
Revisiting the Long Message Attack
and Auditing its cost

Ahmed Alharbi

Sorbonne Univertisté
ahmed.alharbi@lip6.fr

Journées C2
16 Oct 2023

Review Hash Functions

Definition

H : {0,1}∗ → {0,1}n

pad(M) = M1 M2 M3 M4

fh0 = IV f
h1

f
h2

f
h3

· · ·

It’s easy to compute H (M||L) given H (M)

SHA-1, SHA-2, MD5

2nd-preimage

• H : {0,1}∗ → {0,1}n

• Given, M and H (M) find L s.t. H (L) = H (M)

• For a random L:

Pr [H (M) = H (L)] =
1
2n

• On average 2n different L to get a second-preimage.

2nd-preimage

• H : {0,1}∗ → {0,1}n

• Given, M and H (M) find L s.t. H (L) = H (M)

• For a random L:

Pr [H (M) = H (L)] =
1
2n

• On average 2n different L to get a second-preimage.

2nd-preimage

pad(M) = M1 M2 M3 M4

fh0 = IV f f f · · ·

a collision?

If M has k blocks, then Pr [H (·) = hi] =
k
2n , thus we need around 2n

k
trials.

Cost∗ : k︸︷︷︸
generate M

+
2n/2

k︸︷︷︸
random messages

, optimal k := 2n/2

2nd-preimage

pad(M) = M1 M2 M3 M4

fh0 = IV f f f · · ·

a collision?

If M has k blocks, then Pr [H (·) = hi] =
k
2n , thus we need around 2n

k
trials.
Cost∗ : k︸︷︷︸

generate M

+
2n/2

k︸︷︷︸
random messages

, optimal k := 2n/2

n=96 and l=48, i.e. |M| = 248 blocks

with sha ni generates
≈ 224hash/sec ⇒ we need
248−24sec ≈ 4660 hours ≈ 140 e

However,
• We need around 3377 TB to

store 248 hashes.
• The largest memory we

could get is 98.3 TB across
512 servers!

• Each server has 192GB
Memory

n=96 and l=48, i.e. |M| = 248 blocks

with sha ni generates
≈ 224hash/sec ⇒ we need
248−24sec ≈ 4660 hours ≈ 140 e

However,
• We need around 3377 TB to

store 248 hashes.
• The largest memory we

could get is 98.3 TB across
512 servers!

• Each server has 192GB
Memory

n=96 and l=48, i.e. |M| = 248 blocks

with sha ni generates
≈ 224hash/sec ⇒ we need
248−24sec ≈ 4660 hours ≈ 140 e

However,
• We need around 3377 TB to

store 248 hashes.
• The largest memory we

could get is 98.3 TB across
512 servers!

• Each server has 192GB
Memory

n=96 and l=48, i.e. |M| = 248 blocks

with sha ni generates
≈ 224hash/sec ⇒ we need
248−24sec ≈ 4660 hours ≈ 140 e

However,
• We need around 3377 TB to

store 248 hashes.
• The largest memory we

could get is 98.3 TB across
512 servers!

• Each server has 192GB
Memory

Distinguished point

d zeros

Only store hi that ends with d-zeros
• Memory usage is 2−d × before
• Increases the CPU work by the factor 2d

Or even better, with above increase the long message size by 2x

• Memory usage is 2x−d × before.
• Increases CPU work by the factor 2d−x

• Sweet spot x := d
2

Distinguished point

d zeros

Only store hi that ends with d-zeros
• Memory usage is 2−d × before
• Increases the CPU work by the factor 2d

Or even better, with above increase the long message size by 2x

• Memory usage is 2x−d × before.
• Increases CPU work by the factor 2d−x

• Sweet spot x := d
2

Models of Computations

CPU
Huge Memory

enough for 2n/2 elements

• a 2nd -preimage is found after
a CPU generates 2n/2 random
digests and memory
accesses.

• # operations = 2n/2︸︷︷︸
CPU

+ 2n/2︸︷︷︸
memory

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

2n/2 CPUs

• a 2nd -preimage is found after
a CPU generates 2n/2 random
digests.

• #operations =
2n/2︸︷︷︸

CPUs

× 2n/2︸︷︷︸
#operations/CPU

= 2n

Could we reduce our memory footprint further?

Linear Probing

H (·), nprobes=1

Linear Probing

H (·), nprobes=2

Linear Probing

H (·), nprobes=3

Linear Probing

H (·), nprobes=4

Linear Probing

H (·), nprobes=5

Linear Probing

H (·), nprobes=6

Linear Probing

INDEX 35 bits VALUE 32 bits IGNR 16 bits

SERVER 9bits

DIST 4bits

96 bits digest

No need to save these bits

Save them

Ignore them

• A Uses 3x less memory.
• small overhead from considering false positives.

Linear Probing

INDEX 35 bits VALUE 32 bits IGNR 16 bits

SERVER 9bits

DIST 4bits

96 bits digest

No need to save these bits

Save them

Ignore them

• A Uses 3x less memory.
• small overhead from considering false positives.

Linear Probing

Experimenting with #probes

#Probes needed % of elements
0 0%

1 55%
2 69%
3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.

Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%

2 69%
3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.

Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%

3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.

Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%
3 75%

4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.

Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%
3 75%
4 76%

6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.

Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%
3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.

Experimenting with #probes

#Probes needed % of elements
0 0%
1 55%
2 69%
3 75%
4 76%
6 80%
7 83%
8 85%
9 87%
10 88%
11 89%
12 90%
13 90.9%
14 91%
15 92%

Discarding 10% of annoying elements enables constant time
probing and insertion, with only 10% of false negatives.

Linear Probing

H (·), probe 1 bucket at once using SIMD

• Instead of 4,660 cpu hours, we need 290,816 cpu hours.
• The attack cost jumped from 140eto 8724e.
• Using only disitinguished point the attack would cost:

• 1,638,400 cpu hours
• i.e. 49k e

Thank you!

	Review
	Hash functions
	Long Message Attack

	Optimizing Memory
	Hash Table

