Correlated Pseudorandomness from the Hardness of Decoding Quasi-Abelian Codes

Maxime Bombar, Geoffroy Couteau, Alain Couvreur, Clément Ducros

CWI. Amsterdam

Journées C2, Najac

October, 16 2023

Secure Multiparty Computation

Additive Secret Sharing

$$\mathbf{x}_A \stackrel{\mathrm{def}}{=} \mathbf{x} - \mathbf{x}_B \approx \$$$
 \mathbf{y}_A

$$egin{aligned} \mathbf{y}_{B} & \overset{ ext{def}}{=} \mathbf{y} - \mathbf{y}_{A} pprox \$ \end{aligned}$$

$$\mathbf{x}_A + \mathbf{x}_B = \mathbf{x}$$
$$\mathbf{y}_A + \mathbf{y}_B = \mathbf{y}$$

Secure multiparty Computation over \mathbb{F}_q

Goal: Compute some function f(x, y) without revealing x, y.

Idea: Compute SHARES(f(x, y)) from SHARES(x, y) and reveal at the end.

- Shares $(x + y) = Shares(x) + Shares(y) \Rightarrow free \checkmark$
- Shares $(\lambda \mathbf{x}) = \lambda \text{Shares}(\mathbf{x}) \Rightarrow \text{free} \checkmark$
- Multiplications ⇒ Require communication ⇒ Costly X.

Maxime Bombar QA-SD October, 16 2023 4/22

The Correlated Randomness Model

Fast online protocol consumming two OLE's per multiplication

How to efficiently distribute many ($\approx 2^{20}, 2^{30}$) OLE's?

Pseudorandom Correlation Generator (PCG)

One OLE to Rule them All

Goal: Distribute **a lot** of random OLE's over \mathbb{F}_q .

Wishful thinking. ([BCGIKS20]¹) Take a ring $\mathcal{R} \simeq \mathbb{F}_q \times \cdots \times \mathbb{F}_q$

Maxime Bombar QA-SD October, 16 2023 7 / 22

 $^{^1\}it{Efficient}$ Pseudorandom Correlation Generators from Ring-LPN, Boyle, Couteau, Gilboa, Ishai, Kohl, Sholl - CRYPTO '20

PCG for OLE [BCGIKS20]

There exists an efficient protocol to distribute additive shares of sparse vectors.²

Idea: Take $\mathcal{R} = \mathbb{F}_q[X]/(F(X))$ where F(X) splits completely.

- Sample randomly $\mathbf{a} \leftarrow \mathcal{R}$.
- Set $\mathbf{U} \stackrel{\mathrm{def}}{=} \mathbf{a} \cdot \mathbf{e}_1 + \mathbf{f}_1 \approx^? \$$

Where \mathbf{e}_i , \mathbf{f}_i are **sparse** polynomials.

• Set $\mathbf{V} \stackrel{\text{def}}{=} \mathbf{a} \cdot \mathbf{e}_2 + \mathbf{f}_2 \approx^? \$$

$$\mathbf{U}\cdot\mathbf{V} = -\mathbf{a}^2(\mathbf{e}_1\mathbf{e}_2) + \mathbf{a}(\mathbf{e}_1\mathbf{f}_2 + \mathbf{e}_2\mathbf{f}_1) + \mathbf{f}_1\mathbf{f}_2$$

= Linear combination of *somewhat* sparse polynomials.

Maxime Bombar QA-SD

²Function secret sharing, Boyle, Gilboa, Ishai - EUROCRYPT '15

PCG for OLE [BCGIKS20]

$$\mathcal{R} = \mathbb{F}_q[X]/(F(X)) \simeq \mathbb{F}_q \times \cdots \mathbb{F}_q$$

$$\mathbf{U} = \mathbf{a} \cdot \mathbf{e}_1 + \mathbf{f}_1$$
$$\mathbf{V} = \mathbf{a} \cdot \mathbf{e}_2 + \mathbf{f}_2$$

SEED_A =
$$(\mathbf{a}, \mathbf{e}_1, \mathbf{f}_1, \text{SHARES}(\mathbf{e}_i \mathbf{f}_j))$$

Locally compute U, SHARE(UV) $\Rightarrow OLE$'s over \mathbb{F}_q via CRT

$$SEED_B = (\mathbf{a}, \mathbf{e}_2, \mathbf{f}_2, SHARES(\mathbf{e}_i \mathbf{f}_j))$$

PCG for OLE [BCGIKS20]

$$\mathcal{R} = \mathbb{F}_q[X]/(F(X)) \simeq \mathbb{F}_q \times \cdots \mathbb{F}_q \implies \mathsf{Only} \; \mathsf{works} \; \mathsf{for} \; \mathsf{large} \; q$$

$$\mathbf{U} = \mathbf{a} \cdot \mathbf{e}_1 + \mathbf{f}_1$$
$$\mathbf{V} = \mathbf{a} \cdot \mathbf{e}_2 + \mathbf{f}_2$$

SEED_A =
$$(\mathbf{a}, \mathbf{e}_1, \mathbf{f}_1, \text{SHARES}(\mathbf{e}_i \mathbf{f}_j))$$

Locally compute U, SHARE(UV) $\Rightarrow OLE's \text{ over } \mathbb{F}_q \text{ via CRT}$

$$SEED_B = (\mathbf{a}, \mathbf{e}_2, \mathbf{f}_2, SHARES(\mathbf{e}_i \mathbf{f}_j))$$

Locally Compute V, Share(UV) \Rightarrow OLE's over \mathbb{F}_q via CRT

This Talk

Goal: Produce *N* OLE's over \mathbb{F}_q .

Group algebras

Finite (abelian) group
$$G$$
, $\mathbb{F}_q[G] = \left\{ \sum_{g \in G} a_g g \mid a_g \in \mathbb{F}_q \right\} \simeq \mathbb{F}_q^{|G|}$

$$\left(\sum_{g\in G}a_gg\right)\left(\sum_{g\in G}b_gg\right)\stackrel{\mathrm{def}}{=}\sum_{g\in G}\left(\sum_{h\in G}a_hb_{h^{-1}g}\right)g.$$

$$G = \{1\}$$
 $\mathbb{F}_q[G] = \mathbb{F}_q$,

$$G = \mathbb{Z}/N\mathbb{Z}$$
 $\mathbb{F}_q[G] = \mathbb{F}_q[X]/(X^N - 1),$

$$G = \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/M\mathbb{Z}$$
 $\mathbb{F}_q[G] = \mathbb{F}_q[X,Y]/(X^N-1,Y^M-1).$

Maxime Bombar QA-SD October, 16 2023 11 / 22

Quasi-abelian codes \simeq Module lattices

A quasi-abelian code is an $\mathbb{F}_q[G]$ -submodule of $\mathbb{F}_q[G]^\ell$

$$n \stackrel{\text{def}}{=} |G|.$$

$$n \stackrel{\text{def}}{=} |G|.$$

$$M_{\gamma_{1,1}} M_{\gamma_{1,2}} \cdots M_{\gamma_{1,\ell}}$$

$$M_{\gamma_{2,1}} M_{\gamma_{2,2}} \cdots M_{\gamma_{2,\ell}}$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots$$

$$M_{\gamma_{k,1}} M_{\gamma_{k,2}} \cdots M_{\gamma_{k,\ell}}$$

$$\vdots \qquad \vdots \qquad \ddots \qquad \vdots$$

$$M_{\gamma_{k,1}} M_{\gamma_{k,2}} \cdots M_{\gamma_{k,\ell}}$$

$$\downarrow n$$

$$\mathcal{C} \stackrel{\mathrm{def}}{=} \{ \mathbf{m} \mathbf{\Gamma} \mid \mathbf{m} \in \mathbb{F}_q[G]^k \}.$$

Example: Quasi-cyclic codes

$$G = \mathbb{Z}/n\mathbb{Z}$$
 $\mathcal{R} = \mathbb{F}_q[G] \simeq \mathbb{F}_q[X]/(X^n - 1)$

$$\mathbf{a} \in \mathbb{F}_q[G] \longleftrightarrow egin{pmatrix} a_0 & a_1 & \dots & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & \dots & a_{n-2} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{pmatrix}$$

$$\mathbf{m} \begin{pmatrix} \mathbf{a}^{(1)} & \mathbf{a}^{(2)} \\ \circlearrowright & \circlearrowright \end{pmatrix} + \begin{pmatrix} \mathbf{e}^{(1)} & \mathbf{e}^{(2)} \end{pmatrix} \xrightarrow{\sim} \left\{ \begin{array}{c} \mathbf{m}(X)\mathbf{a}^{(1)}(X) + \mathbf{e}^{(1)}(X) \in \mathcal{R} \\ \mathbf{m}(X)\mathbf{a}^{(2)}(X) + \mathbf{e}^{(2)}(X) \in \mathcal{R} \end{array} \right.$$

Maxime Bombar QA-SD October, 16 2023 13 / 22

Quasi-Abelian (Syndrome) Decoding

Search version

Data. Random $\mathbf{H} \leftarrow \mathbb{F}_q[G]^{(\ell-k)\times \ell}$, a target weight $t\leqslant n$ and $\mathbf{s}\in \mathbb{F}_q[G]^{\ell-k}$.

Goal. Find $\mathbf{e} = (\mathbf{e}_1, \dots, \mathbf{e}_\ell) \in \mathbb{F}_q[G]^\ell$ with $|\mathbf{e}_i| = t$ and $\mathbf{H}\mathbf{e}^\top = \mathbf{s}$.

Decision version

Data. Random $\mathbf{H} \leftarrow \mathbb{F}_q[G]^{(\ell-k) \times \ell}$, a target weight $t \leqslant n$ and $\mathbf{y} \in \mathbb{F}_q[G]^{\ell-k}$.

Question. Is \mathbf{v} uniform or of the form $\mathbf{H}\mathbf{e}^{\top}$ with $|\mathbf{e}_i| = t$?

Hardness of decision version \iff Pseudorandomness of $(\mathbf{H}, \mathbf{H}\mathbf{e}^{\top})$.

Quasi-cyclic versions used in BIKE and HQC (NIST 4th round).

Maxime Bombar QA-SD October, 16 2023 14 / 22

Security?

Why should we believe in pseudorandomness of (H,He^\top) ?

No decoding algorithm (50+ years of research)

But search-to-decision reduction only for particular cases ($[\mathbf{B}\mathsf{CD22}]^3$).

Roughly all known generic attacks^a fit in the *linear tests* framework.

^aNot grobner based

Maxime Bombar QA-SD October, 16 2023 15 / 22

³ On Codes and Learning With Errors over Function Fields, B., Couvreur, Debris-Alazard - CRYPTO '22.

The linear test framework

Essentially all known ⁴ distinguishers can be expressed as a *linear* function $\mathbf{v} \cdot \mathbf{y}^{\top}$.

 $\mathbf{v} \cdot \mathbf{H} \mathbf{e}^{\top} = \langle \mathbf{v} \mathbf{H}, \mathbf{e} \rangle$ is biased towards 0 if $\mathbf{v} \mathbf{H}$ is *sparse*.

Maxime Bombar QA-SD October, 16 2023

⁴Information Set Decoding, Statistical Decoding, folding ...

Security against linear attacks

No low-weight (non-zero) $vH \Longleftrightarrow \mathcal{C}^{\perp}$ has good minimum distance

Gilbert-Varshamov bound [FL15]⁵

Random QA codes have minimum distance linear in their length.

Maxime Bombar QA-SD October, 16 2023

⁵ Thresholds of Random Quasi-Abelian Codes, Fan, Lin - IEEE-IT

A multivariate setting

Goal. Find G such that $\mathbb{F}_q[G] \simeq \underbrace{\mathbb{F}_q \times \cdots \times \mathbb{F}_q}_{N \text{ copies}}$ with N >> 1.

Idea. Take $G = (\mathbb{Z}/(q-1)\mathbb{Z})^t$ for some $t \geqslant 1$.

$$\begin{split} \mathbb{F}_q[G] &= \quad \mathbb{F}_q[X_1, \dots, X_t] / (X_1^{q-1} - 1, \dots, X_t^{q-1} - 1) \\ &= \quad \prod_{(\zeta_1, \dots, \zeta_t) \in (\mathbb{F}_q^{\times})^t} \mathbb{F}_q[X_1, \dots, X_t] / (X_1 - \zeta_1, \dots, X_t - \zeta_t) \\ &= \quad \underbrace{\mathbb{F}_q \times \dots \times \mathbb{F}_q}_{(q-1)^t \text{ copies}} \end{split}$$

With q=3, choose t=20 to get $N=2^{20}$ OLE correlations over \mathbb{F}_3 .

Maxime Bombar QA-SD October, 16 2023 18 / 22

The curious case of \mathbb{F}_2

- Is it possible to go to F₂?
- Obviously, we cannot set q=2 in the above construction.
- Most natural approach would be using the ring of boolean functions

$$\mathcal{R} = \mathbb{F}_2[X_1, \dots, X_t]/(X_1^2 - X_1, \dots, X_t^2 - X_t).$$

▲This is NOT a group algebra.

Vulnerable to a very simple linear attack.

The curious case of \mathbb{F}_2 (cont'd)

In fact we have the following theorem

There is no group
$$G$$
 such that $\mathbb{F}_2[G] = \underbrace{\mathbb{F}_2 \times \cdots \times \mathbb{F}_2}_{N \text{ times}}$ unless $G = \{1\}$ and $N = 1$.

Proof.
$$G \subset \mathbb{F}_2[G]^{\times}$$
 and $|(\mathbb{F}_2 \times \cdots \times \mathbb{F}_2)^{\times}| = 1$.

Towards \mathbb{F}_2 ?

• There exists G and a ring \mathcal{R} endowed with an action of G such that

$$\mathbb{F}_2[G] \underbrace{\simeq}_{As \; modules} \mathcal{R} \underbrace{\simeq}_{As \; algebras} \mathbb{F}_2 imes \cdots imes \mathbb{F}_2$$

- Construction based on number theory in function fields
- Needs more work on the MPC side....

Conclusion and perspectives

What I did not talk about

- Concrete security
- Practical parameters relevant for MPC
- From 2 to N party computation.
- Efficiency

Open questions:

- Are there other secure structured variants of the Decoding Problem ?
- Characterise secure instances ? (Uncertainty principle ?)
- Possibility to fix the protocol for \mathbb{F}_2 ?
- ...

Thank You!