Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle¹ Philippe Gaborit² Younes Hatri¹ Ayoub Otmani¹

 1 LITIS, University of Rouen Normandie, Normandie Univ, France

² XLIM, Université de Limoges, France

Najac, 15/10/2023

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Introduction

Context:

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Introduction

Context:

• Code based post-quantum cryptography (NIST call)

Context:

Rank-based encryption schemes

Rank Metric Trapdoor

Functions with Homogeneous Errors Étienne Burle, Philippe Gaborit.

Younes Hatri, Ayoub Otmani

- One-way trapdoor function
- Analysis and security of the scheme

- Code based post-quantum cryptography (NIST call)
- Designing an injective one-way function based on rank metric linear codes

Context:

- Code based post-quantum cryptography (NIST call)
- Designing an injective one-way function based on rank metric linear codes

Main result:

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank Metric Trapdoor

Functions with Homogeneous Errors

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Context:

- Code based post-quantum cryptography (NIST call)
 - Designing an injective one-way function based on rank metric linear codes

Main result:

Security relying on classical problems

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank Metric Trapdoor

Functions with Homogeneous Errors

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Context:

Rank-based encryption schemes

Younes Hatri, Ayoub Otmani

Rank Metric Trandoor

Functions with Homogeneous Errors Étienne Burle, Philippe Gaborit.

- One-way trapdoor function
- Analysis and security of the scheme

- Code based post-quantum cryptography (NIST call)
- Designing an injective one-way function based on rank metric linear codes

Main result:

- Security relying on classical problems
- For some parameters, public key *statistically indistinguishable* from a random matrix

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme 1 Rank-based encryption schemes

2 One-way trapdoor function

3 Analysis and security of the scheme

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme 1 Rank-based encryption schemes

One-way trapdoor function

3 Analysis and security of the scheme

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Rank metric

\mathbb{F}_q : finite field of cardinality q

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Rank metric

\mathbb{F}_q : finite field of cardinality q

 \mathbb{F}_{q^m} : finite field of cardinality q^m viewed as \mathbb{F}_q -vector space of dimension m

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Rank metric

\mathbb{F}_q : finite field of cardinality q

 \mathbb{F}_{q^m} : finite field of cardinality q^m viewed as \mathbb{F}_q -vector space of dimension m

$$\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$$

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Rank metric

\mathbb{F}_q : finite field of cardinality q

 \mathbb{F}_{q^m} : finite field of cardinality q^m viewed as \mathbb{F}_q -vector space of dimension m

$$\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$$

The support of x is ⟨x₁,...,x_n⟩_{𝔽q} ⊂ 𝔽_{q^m}, the sub-vector space of 𝔽_{q^m} generated by its elements

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Rank metric

\mathbb{F}_q : finite field of cardinality q

 \mathbb{F}_{q^m} : finite field of cardinality q^m viewed as \mathbb{F}_q -vector space of dimension m

$$\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$$

- The support of x is ⟨x₁,...,x_n⟩_{𝔽q} ⊂ 𝔽_{q^m}, the sub-vector space of 𝔽_{q^m} generated by its elements
- The **rank** of x is the dimension of its support

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Generic problem

Search Rank decoding

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) imes n}$ a random matrix
- an integer t > 0
- $\mathbf{e} \in \mathbb{F}_{q^m}^n$ a random vector of rank t called *error vector*

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Generic problem

Search Rank decoding

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) imes n}$ a random matrix
- an integer t > 0
- $\mathbf{e} \in \mathbb{F}_{q^m}^n$ a random vector of rank t called *error vector*

Problem : Given $(\mathbf{H}, \mathbf{e}\mathbf{H}^{\mathsf{T}})$, recover \mathbf{e}

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Generic problem

Search Rank decoding

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) imes n}$ a random matrix
- an integer t > 0
- $\mathbf{e} \in \mathbb{F}_{q^m}^n$ a random vector of rank t called *error vector*

Problem : Given $(\mathbf{H}, \mathbf{e}\mathbf{H}^{\mathsf{T}})$, recover \mathbf{e}

 $\label{eq:Remark} \mbox{Remark}: \mbox{Distinguishing } (\mathbf{H}, \mathbf{e} \mathbf{H}^{\mathsf{T}}) \mbox{ from } (\mathbf{H}, \mathbf{s}) \mbox{ is the decision} \\ \mbox{version of the problem}$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Generic problem

Search Rank decoding

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) imes n}$ a random matrix
- an integer t > 0
- $\mathbf{e} \in \mathbb{F}_{q^m}^n$ a random vector of rank t called *error vector*

Problem : Given $(\mathbf{H}, \mathbf{e}\mathbf{H}^{\mathsf{T}})$, recover \mathbf{e}

 $\label{eq:Remark} \mbox{Remark}: \mbox{Distinguishing } (\mathbf{H}, \mathbf{e} \mathbf{H}^{\mathsf{T}}) \mbox{ from } (\mathbf{H}, \mathbf{s}) \mbox{ is the decision} \\ \mbox{version of the problem}$

Assumption

Decision version of rank decoding in as hard as search version

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Rank decoding's hardness

Proposition

There is a probabilistic reduction from decoding in Hamming metric to rank decoding.¹

¹Gaborit, Zemor. On the hardness of the decoding and the minimum distance problems for rank codes, ISIT 2016.

²Aragon, Gaborit, Hauteville, Tillich. A new algorithm for solving the rank syndrome decoding problem, ISIT 2018

³Bardet, Briaud, Bros, Gaborit, Tillich. *Revisiting algebraic attacks on MinRank and on the rank decoding problem, 2022*

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Rank decoding's hardness

Proposition

There is a probabilistic reduction from decoding in Hamming metric to rank decoding.¹

Combinatorial attacks2Algebraic attacks3
$$O\left((n-k)^3 m^3 q^{w \frac{(k+1)m}{n}-m}\right)$$
Exponential

¹Gaborit, Zemor. On the hardness of the decoding and the minimum distance problems for rank codes, ISIT 2016.

²Aragon, Gaborit, Hauteville, Tillich. A new algorithm for solving the rank syndrome decoding problem, ISIT 2018

³Bardet, Briaud, Bros, Gaborit, Tillich. *Revisiting algebraic attacks on MinRank and on the rank decoding problem, 2022*

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Encryption schemes relying on rank decoding

	Transformed	Hidden	Ciphertext
	code	structure	in two parts
Description	$\mathbf{G} ightarrow \mathbf{SGT}$	$\mathbf{G} ightarrow \mathbf{SG}$	(C_1, C_2) :
			$C_2 - C_1 \mathbf{V} = \mathbf{mG} + \mathbf{e}$
Used code	Gabidulin	Ideal LRPC	Gabidulin
Schemes	1991 GPT ⁴	2019 ROLLO	2020 RQC
	2017 Loidreau		
Security	RD	IRD	IRD
problems	IfRD	lfRD	

RD :Rank decoding, IRD: Ideal rank decoding, IfRC: Indistinguishability from a random code

⁴Gabidulin, Paramonov, Tretjakov

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

New generic problem

Rank support learning (RSL)

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) imes n}$ a random matrix
- an integer t > 0
- $\mathbf{E} \in \mathbb{F}_{q^m}^{n \times N}$ a random matrix such that the \mathbb{F}_q -vector space \mathcal{E} generated by its entries is of dimension t

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

New generic problem

Rank support learning (RSL)

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) imes n}$ a random matrix
- an integer t > 0
- $\mathbf{E} \in \mathbb{F}_{q^m}^{n \times N}$ a random matrix such that the \mathbb{F}_q -vector space \mathcal{E} generated by its entries is of dimension t

Problem : Given (H, HE), recover \mathcal{E}

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

New generic problem

Rank support learning (RSL)

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) imes n}$ a random matrix
- an integer t > 0
- $\mathbf{E} \in \mathbb{F}_{q^m}^{n \times N}$ a random matrix such that the \mathbb{F}_q -vector space \mathcal{E} generated by its entries is of dimension t

Problem : Given (H, HE), recover \mathcal{E}

Remark : **E** is homogeneous of degree t with support \mathcal{E}

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

New generic problem

Rank support learning (RSL)

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) imes n}$ a random matrix
- an integer t > 0
- $\mathbf{E} \in \mathbb{F}_{q^m}^{n \times N}$ a random matrix such that the \mathbb{F}_q -vector space \mathcal{E} generated by its entries is of dimension t

Problem : Given (H, HE), recover \mathcal{E}

Remark : **E** is homogeneous of degree t with support \mathcal{E}

Assumption

Rank support learning is as hard as rank decoding if N < kt.

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Attacks on rank support learning

	Nature	Complexity	Condition
2017 ⁵	Combinatorial	Poly	$N \ge nt$

⁵Gaborit, Hauteville, Phan, Tillich. *Identity-based encryption from rank metric, CRYPTO2017*

⁶Debris-Alazard, Tillich. *Two attacks on rank metric code-based schemes: Ranksign and an identity-based encryption scheme ASIACRYPT 2018*

⁷Bardet, Briaud. An algebraic approach to the rank support learning problem, PQCrypto2021

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Attacks on rank support learning

		Nature	Complexity	Condition
-	2017 ⁵	Combinatorial	Poly	$N \ge nt$
-	2018 ⁶	Algebraic	Sub-exp	N > kt

⁵Gaborit, Hauteville, Phan, Tillich. *Identity-based encryption from rank metric, CRYPTO2017*

⁶Debris-Alazard, Tillich. *Two attacks on rank metric code-based schemes: Ranksign and an identity-based encryption scheme ASIACRYPT 2018*

⁷Bardet, Briaud. An algebraic approach to the rank support learning problem, PQCrypto2021

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Attacks on rank support learning

		Nature	Complexity	Condition
-	2017 ⁵	Combinatorial	Poly	$N \ge nt$
-	2018 ⁶	Algebraic	Sub-exp	N > kt
	2021 ⁷	Algebraic	Exp	Thwarted when $N < kt$

 $^5 {\rm Gaborit, \, Hauteville, \, Phan, \, Tillich. }$ Identity-based encryption from rank metric, CRYPT02017

⁶Debris-Alazard, Tillich. *Two attacks on rank metric code-based schemes: Ranksign and an identity-based encryption scheme ASIACRYPT 2018*

⁷Bardet, Briaud. An algebraic approach to the rank support learning problem, PQCrypto2021

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Attacks on rank support learning

	Nature	Complexity	Condition
2017 ⁵	Combinatorial	Poly	$N \ge nt$
2018 ⁶	Algebraic	Sub-exp	N > kt
2021 ⁷	Algebraic	Exp	Thwarted when $N < kt$
2022 ⁸	Combinatorial	Poly	N > ktm/(m-t)

⁵Gaborit, Hauteville, Phan, Tillich. *Identity-based encryption from rank metric, CRYPTO2017*

⁶Debris-Alazard, Tillich. *Two attacks on rank metric code-based schemes: Ranksign and an identity-based encryption scheme ASIACRYPT 2018*

⁷Bardet, Briaud. An algebraic approach to the rank support learning problem, PQCrypto2021

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

RSL-based encryption schemes

	Transformed	Hidden	Ciphertext
	code	structure	in two parts
Description	$\mathbf{G} \rightarrow \mathbf{SGT}$	$\mathbf{G} \to \mathbf{S}\mathbf{G}$	(C_1, C_2) :
			$C_2 - C_1 \mathbf{V} = \mathbf{mG} + \mathbf{E}$
Used code	Gabidulin	LRPC	Gabidulin
Schemes	2022 LowMS	2022 ⁹	2019 Li-Ping Wang
Security	RSL	RSL	RSL
problems	IfRD	IfRD	

RSL: Rank syndrome learning, IfRC : Indistinguishability from a random code

⁹Aguilar-Melchor, Aragon, Dyseryn, Gaborit, and Zémor. *LRPC codes with multiple syndromes: near ideal-size KEMs without ideals*

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Our scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Our scheme

Definitions

 $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is homogeneous of weight w if the support of the hole matrix is of low dimension w (used in LRPC).

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Definitions

 $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is homogeneous of weight w if the support of the hole matrix is of low dimension w (used in LRPC).

 $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is semi-homogeneous of weight w if the support of each of its rows is of low dimension w.

Our scheme

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Our scheme

Definitions

 $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is homogeneous of weight w if the support of the hole matrix is of low dimension w (used in LRPC).

 $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is semi-homogeneous of weight w if the support of each of its rows is of low dimension w. The *support* of \mathbf{H} is (W_1, \ldots, W_ℓ) , where W_i is the support of its *i*-th row.

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Definitions

 $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is homogeneous of weight w if the support of the hole matrix is of low dimension w (used in LRPC).

 $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is semi-homogeneous of weight w if the support of each of its rows is of low dimension w. The *support* of \mathbf{H} is (W_1, \ldots, W_ℓ) , where W_i is the support of its *i*-th row.

• Use of a transformed code

Our scheme

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Our scheme

Definitions

 $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is homogeneous of weight w if the support of the hole matrix is of low dimension w (used in LRPC).

 $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is semi-homogeneous of weight w if the support of each of its rows is of low dimension w. The *support* of \mathbf{H} is (W_1, \ldots, W_ℓ) , where W_i is the support of its *i*-th row.

- Use of a transformed code
- Security relying on Rank decoding and RSL only
Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Rank-based encryption schemes

2 One-way trapdoor function

3 Analysis and security of the scheme

Étienne Burle, Philippe

Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Construction of trapdoor function

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Construction of trapdoor function

Three polynomial-time algorithms : (*Gen*, *Eval*, *Invert*)

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Construction of trapdoor function

Three polynomial-time algorithms : (*Gen*, *Eval*, *Invert*)

1 pk,tk $\leftarrow Gen(\mathbb{1}^{\lambda})$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Construction of trapdoor function

Three polynomial-time algorithms : (*Gen*, *Eval*, *Invert*)

1 pk,tk $\leftarrow Gen(\mathbb{1}^{\lambda})$

2 Eval(pk,x) will evaluate with public key pk in x

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Construction of trapdoor function

Three polynomial-time algorithms : (*Gen*, *Eval*, *Invert*)

- $1 \mathsf{pk,tk} \leftarrow \mathit{Gen}(\mathbb{1}^{\lambda})$
- 2 Eval(pk,x) will evaluate with public key pk in x
- Invert(tk, Eval(pk,x)) returns x with overwhelming probability

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

$$\mathbf{1} \ \mathbf{R} \xleftarrow{\$} \mathbb{F}_{q^m}^{k \times L}$$

Gen

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Gen

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

R ← F_{q^m}^{k×L} W ← F_{q^m}^{n×L} : semi-homogeneous of weight w Return (R|-RW^T), W

Gen

Gen

Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme R ← F^{k×L}_{q^m}
W ← F^{n×L}_{q^m} : semi-homogeneous of weight w
Return (R| - RW^T), W

Public key :
$$\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^{\mathsf{T}}) \in \mathbb{F}_{q^m}^{k imes (n+L)}$$

Gen

Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe

Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

R ← F^{k×L}_{q^m} W ← F^{n×L}_{q^m} : semi-homogeneous of weight w Return (R|-RW^T), W

Public key :
$$\mathbf{G} = (\mathbf{R}| - \mathbf{R}\mathbf{W}^{\mathsf{T}}) \in \mathbb{F}_{q^m}^{k \times (n+L)}$$

Secret key : W

Gen

Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe

Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

R ← F_{q^m}^{k×L}
W ← F_{q^m}^{n×L} : semi-homogeneous of weight w
Return (R| - RW^T), W

Public key :
$$\mathbf{G} = (\mathbf{R}| - \mathbf{R}\mathbf{W}^{\mathsf{T}}) \in \mathbb{F}_{q^m}^{k \times (n+L)}$$

Secret key : W

Remark : $\mathbf{G}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}} = \mathbf{0}$

Étienne Burle, Philippe

Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Eval

Public key : G

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Eval

Public key : G

)
$$\mathbf{X} \in \mathbb{F}_{q^m}^{N imes k}$$
 : input

(

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Eval

Public key : G

2 $\mathbf{E} \stackrel{\$}{\leftarrow} \mathbb{F}_{q^m}^{N \times (n+L)}$ homogeneous of weight t

1 $\mathbf{X} \in \mathbb{F}_{a^m}^{N \times k}$: input

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Eval

Public key : G

X ∈ F^{N×k}_{q^m} : input
E ← F^{N×(n+L)}_{q^m} homogeneous of weight t

3 Compute and return the output

 $\mathbf{C} = \mathbf{X}\mathbf{G} + \mathbf{E}$

Étienne Burle, Philippe

Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Invert

Secret key : W

Étienne Burle, Philippe

Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Invert

Secret key : W

1 C = XG + E : input

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Invert

Secret key : W

1 C = XG + E : input

Compute
$$\mathbf{C}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}} = (\mathbf{X}\mathbf{G} + \mathbf{E})(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$$

= $\mathbf{X}\mathbf{G}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}} + \mathbf{E}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$
= $\mathbf{E}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Invert

Secret key : W

1 C = XG + E : input

2 Compute
$$\mathbf{C}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}} = (\mathbf{X}\mathbf{G} + \mathbf{E})(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$$

= $\mathbf{X}\mathbf{G}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}} + \mathbf{E}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$
= $\mathbf{E}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$

③ Recover **E** with *Homogeneous error decoding*

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Invert

Secret key : W

 $\mathbf{1} \mathbf{C} = \mathbf{X}\mathbf{G} + \mathbf{E} : input$

2 Compute
$$\mathbf{C}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}} = (\mathbf{X}\mathbf{G} + \mathbf{E})(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$$

= $\mathbf{X}\mathbf{G}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}} + \mathbf{E}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$
= $\mathbf{E}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$

3 Recover **E** with *Homogeneous error decoding*

4 Compute $\mathbf{C} - \mathbf{E} = \mathbf{X}\mathbf{G}$ and recover \mathbf{X} with linear algebra

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Invert

Secret key : W

 $\mathbf{1} \mathbf{C} = \mathbf{X}\mathbf{G} + \mathbf{E} : input$

2 Compute
$$\mathbf{C}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}} = (\mathbf{X}\mathbf{G} + \mathbf{E})(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$$

= $\mathbf{X}\mathbf{G}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}} + \mathbf{E}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$
= $\mathbf{E}(\mathbf{W}, \mathbf{I}_n)^{\mathsf{T}}$

3 Recover **E** with *Homogeneous error decoding*

4 Compute C - E = XG and recover X with linear algebra **5** Return (X, E)

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

- $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell imes n}$ semi-homogeneous of weight w and support (W_1, \ldots, W_ℓ)
- An integer t > 0

•
$$\mathbf{S} \in \mathbb{F}_{a^m}^{\ell \times N}$$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

- $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell imes n}$ semi-homogeneous of weight w and support (W_1, \ldots, W_ℓ)
- An integer t > 0

•
$$\mathbf{S} \in \mathbb{F}_{q^m}^{\ell \times N}$$

Recover **E** homogeneous of weight *t* from HE = S

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

- $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell imes n}$ semi-homogeneous of weight w and support (W_1, \ldots, W_ℓ)
- An integer t > 0
- $\mathbf{S} \in \mathbb{F}_{q^m}^{\ell \times N}$

Recover **E** homogeneous of weight *t* from HE = S

Theorem (Burle, Gaborit, Hartri, Otmani)

If $N \ge wt$ and $\ell w \ge n$, there is a polynomial time algorithm that recovers **E** with a failure probability upper bounded by

$$\left(1 - \prod_{i=0}^{tw-1} (1 - q^{i-N}) + \frac{q^{2(w-1)t}}{q^m - q^{t-1}}\right)^{\ell} + 1 - \left(1 - \frac{q^{tw}}{q^m - q^{t-1}}\right)^{\ell}$$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

- $\mathbf{H} \in \mathbb{F}_{q^m}^{\ell imes n}$ semi-homogeneous of weight w and support (W_1, \ldots, W_ℓ)
- An integer t > 0
- $\mathbf{S} \in \mathbb{F}_{q^m}^{\ell \times N}$

Recover **E** homogeneous of weight *t* from $\mathbf{HE} = \mathbf{S}$

Theorem (Burle, Gaborit, Hartri, Otmani)

If $N \ge wt$ and $\ell w \ge n$, there is a polynomial time algorithm that recovers **E** with a failure probability upper bounded by

$$\left(1 - \prod_{i=0}^{tw-1} (1 - q^{i-N}) + \frac{q^{2(w-1)t}}{q^m - q^{t-1}}\right)^{\ell} + 1 - \left(1 - \frac{q^{tw}}{q^m - q^{t-1}}\right)^{\ell}$$

Asymptotically equivalent to ℓq^{tw-m}

Étienne Burle, Philippe Gaborit,

Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

 $\mathbf{H}\mathbf{E}=\mathbf{S}$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

HE = S

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

HE = S

1 Considering \mathbf{h}_i and \mathbf{s}_i the *i*-th row of \mathbf{H} and \mathbf{S} , we have the equation $\mathbf{h}_i \mathbf{E} = \mathbf{s}_i$.

• W_i : support of \mathbf{h}_i

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

HE = S

- W_i : support of \mathbf{h}_i
- ${\mathcal E}$: support of E

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

HE = S

- W_i : support of \mathbf{h}_i
- \mathcal{E} : support of \mathbf{E}
- $\mathbf{s}_i \in \mathbb{F}_{q^m}^N$ seen as a sample of N elements that generates $W_i \cdot \mathcal{E}$ (with $E \cdot F := \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q}$)

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

HE = S

- W_i : support of \mathbf{h}_i
- \mathcal{E} : support of \mathbf{E}
- $\mathbf{s}_i \in \mathbb{F}_{q^m}^N$ seen as a sample of N elements that generates $W_i \cdot \mathcal{E}$ (with $E \cdot F := \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q}$) $\rightarrow N \geq tw$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

HE = S

1 Considering \mathbf{h}_i and \mathbf{s}_i the *i*-th row of **H** and **S**, we have the equation $\mathbf{h}_i \mathbf{E} = \mathbf{s}_i$.

- W_i : support of \mathbf{h}_i
- \mathcal{E} : support of \mathbf{E}
- $\mathbf{s}_i \in \mathbb{F}_{q^m}^N$ seen as a sample of N elements that generates $W_i \cdot \mathcal{E}$ (with $E \cdot F := \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q}$) $\rightarrow N \geq tw$

Recover \mathcal{E} with \mathbf{s}_i and W_i of basis $(f_1 \dots f_w)$:

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

HE = S

1 Considering \mathbf{h}_i and \mathbf{s}_i the *i*-th row of **H** and **S**, we have the equation $\mathbf{h}_i \mathbf{E} = \mathbf{s}_i$.

- W_i : support of \mathbf{h}_i
- \mathcal{E} : support of \mathbf{E}
- $\mathbf{s}_i \in \mathbb{F}_{q^m}^N$ seen as a sample of N elements that generates $W_i \cdot \mathcal{E}$ (with $E \cdot F := \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q}$) $\rightarrow N \geq tw$

Recover \mathcal{E} with \mathbf{s}_i and W_i of basis $(f_1 \dots f_w)$: $\bigcap f_i^{-1}(W_i \cdot \mathcal{E})$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

HE = S

- W_i : support of \mathbf{h}_i
- \mathcal{E} : support of \mathbf{E}
- $s_i \in \mathbb{F}_{q^m}^N$ seen as a sample of N elements that generates $W_i \cdot \mathcal{E}$ (with $E \cdot F := \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q}$) $\rightarrow N \geq tw$ Recover \mathcal{E} with s_i and W_i of basis $(f_1 \dots f_w)$: $\bigcap f_i^{-1}(W_i \cdot \mathcal{E})$
- **2** E can then be recovered solving N linear systems with ℓtw equations and nt unknowns

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Homogeneous error decoding

HE = S

- W_i : support of \mathbf{h}_i
- \mathcal{E} : support of \mathbf{E}
- $\mathbf{s}_i \in \mathbb{F}_{q^m}^N$ seen as a sample of N elements that generates $W_i \cdot \mathcal{E}$ (with $E \cdot F := \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q}) \to N \geq tw$ Recover \mathcal{E} with \mathbf{s}_i and W_i of basis $(f_1 \dots f_w)$: $\bigcap f_j^{-1}(W_i \cdot \mathcal{E})$
- **2** E can then be recovered solving N linear systems with ℓtw equations and nt unknowns $\rightarrow \ell w \ge n$
Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme 1 Rank-based encryption schemes

One-way trapdoor function

3 Analysis and security of the scheme

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Security of the scheme

$$\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^{\mathsf{T}})$$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Security of the scheme

$$\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^{\mathsf{T}})$$

Various aspects of security rely on classical problems :

• Inversion of the function : Rank Support Learning $(\mathsf{Recover}\ \mathbf{X} \text{ and } \mathbf{E} \text{ from } \mathbf{X}\mathbf{G} + \mathbf{E})$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Security of the scheme

 $\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^{\mathsf{T}})$

- Inversion of the function : Rank Support Learning $(\mathsf{Recover}\ \mathbf{X} \text{ and } \mathbf{E} \text{ from } \mathbf{X}\mathbf{G} + \mathbf{E})$
- Recovery of the trapdoor : *Search Rank Decoding* (Recover **W** from **G**)

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Security of the scheme

 $\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^{\mathsf{T}})$

- Inversion of the function : Rank Support Learning $(\mathsf{Recover}\ \mathbf{X} \text{ and } \mathbf{E} \text{ from } \mathbf{X}\mathbf{G} + \mathbf{E})$
- Recovery of the trapdoor : Search Rank Decoding (Recover W from G)
- Indistinguishability of **G** from a random matrix : *Decision Rank Decoding*

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Security of the scheme

 $\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^\mathsf{T})$

- Inversion of the function : Rank Support Learning $(\mathsf{Recover}\ \mathbf{X} \text{ and } \mathbf{E} \text{ from } \mathbf{X}\mathbf{G} + \mathbf{E})$
- Recovery of the trapdoor : *Search Rank Decoding* (Recover **W** from **G**)
- Indistinguishability of **G** from a random matrix : *Decision Rank Decoding*
- \Rightarrow G computationally indistinguishable from a uniform matrix

Parameters

Étienne Burle,)	۱	т	L	k	n	W	t	Ν	pk	ct
Philippe Gaborit,	8	0	179	37	16	163	6	14	84	64	367
Younes Hatri, Ayoub Otmani	1	28	293	43	20	261	8	19	153	203	1,664
	1	92	443	59	27	391	9	26	237	618	5,694
Rank-based encryption	2	56	409	200	33	521	4	32	128	1,134	4,608

One-way trapdoor function

Analysis and security of the scheme Table: q = 2, sizes of public key and ciphertext are in KB, probability of error $< 2^{-\lambda}$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

λ	т	L	k	п	W	t	Ν	pk	ct
80	179	37	16	163	6	14	84	64	367
128	293	43	20	261	8	19	153	203	1,664
192	443	59	27	391	9	26	237	618	5,694
256	409	200	33	521	4	32	128	1,134	4,608

Parameters

Table: q = 2, sizes of public key and ciphertext are in KB, probability of error $<2^{-\lambda}$

Security	pkSize (KB)	ctSize (KB)
128	1.90	2.04
192	2.29	2.41
256	2.50	2.63

Table: ROLLO encryption parameters

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Other property on ${\boldsymbol{G}}$

$$\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^\mathsf{T})$$

 $S_w\left(\mathbb{F}_{q^m}^L
ight)$: set of vectors of length L and rank w

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Other property on ${\bf G}$

$$\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^{\mathsf{T}})$$

Theorem (Burle, Gaborit, Hartri, Otmani)

The statistical distance between **G** and a uniformly random matrix in $\mathbb{F}_{q^m}^{k \times (n+L)}$ is $\leq \frac{n}{2} \sqrt{\frac{q^{mk}}{|S_w(\mathbb{F}_{q^m}^L)|}}$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Other property on ${\bf G}$

$$\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^{\mathsf{T}})$$

Theorem (Burle, Gaborit, Hartri, Otmani)

The statistical distance between **G** and a uniformly random matrix in $\mathbb{F}_{q^m}^{k \times (n+L)}$ is $\leq \frac{n}{2} \sqrt{\frac{q^{mk}}{|S_w(\mathbb{F}_{q^m}^L)|}}$

 \rightarrow proved with generalized Leftover Hash Lemma

 $S_{w}\left(\mathbb{F}_{q^{m}}^{L}
ight)$: set of vectors of length L and rank w

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Other property on ${\bf G}$

$$\mathbf{G} = (\mathbf{R} | - \mathbf{R} \mathbf{W}^{\mathsf{T}})$$

Theorem (Burle, Gaborit, Hartri, Otmani)

The statistical distance between **G** and a uniformly random matrix in $\mathbb{F}_{q^m}^{k \times (n+L)}$ is $\leq \frac{n}{2} \sqrt{\frac{q^{mk}}{|S_w(\mathbb{F}_{q^m}^L)|}}$

 \rightarrow proved with generalized Leftover Hash Lemma

New condition :

Choose parameters in order to have this distance $<2^{-\lambda}$: G statistically indistinguishable from uniform

 $S_{w}\left(\mathbb{F}_{q^{m}}^{L}
ight)$: set of vectors of length L and rank w

Étienne Burle,

Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Statistically indistinguishable parameters

λ		т	L	k	n	W	t	pk	ct
80)	499	59	17	163	16	13	212	2,813
12	28	907	130	21	261	19	20	860	16,450
19	92	1657	234	29	391	26	28	3,496	92,033
25	56	2707	129	36	521	35	35	7,304	263,116

Table: q = 2, sizes of public key and ciphertext are in KB, probability of error $< 2^{-\lambda}$

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Conclusion

First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

Conclusion

First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Remarks and perspectives

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Conclusion

Remarks and perspectives

 $\rightarrow\,$ Big key and cipher sizes essentially due to the constraints on the probability of error

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Remarks and perspectives

- $\rightarrow\,$ Big key and cipher sizes essentially due to the constraints on the probability of error
- $\rightarrow\,$ Reduce size of the keys using ideal codes or relaxing decoding constraint (2⁻¹²⁸ instead of 2^{- λ})

Conclusion

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme

First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Conclusion

Remarks and perspectives

- $\rightarrow\,$ Big key and cipher sizes essentially due to the constraints on the probability of error
- $\rightarrow\,$ Reduce size of the keys using ideal codes or relaxing decoding constraint (2⁻¹²⁸ instead of 2^{- λ})
- $\rightarrow\,$ Construct Key Encapsulation Mechanism (KEM) and encryption scheme, reducing sizes at the same time

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Conclusion

Remarks and perspectives

- $\rightarrow\,$ Big key and cipher sizes essentially due to the constraints on the probability of error
- \rightarrow Reduce size of the keys using ideal codes or relaxing decoding constraint (2⁻¹²⁸ instead of 2^{- λ})
- $\rightarrow\,$ Construct Key Encapsulation Mechanism (KEM) and encryption scheme, reducing sizes at the same time

Thank you for your attention !

Probability of error

Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme **1** For recovering \mathcal{E} , one of those two events occur :

$$\begin{array}{l} \bullet \ \langle \mathbf{s}_i \rangle_{\mathbb{F}_q} \neq \mathcal{E} \cdot W_i \\ \bullet \ \langle \mathbf{s}_i \rangle_{\mathbb{F}_q} = \mathcal{E} \cdot W_i \text{ but recovering } \mathcal{E} \text{ fails} \\ \text{Probability} \leq 1 - \prod_{i=0}^{tw-1} (1 - q^{i-N}) + \frac{q^{2(w-1)t}}{q^m - q^{t-1}} \\ \ell \text{ rows for } \mathbf{H} \rightarrow \ell \text{ attempts:} \\ \leq \left(1 - \prod_{i=0}^{tw-1} (1 - q^{i-N}) + \frac{q^{2(w-1)t}}{q^m - q^{t-1}}\right)^{\ell} \end{array}$$

② For recovering **E**, not possible if dim(*W_i* · *E*) < dim*W_i*dim*E* Probability ≤ $\frac{q^{tw}}{q^m - q^{t-1}}$

At least one of the ℓ spaces $ightarrow \leq 1 - \left(1 - rac{q^{tw}}{q^m - q^{t-1}}
ight)^\ell$

Probability of error upper bounded by :

 $\left(1 - \prod_{i=0}^{tw-1} (1 - q^{i-N}) + \frac{q^{2(w-1)t}}{q^m - q^{t-1}}\right)^{\ell} + 1 - \left(1 - \frac{q^{tw}}{q^m - q^{t-1}}\right)^{\ell}$

Rank metric

Gaborit,
Younes Hatri,
Ayoub Otmani
Let
$$\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m) \in \mathbb{F}_{q^m}^m$$
 be a basis of \mathbb{F}_{q^m} . For all
 $i \in \{1 \dots n\}$ we have

$$x_i = \sum_{j=1}^m x_{i,j} \alpha_j$$

Analysis and security of the scheme

Rank Metric Trapdoor

Functions with Homogeneous Errors Étienne Burle, Philippe Gaborit, Younes Hatri,

So if we consider the matrix

$$\mathbf{M} \triangleq \begin{pmatrix} x_{1,1} & \cdots & x_{n,1} \\ \vdots & \vdots & \vdots \\ x_{1,m} & \cdots & x_{n,m} \end{pmatrix} \in \mathbb{F}_q^{m \times n}$$

Then $\mathbf{x} = \boldsymbol{\alpha} \mathbf{M}$ and $|\mathbf{x}| = \mathsf{Rank}(\mathbf{M})$.