Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

1 LITIS, University of Rouen Normandie, Normandie Univ, France
2 XLIM, Université de Limoges, France

Najac, 15/10/2023
Introduction

Context:

Code based post-quantum cryptography (NIST call)
Designing an injective one-way function based on rank metric linear codes

Main result:
Security relying on classical problems
For some parameters, public key statistically indistinguishable from a random matrix 2^{25}
Introduction

Context:

• Code based post-quantum cryptography (NIST call)
Introduction

Context:

- Code based post-quantum cryptography (NIST call)
- Designing an injective one-way function based on rank metric linear codes
Introduction

Context:

- Code based post-quantum cryptography (NIST call)
- Designing an injective one-way function based on rank metric linear codes

Main result:
Introduction

Context:

• Code based post-quantum cryptography (NIST call)
• Designing an injective one-way function based on rank metric linear codes

Main result:

• Security relying on classical problems
Introduction

Context:

- Code based post-quantum cryptography (NIST call)
- Designing an injective one-way function based on rank metric linear codes

Main result:

- Security relying on classical problems
- For some parameters, public key statistically indistinguishable from a random matrix
1 Rank-based encryption schemes

2 One-way trapdoor function

3 Analysis and security of the scheme
1. Rank-based encryption schemes

2. One-way trapdoor function

3. Analysis and security of the scheme
Rank metric

\(\mathbb{F}_q \) : finite field of cardinality \(q \)
Rank metric

\mathbb{F}_q : finite field of cardinality q

\mathbb{F}_{q^m} : finite field of cardinality q^m viewed as \mathbb{F}_q-vector space of dimension m
Rank metric

\(\mathbb{F}_q \): finite field of cardinality \(q \)

\(\mathbb{F}_{q^m} \): finite field of cardinality \(q^m \) viewed as \(\mathbb{F}_q \)-vector space of dimension \(m \)

\(x = (x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n \)
Rank metric

\(\mathbb{F}_q \): finite field of cardinality \(q \)

\(\mathbb{F}_{q^m} \): finite field of cardinality \(q^m \) viewed as \(\mathbb{F}_q \)-vector space of dimension \(m \)

\[x = (x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n \]

- The support of \(x \) is \(\langle x_1, \ldots, x_n \rangle_{\mathbb{F}_q} \subset \mathbb{F}_{q^m} \), the sub-vector space of \(\mathbb{F}_{q^m} \) generated by its elements
Rank metric

\(\mathbb{F}_q \) : finite field of cardinality \(q \)

\(\mathbb{F}_{q^m} \) : finite field of cardinality \(q^m \) viewed as \(\mathbb{F}_q \)-vector space of dimension \(m \)

\[\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n \]

- The support of \(\mathbf{x} \) is \(\langle x_1, \ldots, x_n \rangle_{\mathbb{F}_q} \subset \mathbb{F}_{q^m} \), the sub-vector space of \(\mathbb{F}_{q^m} \) generated by its elements
- The rank of \(\mathbf{x} \) is the dimension of its support
Generic problem

Search Rank decoding

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) \times n}$ a random matrix
- an integer $t > 0$
- $\mathbf{e} \in \mathbb{F}_{q^m}^n$ a random vector of rank t called \textit{error vector}
Generic problem

Search Rank decoding

- \(\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) \times n} \) a random matrix
- an integer \(t > 0 \)
- \(\mathbf{e} \in \mathbb{F}_{q^m}^n \) a random vector of rank \(t \) called *error vector*

Problem: Given \((\mathbf{H}, \mathbf{eH}^T)\), recover \(\mathbf{e} \)
Search Rank decoding

- \(\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) \times n} \) a random matrix
- an integer \(t > 0 \)
- \(\mathbf{e} \in \mathbb{F}_{q^m}^n \) a random vector of rank \(t \) called *error vector*

Problem: Given \((\mathbf{H}, \mathbf{eH}^T)\), recover \(\mathbf{e} \)

Remark: Distinguishing \((\mathbf{H}, \mathbf{eH}^T)\) from \((\mathbf{H}, \mathbf{s})\) is the decision version of the problem
Generic problem

Search Rank decoding

- \(H \in \mathbb{F}_{q^m}^{(n-k) \times n} \) a random matrix
- an integer \(t > 0 \)
- \(e \in \mathbb{F}_{q^m}^n \) a random vector of rank \(t \) called error vector

Problem: Given \((H, eH^T)\), recover \(e \)

Remark: Distinguishing \((H, eH^T)\) from \((H, s)\) is the decision version of the problem

Assumption

Decision version of rank decoding in as hard as search version
Rank decoding’s hardness

Proposition

There is a probabilistic reduction from decoding in Hamming metric to rank decoding.¹

²Aragon, Gaborit, Hauteville, Tillich. *A new algorithm for solving the rank syndrome decoding problem*, ISIT 2018

³Bardet, Briaud, Bros, Gaborit, Tillich. *Revisiting algebraic attacks on MinRank and on the rank decoding problem*, 2022
Rank decoding’s hardness

Proposition

There is a probabilistic reduction from decoding in Hamming metric to rank decoding.\(^1\)

<table>
<thead>
<tr>
<th>Combinatorial attacks(^2)</th>
<th>Algebraic attacks (^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O\left((n-k)^3 m^3 q^{w \frac{(k+1)m}{n} - m}\right))</td>
<td>Exponential</td>
</tr>
</tbody>
</table>

\(^1\) Gaborit, Zemor. *On the hardness of the decoding and the minimum distance problems for rank codes*, ISIT 2016.

\(^2\) Aragon, Gaborit, Hauteville, Tillich. *A new algorithm for solving the rank syndrome decoding problem*, ISIT 2018

\(^3\) Bardet, Briaud, Bros, Gaborit, Tillich. *Revisiting algebraic attacks on MinRank and on the rank decoding problem*, 2022
Encryption schemes relying on rank decoding

<table>
<thead>
<tr>
<th>Description</th>
<th>Transformed code</th>
<th>Hidden structure</th>
<th>Ciphertext in two parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(G \rightarrow \text{SGT})</td>
<td>(G \rightarrow \text{SG})</td>
<td>((C_1, C_2) : C_2 - C_1 V = mG + e)</td>
</tr>
<tr>
<td>Used code</td>
<td>Gabidulin</td>
<td>Ideal LRPC</td>
<td>Gabidulin</td>
</tr>
<tr>
<td>Schemes</td>
<td>1991 GPT(^4)</td>
<td>2019 ROLLO</td>
<td>2020 RQC</td>
</tr>
<tr>
<td></td>
<td>2017 Loidreau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security problems</td>
<td>RD</td>
<td>IRD</td>
<td>IRD</td>
</tr>
<tr>
<td></td>
<td>IfRD</td>
<td>IfRD</td>
<td></td>
</tr>
</tbody>
</table>

RD : Rank decoding, IRD: Ideal rank decoding, IfRC: Indistinguishability from a random code

\(^4\)Gabidulin, Paramonov, Tretjakov
New generic problem

Rank support learning (RSL)

- \(H \in \mathbb{F}_{q^m}^{(n-k) \times n}\) a random matrix
- an integer \(t > 0\)
- \(E \in \mathbb{F}_{q^m}^{n \times N}\) a random matrix such that the \(\mathbb{F}_q\)-vector space \(\mathcal{E}\) generated by its entries is of dimension \(t\)
New generic problem

Rank support learning (RSL)

- \(H \in \mathbb{F}_{q^m}^{(n-k) \times n} \) a random matrix
- an integer \(t > 0 \)
- \(E \in \mathbb{F}_{q^m}^{n \times N} \) a random matrix such that the \(\mathbb{F}_q \)-vector space \(E \) generated by its entries is of dimension \(t \)

Problem : Given \((H, HE)\), recover \(E \)
New generic problem

Rank support learning (RSL)

- \(H \in \mathbb{F}_{q^m}^{(n-k) \times n} \) a random matrix
- an integer \(t > 0 \)
- \(E \in \mathbb{F}_{q^m}^{n \times N} \) a random matrix such that the \(\mathbb{F}_q \)-vector space \(E \) generated by its entries is of dimension \(t \)

Problem: Given \((H, HE)\), recover \(E \)

Remark: \(E \) is homogeneous of degree \(t \) with support \(E \)
New generic problem

Rank support learning (RSL)

- $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) \times n}$ a random matrix
- an integer $t > 0$
- $\mathbf{E} \in \mathbb{F}_{q^m}^{n \times N}$ a random matrix such that the \mathbb{F}_q-vector space \mathcal{E} generated by its entries is of dimension t

Problem : Given $(\mathbf{H}, \mathbf{HE})$, recover \mathcal{E}

Remark : \mathbf{E} is homogeneous of degree t with support \mathcal{E}

Assumption

*Rank support learning is as hard as rank decoding if $N < kt$.***
Attacks on rank support learning

<table>
<thead>
<tr>
<th>Year</th>
<th>Nature</th>
<th>Complexity</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Combinatorial</td>
<td>Poly</td>
<td>$N \geq nt$</td>
</tr>
</tbody>
</table>

5. Gaborit, Hauteville, Phan, Tillich. *Identity-based encryption from rank metric*, CRYPTO2017

6. Debris-Alazard, Tillich. *Two attacks on rank metric code-based schemes: Ranksign and an identity-based encryption scheme* ASIACRYPT 2018

7. Bardet, Briaud. *An algebraic approach to the rank support learning problem*, PQCrypto2021

8. Bidoux, Briaud, Bros, Gaborit. *RQC revisited and more cryptanalysis for rank-based cryptography*, 2022
Attacks on rank support learning

<table>
<thead>
<tr>
<th>Year</th>
<th>Nature</th>
<th>Complexity</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Combinatorial</td>
<td>Poly</td>
<td>$N \geq nt$</td>
</tr>
<tr>
<td>2018</td>
<td>Algebraic</td>
<td>Sub-exp</td>
<td>$N > kt$</td>
</tr>
</tbody>
</table>

5. Gaborit, Hauteville, Phan, Tillich. *Identity-based encryption from rank metric*, CRYPTO2017

7. Bardet, Briaud. *An algebraic approach to the rank support learning problem*, PQCrypto2021

8. Bidoux, Briaud, Bros, Gaborit. *RQC revisited and more cryptanalysis for rank-based cryptography*, 2022
Attacks on rank support learning

<table>
<thead>
<tr>
<th>Year</th>
<th>Nature</th>
<th>Complexity</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Combinatorial</td>
<td>Poly</td>
<td>$N \geq nt$</td>
</tr>
<tr>
<td>2018</td>
<td>Algebraic</td>
<td>Sub-exp</td>
<td>$N > kt$</td>
</tr>
<tr>
<td>2021</td>
<td>Algebraic</td>
<td>Exp</td>
<td>Thwarted when $N < kt$</td>
</tr>
</tbody>
</table>

5 Gaborit, Hauteville, Phan, Tillich. *Identity-based encryption from rank metric*, CRYPTO2017
6 Debris-Alazard, Tillich. *Two attacks on rank metric code-based schemes: Ranksign and an identity-based encryption scheme* ASIACRYPT 2018
7 Bardet, Briaud. *An algebraic approach to the rank support learning problem*, PQCrypto2021
8 Bidoux, Briaud, Bros, Gaborit. *RQC revisited and more cryptanalysis for rank-based cryptography*, 2022
Attacks on rank support learning

<table>
<thead>
<tr>
<th>Year</th>
<th>Nature</th>
<th>Complexity</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Combinatorial</td>
<td>Poly</td>
<td>(N \geq nt)</td>
</tr>
<tr>
<td>2018</td>
<td>Algebraic</td>
<td>Sub-exp</td>
<td>(N > kt)</td>
</tr>
<tr>
<td>2021</td>
<td>Algebraic</td>
<td>Exp</td>
<td>Thwarted when (N < kt)</td>
</tr>
<tr>
<td>2022</td>
<td>Combinatorial</td>
<td>Poly</td>
<td>(N > ktm/(m-t))</td>
</tr>
</tbody>
</table>

5 Gaborit, Hauteville, Phan, Tillich. *Identity-based encryption from rank metric*, CRYPTO2017

6 Debris-Alazard, Tillich. *Two attacks on rank metric code-based schemes: Ranksign and an identity-based encryption scheme* ASIACRYPT 2018

7 Bardet, Briaud. *An algebraic approach to the rank support learning problem*, PQCrypto2021

8 Bidoux, Briaud, Bros, Gaborit. *RQC revisited and more cryptanalysis for rank-based cryptography*, 2022
RSL-based encryption schemes

<table>
<thead>
<tr>
<th>Description</th>
<th>Transformed code</th>
<th>Hidden structure</th>
<th>Ciphertext in two parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>G → SGT</td>
<td>G → SG</td>
<td>(C₁, C₂) :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C₂ − C₁V = mG + E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Used code</th>
<th>Gabidulin</th>
<th>LRPC</th>
<th>Gabidulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schemes</td>
<td>2022 LowMS</td>
<td>2022⁹</td>
<td>2019 Li-Ping Wang</td>
</tr>
<tr>
<td>Security problems</td>
<td>RSL</td>
<td>RSL</td>
<td>RSL</td>
</tr>
<tr>
<td></td>
<td>IfRD</td>
<td>IfRD</td>
<td></td>
</tr>
</tbody>
</table>

RSL: Rank syndrome learning,
IfRC: Indistinguishability from a random code

⁹ Aguilar-Melchor, Aragon, Dyseryn, Gaborit, and Zémor. *LRPC codes with multiple syndromes: near ideal-size KEMs without ideals*
Our scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.
Our scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Definitions

$\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n}$ is homogeneous of weight w if the support of the hole matrix is of low dimension w (used in LRPC).
Our scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Definitions

\(H \in \mathbb{F}_{q^m}^{\ell \times n} \) is homogeneous of weight \(w \) if the support of the hole matrix is of low dimension \(w \) (used in LRPC).

\(H \in \mathbb{F}_{q^m}^{\ell \times n} \) is semi-homogeneous of weight \(w \) if the support of each of its rows is of low dimension \(w \).
Our scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Definitions

\(H \in \mathbb{F}_{q^m}^{\ell \times n} \) is homogeneous of weight \(w \) if the support of the hole matrix is of low dimension \(w \) (used in LRPC).

\(H \in \mathbb{F}_{q^m}^{\ell \times n} \) is semi-homogeneous of weight \(w \) if the support of each of its rows is of low dimension \(w \).

The support of \(H \) is \((W_1, \ldots, W_\ell) \), where \(W_i \) is the support of its \(i \)-th row.
Our scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

<table>
<thead>
<tr>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{H} \in \mathbb{F}^{\ell \times n}_{q^m}) is homogeneous of weight (w) if the support of the hole matrix is of low dimension (w) (used in LRPC).</td>
</tr>
<tr>
<td>(\mathbf{H} \in \mathbb{F}^{\ell \times n}_{q^m}) is semi-homogeneous of weight (w) if the support of each of its rows is of low dimension (w).</td>
</tr>
<tr>
<td>The support of (\mathbf{H}) is ((W_1, \ldots, W_\ell)), where (W_i) is the support of its (i)-th row.</td>
</tr>
</tbody>
</table>

- Use of a transformed code
Our scheme

Uses a generalisation of LRPC codes (that can only decode multiple syndromes) with semi-homogeneous matrices.

Definitions

$H \in \mathbb{F}_{q^m}^{\ell \times n}$ is homogeneous of weight w if the support of the hole matrix is of low dimension w (used in LRPC).

$H \in \mathbb{F}_{q^m}^{\ell \times n}$ is semi-homogeneous of weight w if the support of each of its rows is of low dimension w.

The support of H is (W_1, \ldots, W_ℓ), where W_i is the support of its i-th row.

- Use of a transformed code
- Security relying on Rank decoding and RSL only
1 Rank-based encryption schemes

2 One-way trapdoor function

3 Analysis and security of the scheme
Construction of trapdoor function

\[
x \quad \xrightarrow{E} \quad f(x) \quad \xleftarrow{H} \quad x
\]

Easy with \(tk \)
Construction of trapdoor function

Three polynomial-time algorithms: \((Gen, Eval, Invert)\)
Construction of trapdoor function

Three polynomial-time algorithms: \((Gen, Eval, Invert)\)

1. \(pk, tk \leftarrow Gen(1^\lambda)\)
Construction of trapdoor function

Three polynomial-time algorithms: \((Gen, Eval, Invert)\)

1. \(pk, tk \leftarrow Gen(1^\lambda)\)

2. \(Eval(pk, x)\) will evaluate with public key \(pk\) in \(x\)
Construction of trapdoor function

Three polynomial-time algorithms: \((\text{Gen}, \text{Eval}, \text{Invert})\)

1. \(pk, tk \leftarrow \text{Gen}(1^\lambda)\)

2. \(\text{Eval}(pk, x)\) will evaluate with public key \(pk\) in \(x\)

3. \(\text{Invert}(tk, \text{Eval}(pk, x))\) returns \(x\) with overwhelming probability
Gen

$R \leftarrow \mathbb{F}_k \times_L \mathbb{L}$

Remark: $G(W, I_n) = 0$
Rank Metric
Trapdoor
Functions with
Homogeneous
Errors

Étienne Burle,
Philippe
Gaborit,
Younes Hatri,
Ayoub Otmani

Rank-based
encryption
schemes

One-way
trapdoor
function

Analysis and
security of the
scheme

Gen

1. \(R \leftarrow F_{q^m}^{k \times L} \)
2. \(W \leftarrow F_{q^m}^{n \times L} : \text{semi-homogeneous of weight } w \)
Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes
One-way trapdoor function
Analysis and security of the scheme

Gen

1. $R \leftarrow \mathbb{F}_{q^m}^{k \times L}$
2. $W \leftarrow \mathbb{F}_{q^m}^{n \times L}$: semi-homogeneous of weight w
3. Return $(R | - RW^T), W$
Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes
One-way trapdoor function
Analysis and security of the scheme

Gen

1. $R \leftarrow \mathbb{F}_{q^m}^{k \times L}$
2. $W \leftarrow \mathbb{F}_{q^m}^{n \times L}$: semi-homogeneous of weight w
3. Return $(R \mid - RW^T), W$

Public key : $G = (R \mid - RW^T) \in \mathbb{F}_{q^m}^{k \times (n+L)}$
Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes
One-way trapdoor function
Analysis and security of the scheme

Rank Metric Trapdoor Functions with Homogeneous Errors

\[\text{Gen} \]

1. \(R \leftarrow \mathbb{F}_{q^m}^{k \times L} \)
2. \(W \leftarrow \mathbb{F}_{q^m}^{n \times L} : \text{semi-homogeneous of weight } w \)
3. Return \((R | - RW^T), W\)

Public key : \(G = (R | - RW^T) \in \mathbb{F}_{q^m}^{k \times (n+L)} \)

Secret key : \(W \)
Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes
One-way trapdoor function
Analysis and security of the scheme

\[\text{Gen} \]

1. \(R \leftarrow F_{q^m}^{k \times L} \)
2. \(W \leftarrow F_{q^m}^{n \times L} : \text{semi-homogeneous of weight } w \)
3. Return \((R| - RW^\top), W\)

Public key: \(G = (R| - RW^\top) \in F_{q^m}^{k \times (n+L)} \)

Secret key: \(W \)

Remark: \(G(W, I_n)^\top = 0 \)
Rank Metric
Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes
One-way trapdoor function
Analysis and security of the scheme

Public key: G

Eval
Eval

Public key : \(G \)

1. \(X \in \mathbb{F}_{q^m}^{N \times k} : \) input

Public key : \(G \)

\[\text{Eval} \]

Public key : \(G \)

1. \(X \in \mathbb{F}_{q^m}^{N \times k} : \) input
Public key: \(G \)

1. \(X \in \mathbb{F}_{q^m}^{N \times k} \) : input
2. \(E \leftarrow \mathbb{F}_{q^m}^{N \times (n+L)} \) homogeneous of weight \(t \)
Eval

Public key: G

1. $X \in \mathbb{F}_{q^m}^{N \times k}$: input

2. $E \leftarrow \mathbb{F}_{q^m}^{N \times (n+L)}$ homogeneous of weight t

3. Compute and return the output

$$C = XG + E$$
Invert

Secret key: W

Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes

One-way trapdoor function

Analysis and security of the scheme
Invert

Secret key : \mathbf{W}

1. $\mathbf{C} = \mathbf{XG} + \mathbf{E} : \text{input}$
$C = XG + E$: input

2. Compute $C(W, I_n)^T = (XG + E)(W, I_n)^T$

 $= XG(W, I_n)^T + E(W, I_n)^T$

 $= E(W, I_n)^T$
Invert

Secret key: \(W \)

1. \(C = XG + E : \text{input} \)

2. Compute \(C(W, I_n)^T = (XG + E)(W, I_n)^T \)
 \[= XG(W, I_n)^T + E(W, I_n)^T \]
 \[= E(W, I_n)^T \]

3. Recover \(E \) with \textit{Homogeneous error decoding}
Invert

Secret key : \mathbf{W}

1. \textbf{C} = \mathbf{XG} + \mathbf{E} : \textit{input}

2. Compute \(\mathbf{C(W, I_n)^T} = (\mathbf{XG} + \mathbf{E})(\mathbf{W, I_n)^T} \)

 \[= \mathbf{XG(W, I_n)^T} + \mathbf{E(W, I_n)^T} \]

 \[= \mathbf{E(W, I_n)^T} \]

3. Recover \(\mathbf{E}\) with \textit{Homogeneous error decoding}

4. Compute \(\mathbf{C - E = XG} \) and recover \(\mathbf{X}\) with linear algebra
Invert

Secret key: \(W \)

1. \(C = XG + E : \text{input} \)

2. Compute \(C(W, I_n)^T = (XG + E)(W, I_n)^T \)
 \[= XG(W, I_n)^T + E(W, I_n)^T \]
 \[= E(W, I_n)^T \]

3. Recover \(E \) with \textit{Homogeneous error decoding}.

4. Compute \(C - E = XG \) and recover \(X \) with linear algebra.

5. Return \((X, E) \).
Homogeneous error decoding

- \(H \in \mathbb{F}_{q^m}^{\ell \times n} \) semi-homogeneous of weight \(w \) and support \((W_1, \ldots, W_\ell) \)
- An integer \(t > 0 \)
- \(S \in \mathbb{F}_{q^m}^{\ell \times N} \)
Homogeneous error decoding

- \(H \in \mathbb{F}_{q^m}^{\ell \times n} \) semi-homogeneous of weight \(w \) and support \((W_1, \ldots, W_\ell)\)
- An integer \(t > 0 \)
- \(S \in \mathbb{F}_{q^m}^{\ell \times N} \)

Recover \(E \) homogeneous of weight \(t \) from \(HE = S \)
Homogeneous error decoding

- $H \in \mathbb{F}_{q^m}^{\ell \times n}$ semi-homogeneous of weight w and support (W_1, \ldots, W_{ℓ})
- An integer $t > 0$
- $S \in \mathbb{F}_{q^m}^{\ell \times N}$

Recover E homogeneous of weight t from $HE = S$

Theorem (Burle, Gaborit, Hartri, Otmani)

If $N \geq wt$ and $\ell w \geq n$, there is a polynomial time algorithm that recovers E with a failure probability upper bounded by

$$
\left(1 - \prod_{i=0}^{tw-1} (1 - q^{i-N}) + \frac{q^{2(w-1)t}}{q^m-q^{t-1}}\right)^{\ell} + 1 - \left(1 - \frac{q^{tw}}{q^m-q^{t-1}}\right)^{\ell}
$$
Homogeneous error decoding

- \(\mathbf{H} \in \mathbb{F}_{q^m}^{\ell \times n} \) semi-homogeneous of weight \(w \) and support \((W_1, \ldots, W_\ell)\)
- An integer \(t > 0 \)
- \(\mathbf{S} \in \mathbb{F}_{q^m}^{\ell \times N} \)

Recover \(\mathbf{E} \) homogeneous of weight \(t \) from \(\mathbf{HE} = \mathbf{S} \)

Theorem (Burle, Gaborit, Hatri, Otmani)

If \(N \geq wt \) and \(\ell w \geq n \), there is a polynomial time algorithm that recovers \(\mathbf{E} \) with a failure probability upper bounded by

\[
(1 - \prod_{i=0}^{tw-1} (1 - q^i - N) + \frac{q^{2(w-1)t}}{q^m - q^{t-1}})^\ell + 1 - \left(1 - \frac{q^{tw}}{q^m - q^{t-1}}\right)^\ell
\]

Asymptotically equivalent to \(\ell q^{tw-m} \)
Homogeneous error decoding

\[HE = S \]
Homogeneous error decoding

\[HE = S \]

1. Considering \(h_i \) and \(s_i \) the \(i \)-th row of \(H \) and \(S \), we have the equation \(h_i E = s_i \).
Homogeneous error decoding

\(HE = S \)

Considering \(h_i \) and \(s_i \) the \(i \)-th row of \(H \) and \(S \), we have the equation \(h_i E = s_i \).

- \(W_i \): support of \(h_i \)
Homogeneous error decoding

\[HE = S \]

1. Considering \(h_i \) and \(s_i \) the \(i \)-th row of \(H \) and \(S \), we have the equation \(h_iE = s_i \).
 - \(W_i \) : support of \(h_i \)
 - \(E \) : support of \(E \)
Homogeneous error decoding

\[HE = S \]

1. Considering \(h_i \) and \(s_i \) the \(i \)-th row of \(H \) and \(S \), we have the equation \(h_iE = s_i \).
 - \(W_i \) : support of \(h_i \)
 - \(E \) : support of \(E \)
 - \(s_i \in \mathbb{F}_q^N \) seen as a sample of \(N \) elements that generates \(W_i \cdot E \) (with \(E \cdot F := \langle ef \mid e \in E, f \in F \rangle_{\mathbb{F}_q} \))
Homogeneous error decoding

\[HE = S \]

1. Considering \(\mathbf{h}_i \) and \(s_i \) the \(i \)-th row of \(\mathbf{H} \) and \(\mathbf{S} \), we have the equation \(\mathbf{h}_i \mathbf{E} = s_i \).

 - \(W_i \) : support of \(\mathbf{h}_i \)
 - \(\mathbf{E} \) : support of \(\mathbf{E} \)
 - \(s_i \in \mathbb{F}_{q^m}^N \) seen as a sample of \(N \) elements that generates \(W_i \cdot \mathbf{E} \) (with \(E \cdot F : = \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q} \) \(\rightarrow N \geq tw \))
Homogeneous error decoding

\[\text{HE} = S \]

Considering \(h_i \) and \(s_i \) the \(i \)-th row of \(H \) and \(S \), we have the equation \(h_i \cdot E = s_i \).

- \(W_i \): support of \(h_i \)
- \(\mathcal{E} \): support of \(E \)
- \(s_i \in \mathbb{F}_{q^m}^N \) seen as a sample of \(N \) elements that generates \(W_i \cdot \mathcal{E} \) (with \(E \cdot F := \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q} \) \(\rightarrow N \geq tw \))

Recover \(\mathcal{E} \) with \(s_i \) and \(W_i \) of basis \((f_1 \ldots f_w) \):
Homogeneous error decoding

\[
\text{HE} = S
\]

Considering \(h_i \) and \(s_i \) the \(i \)-th row of \(H \) and \(S \), we have the equation \(h_i E = s_i \).

- \(W_i \) : support of \(h_i \)
- \(E \) : support of \(E \)
- \(s_i \in \mathbb{F}_{q^m}^N \) seen as a sample of \(N \) elements that generates \(W_i \cdot E \) (with \(E \cdot F := \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q} \) \(\rightarrow N \geq tw \))

Recover \(E \) with \(s_i \) and \(W_i \) of basis \((f_1 \ldots f_w) \):

\[
\bigcap f_j^{-1}(W_i \cdot E)
\]
Homogeneous error decoding

\[HE = S \]

1. Considering \(h_i \) and \(s_i \) the \(i \)-th row of \(H \) and \(S \), we have the equation \(h_i E = s_i \).
 - \(W_i \) : support of \(h_i \)
 - \(E \) : support of \(E \)
 - \(s_i \in \mathbb{F}_q^N \) seen as a sample of \(N \) elements that generates \(W_i \cdot E \) (with \(E \cdot F := \langle ef | e \in E, f \in F >_{\mathbb{F}_q} \) \(\rightarrow N \geq tw \))

 Recover \(E \) with \(s_i \) and \(W_i \) of basis \((f_1 \ldots f_w)\):
 \[\bigcap f_j^{-1}(W_i \cdot E) \]

2. \(E \) can then be recovered solving \(N \) linear systems with \(\ell tw \) equations and \(nt \) unknowns
Homogeneous error decoding

\[\text{HE} = \text{S} \]

1. Considering \(\mathbf{h}_i \) and \(s_i \) the \(i \)-th row of \(\mathbf{H} \) and \(\mathbf{S} \), we have the equation \(\mathbf{h}_i \mathbf{E} = s_i \).
 - \(W_i \) : support of \(\mathbf{h}_i \)
 - \(\mathcal{E} \) : support of \(\mathbf{E} \)
 - \(s_i \in \mathbb{F}_{q^m}^N \) seen as a sample of \(N \) elements that generates \(W_i \cdot \mathcal{E} \) (with \(E \cdot F := \langle ef | e \in E, f \in F \rangle_{\mathbb{F}_q} \) \(\rightarrow N \geq tw \))

Recover \(\mathcal{E} \) with \(s_i \) and \(W_i \) of basis \((f_1 \ldots f_w)\):

\[\bigcap f_j^{-1}(W_i \cdot \mathcal{E}) \]

2. \(\mathbf{E} \) can then be recovered solving \(N \) linear systems with \(\ell tw \) equations and \(nt \) unknowns \(\rightarrow \ell w \geq n \)
1 Rank-based encryption schemes

2 One-way trapdoor function

3 Analysis and security of the scheme
Security of the scheme

\[G = (R | - RW^T) \]

Various aspects of security rely on classical problems:

- Inversion of the function: Rank Support Learning (Recover \(X \) and \(E \) from \(XG + E \))
- Recovery of the trapdoor: Search Rank Decoding (Recover \(W \) from \(G \))
- Indistinguishability of \(G \) from a random matrix: Decision Rank Decoding \(\Rightarrow \) \(G \) computationally indistinguishable from a uniform matrix
Security of the scheme

\[G = (R| - RW^T) \]

Various aspects of security rely on classical problems:

- Inversion of the function: *Rank Support Learning* (Recover X and E from XG + E)
Security of the scheme

\[G = (R| - RW^T) \]

Various aspects of security rely on classical problems:

- Inversion of the function: \textit{Rank Support Learning} (Recover \(X\) and \(E\) from \(XG + E\))

- Recovery of the trapdoor: \textit{Search Rank Decoding} (Recover \(W\) from \(G\))
Security of the scheme

\[G = (R| - RW^T) \]

Various aspects of security rely on classical problems:

- Inversion of the function: \textit{Rank Support Learning} (Recover \(X \) and \(E \) from \(XG + E \))
- Recovery of the trapdoor: \textit{Search Rank Decoding} (Recover \(W \) from \(G \))
- Indistinguishability of \(G \) from a random matrix: \textit{Decision Rank Decoding}
Security of the scheme

\[G = (R| - RW^T) \]

Various aspects of security rely on classical problems:

- Inversion of the function: *Rank Support Learning*
 (Recover \(X \) and \(E \) from \(XG + E \))

- Recovery of the trapdoor: *Search Rank Decoding*
 (Recover \(W \) from \(G \))

- Indistinguishability of \(G \) from a random matrix: *Decision Rank Decoding*
 \[\Rightarrow G \text{ computationally indistinguishable from a uniform matrix} \]
Parameters

<table>
<thead>
<tr>
<th>λ</th>
<th>m</th>
<th>L</th>
<th>k</th>
<th>n</th>
<th>w</th>
<th>t</th>
<th>N</th>
<th>pk</th>
<th>ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>179</td>
<td>37</td>
<td>16</td>
<td>163</td>
<td>6</td>
<td>14</td>
<td>84</td>
<td>64</td>
<td>367</td>
</tr>
<tr>
<td>128</td>
<td>293</td>
<td>43</td>
<td>20</td>
<td>261</td>
<td>8</td>
<td>19</td>
<td>153</td>
<td>203</td>
<td>1,664</td>
</tr>
<tr>
<td>192</td>
<td>443</td>
<td>59</td>
<td>27</td>
<td>391</td>
<td>9</td>
<td>26</td>
<td>237</td>
<td>618</td>
<td>5,694</td>
</tr>
<tr>
<td>256</td>
<td>409</td>
<td>200</td>
<td>33</td>
<td>521</td>
<td>4</td>
<td>32</td>
<td>128</td>
<td>1,134</td>
<td>4,608</td>
</tr>
</tbody>
</table>

Table: $q = 2$, sizes of public key and ciphertext are in KB, probability of error $< 2^{-\lambda}$
Rank Metric
Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes
One-way trapdoor function
Analysis and security of the scheme

Parameters

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>L</th>
<th>k</th>
<th>n</th>
<th>w</th>
<th>t</th>
<th>N</th>
<th>pk</th>
<th>ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>179</td>
<td>37</td>
<td>16</td>
<td>163</td>
<td>6</td>
<td>14</td>
<td>84</td>
<td>64</td>
<td>367</td>
</tr>
<tr>
<td>128</td>
<td>293</td>
<td>43</td>
<td>20</td>
<td>261</td>
<td>8</td>
<td>19</td>
<td>153</td>
<td>203</td>
<td>1,664</td>
</tr>
<tr>
<td>192</td>
<td>443</td>
<td>59</td>
<td>27</td>
<td>391</td>
<td>9</td>
<td>26</td>
<td>237</td>
<td>618</td>
<td>5,694</td>
</tr>
<tr>
<td>256</td>
<td>409</td>
<td>200</td>
<td>33</td>
<td>521</td>
<td>4</td>
<td>32</td>
<td>128</td>
<td>1,134</td>
<td>4,608</td>
</tr>
</tbody>
</table>

Table: $q = 2$, sizes of public key and ciphertext are in KB, probability of error $< 2^{-\lambda}$

<table>
<thead>
<tr>
<th>Security</th>
<th>pkSize (KB)</th>
<th>ctSize (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.90</td>
<td>2.04</td>
</tr>
<tr>
<td>192</td>
<td>2.29</td>
<td>2.41</td>
</tr>
<tr>
<td>256</td>
<td>2.50</td>
<td>2.63</td>
</tr>
</tbody>
</table>

Table: ROLLO encryption parameters
Other property on G

$$G = (R | - RW^T)$$

$S_w \left(\mathbb{F}_{q^m}^L \right)$: set of vectors of length L and rank w
Other property on G

$$G = (R | - RW^T)$$

Theorem (Burle, Gaborit, Hartri, Otmani)

The statistical distance between G and a uniformly random matrix in $\mathbb{F}_{q^m}^{k \times (n+L)}$ is

$$\leq \frac{n}{2} \sqrt{\frac{q^{mk}}{S_w(\mathbb{F}_{q^m}^L)}}$$

$S_w(\mathbb{F}_{q^m}^L)$: set of vectors of length L and rank w
Other property on \mathbf{G}

$\mathbf{G} = (\mathbf{R} | - \mathbf{RW}^T)$

Theorem (Burle, Gaborit, Hartri, Otmani)

The statistical distance between \mathbf{G} and a uniformly random matrix in $\mathbb{F}_{q^m}^{k \times (n+L)}$ is

$$\leq \frac{n}{2} \sqrt[q^{mk}]{ S_w(\mathbb{F}_q^L) }$$

→ proved with generalized Leftover Hash Lemma

$S_w(\mathbb{F}_q^L)$: set of vectors of length L and rank w
Rank Metric Trapdoor Functions with Homogeneous Errors

Étienne Burle, Philippe Gaborit, Younes Hatri, Ayoub Otmani

Rank-based encryption schemes
One-way trapdoor function
Analysis and security of the scheme

Other property on G

$$G = (R | -RW^T)$$

Theorem (Burle, Gaborit, Hartri, Otmani)

The statistical distance between G and a uniformly random matrix in $\mathbb{F}_{q^m}^{k \times (n+L)}$ is

$$\leq \frac{n}{2} \sqrt{\frac{q^{mk}}{S_w(\mathbb{F}_q^L)}}$$

→ proved with generalized Leftover Hash Lemma

New condition:

Choose parameters in order to have this distance $< 2^{-\lambda}$:

G statistically indistinguishable from uniform

$S_w(\mathbb{F}_q^L)$: set of vectors of length L and rank w
Statistically indistinguishable parameters

<table>
<thead>
<tr>
<th>λ</th>
<th>m</th>
<th>L</th>
<th>k</th>
<th>n</th>
<th>w</th>
<th>t</th>
<th>pk</th>
<th>ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>499</td>
<td>59</td>
<td>17</td>
<td>163</td>
<td>16</td>
<td>13</td>
<td>212</td>
<td>2,813</td>
</tr>
<tr>
<td>128</td>
<td>907</td>
<td>130</td>
<td>21</td>
<td>261</td>
<td>19</td>
<td>20</td>
<td>860</td>
<td>16,450</td>
</tr>
<tr>
<td>192</td>
<td>1657</td>
<td>234</td>
<td>29</td>
<td>391</td>
<td>26</td>
<td>28</td>
<td>3,496</td>
<td>92,033</td>
</tr>
<tr>
<td>256</td>
<td>2707</td>
<td>129</td>
<td>36</td>
<td>521</td>
<td>35</td>
<td>35</td>
<td>7,304</td>
<td>263,116</td>
</tr>
</tbody>
</table>

Table: $q = 2$, sizes of public key and ciphertext are in KB, probability of error $< 2^{-\lambda}$
Conclusion

First rank metric trapdoor function with a public key statistically indistinguishable from uniform
Conclusion

First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Remarks and perspectives
Conclusion

First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Remarks and perspectives

→ Big key and cipher sizes essentially due to the constraints on the probability of error
Conclusion

First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Remarks and perspectives

→ Big key and cipher sizes essentially due to the constraints on the probability of error
→ Reduce size of the keys using ideal codes or relaxing decoding constraint (2^{-128} instead of $2^{-\lambda}$)
Conclusion

First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Remarks and perspectives

→ Big key and cipher sizes essentially due to the constraints on the probability of error
→ Reduce size of the keys using ideal codes or relaxing decoding constraint (2^{-128} instead of $2^{-\lambda}$)
→ Construct Key Encapsulation Mechanism (KEM) and encryption scheme, reducing sizes at the same time
Conclusion

First rank metric trapdoor function with a public key statistically indistinguishable from uniform

Remarks and perspectives

→ Big key and cipher sizes essentially due to the constraints on the probability of error

→ Reduce size of the keys using ideal codes or relaxing decoding constraint \(2^{-128}\) instead of \(2^{-\lambda}\)

→ Construct Key Encapsulation Mechanism (KEM) and encryption scheme, reducing sizes at the same time

Thank you for your attention!
Probability of error

1. For recovering E, one of those two events occur:
 - $\langle s_i \rangle_{\mathbb{F}_q} \neq E \cdot W_i$
 - $\langle s_i \rangle_{\mathbb{F}_q} = E \cdot W_i$ but recovering E fails

 Probability $\leq 1 - \prod_{i=0}^{tw-1}(1 - q^{i-N}) + \frac{q^{2(w-1)t}}{q^m-q^{t-1}}$

 ℓ rows for $H \rightarrow \ell$ attempts:
 \[
 \leq \left(1 - \prod_{i=0}^{tw-1}(1 - q^{i-N}) + \frac{q^{2(w-1)t}}{q^m-q^{t-1}} \right)^\ell
 \]

2. For recovering E, not possible if $\dim(W_i \cdot E) < \dim W_i \dim E$

 Probability $\leq \frac{q^{tw}}{q^m-q^{t-1}}$

 At least one of the ℓ spaces $\rightarrow \leq 1 - \left(1 - \frac{q^{tw}}{q^m-q^{t-1}} \right)^\ell$

 Probability of error upper bounded by:

 \[
 \left(1 - \prod_{i=0}^{tw-1}(1 - q^{i-N}) + \frac{q^{2(w-1)t}}{q^m-q^{t-1}} \right)^\ell + 1 - \left(1 - \frac{q^{tw}}{q^m-q^{t-1}} \right)^\ell
 \]
Let \(\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{F}_{q^m}^m \) be a basis of \(\mathbb{F}_{q^m} \). For all \(i \in \{1 \ldots n\} \) we have

\[
x_i = \sum_{j=1}^{m} x_{i,j} \alpha_j
\]

So if we consider the matrix

\[
M \triangleq \begin{pmatrix}
x_{1,1} & \cdots & x_{n,1} \\
\vdots & \ddots & \vdots \\
x_{1,m} & \cdots & x_{n,m}
\end{pmatrix} \in \mathbb{F}_q^{m \times n}
\]

Then \(x = \alpha M \) and \(|x| = \text{Rank}(M) \).