H (M)

• For a random L:

Pr [H (M) = H (L)] =
1
2n

• On average 2n different L to get a second-preimage.
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2nd-preimage

pad(M) = M1 M2 M3 M4

fh0 = IV f f f · · ·

a collision?

If M has k blocks, then Pr [H (·) = hi ] =
k
2n , thus we need around 2n

k
trials.

Cost∗ : k︸︷︷︸
generate M

+
2n/2

k︸︷︷︸
random messages

, optimal k := 2n/2
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n=96 and l=48, i.e. |M| = 248 blocks

with sha ni generates
≈ 224hash/sec ⇒ we need
248−24sec ≈ 4660 hours ≈ 140 e

However,
• We need around 3377 TB to

store 248 hashes.
• The largest memory we

could get is 98.3 TB across
512 servers!

• Each server has 192GB
Memory
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Distinguished point

d zeros

Only store hi that ends with d-zeros
• Memory usage is 2−d × before
• Increases the CPU work by the factor 2d

Or even better, with above increase the long message size by 2x

• Memory usage is 2x−d × before.
• Increases CPU work by the factor 2d−x

• Sweet spot x := d
2
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Models of Computations

CPU
Huge Memory

enough for 2n/2 elements

• a 2nd -preimage is found after
a CPU generates 2n/2 random
digests and memory
accesses.

• # operations = 2n/2︸︷︷︸
CPU

+ 2n/2︸︷︷︸
memory

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

2n/2 CPUs

• a 2nd -preimage is found after
a CPU generates 2n/2 random
digests.

• #operations =
2n/2︸︷︷︸

# CPUs

× 2n/2︸︷︷︸
#operations/CPU

= 2n



Could we reduce our memory footprint further?



Linear Probing

H (·), nprobes=1
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H (·), nprobes=3



Linear Probing

H (·), nprobes=4



Linear Probing

H (·), nprobes=5



Linear Probing

H (·), nprobes=6



Linear Probing

INDEX 35 bits VALUE 32 bits IGNR 16 bits

SERVER 9bits

DIST 4bits

96 bits digest

No need to save these bits

Save them

Ignore them

• A Uses 3x less memory.
• small overhead from considering false positives.
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Linear Probing



Experimenting with #probes

#Probes needed % of elements
0 0%

1 55%
2 69%
3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.



Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%

2 69%
3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.



Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%

3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.



Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%
3 75%

4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.



Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%
3 75%
4 76%

6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.



Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%
3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.



Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%
3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.



Linear Probing

H (·), probe 1 bucket at once using SIMD



• Instead of 4,660 cpu hours, we need 290,816 cpu hours.
• The attack cost jumped from 140eto 8724e.
• Using only disitinguished point the attack would cost:

• 1,638,400 cpu hours
• i.e. 49k e



Thank you!
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