Shooting for the Stars! The May-Ozerov Algorithm for Syndrome Decoding is "Galactic"

M. Hamdad

October, 2023

Shooting for the Stars! The May-Ozerov Algorithm for Syndrome Decoding is "Galactic"

M. Hamdad

October, 2023

Algorithms for Nearest Neighbor Problem and application to cryptanalysis of McEliece cryptosystem

M. Hamdad

October, 2023

The Nearest Neighbor Problem and application to cryptanalysis

- Boolean context
- Decoding random linear codes (DRLC) :

Find x such that $H x=s$ with $|x| \leq w$ (NP-hard)

- Improve DRLC
\Longrightarrow improve McEliece cryptosystem's cryptanalysis
- The best-known algorithms use in a crucial way a subroutine that solve NNP

Nearest Neighbor Problem in \mathbb{F}_{2}^{m}

L
R

Goal: Find $C=(x, y) \in L \times R$ such that $|x+y| \leq \gamma m$

Nearest Neighbor Problem in \mathbb{F}_{2}^{m}

L
R

Bit $^{\circ}$	0	1	2	3	4	5	6
Line 0	1	1	1	1	1	0	0
Line 1	1	0	0	0	0	0	1
Line 2	0	1	1	1	1	0	0
Line 3	1	0	0	1	0	0	0
Line 4	0	1	1	0	1	0	1
Line 5	0	0	0	1	0	0	0
Line 6	1	0	0	0	1	0	0
Line 7	0	0	0	0	0	1	1

$C \quad$| Bit $^{\circ}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Line 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| Line 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| Line 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| Line 3 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| Line 4 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| Line 5 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| Line 6 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| Line 7 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| \longleftrightarrow | | | | | | | |$~ N=2^{\lambda m}$

Goal: Find $C=(x, y) \in L \times R$ such that $|x+y| \leq \gamma m$ Here $\gamma m=1 \Longrightarrow \gamma=\frac{1}{m}$

The projection method

Probability that 2 bit strings we search coincide on k columns: $\frac{\binom{m}{k}}{\binom{m(1-\gamma)}{k}}$

The algorithm

- Pick k columns randomly
- Sort the 2 lists in lexicographic order according to the selected columns
- Compare all pairs of bit strings that coincide on the k columns
- Repeat $\simeq \frac{\binom{m}{k}}{\binom{m(1-\gamma)}{k}}$ times

$$
k=2 \text {, drawn column numbers }=\{0,2\}
$$

L sorted

Bit n°	2	0	1	3	4	5	6		Bit n°	2	0	1	3	4	5	6
Line 0	0	0	0	1	0	0	0		Line 0	0	0	0	1	1	1	1
Line 1	0	0	0	0	0	1	1		Line 1	0	1	0	1	1	1	1
Line 2	0	1	0	0	0	0	1		Line 2	0	1	0	0	1	1	1
Line 3	0	1	0	1	0	0	0		Line 3	1	0	1	1	0	1	0
Line 4	0	1	0	0	1	0	0		Line 4	1	0	1	0	0	1	1
Line 5	1	0	1	1	1	0	0	C	Line 5	1	1	1	1	0	1	0
Line 6	1	0	1	0	1	0	1		Line 6	1	1	1	0	1	0	1
Line 7	1	1	1	1	1	0	0		Line 7	1	1	1	0	0	0	0

$$
k=2 \text {, drawn column numbers }=\{1,4\}
$$

L sorted

Bit $^{\circ}$	4	1	0	2	3	5	6
Line 0	0	0	1	0	0	0	1
Line 1	0	0	1	0	1	0	0
Line 2	0	0	0	0	0	1	1
Line 3	0	0	0	0	1	0	0
Line 4	1	0	1	0	0	0	0
Line 5	1	1	1	1	1	0	0
Line 6	1	1	0	1	1	0	0
Line 7	1	1	0	1	0	0	1

R sorted

Bit $^{\circ}$	4	1	0	2	3	5	6
Line 0	0	1	1	1	1	1	0
Line 1	0	1	1	1	0	0	1
Line 2	0	1	0	1	1	1	0
Line 3	0	1	0	1	0	1	1
Line 4	1	0	1	0	1	1	1
Line 5	1	0	1	0	0	1	1
Line 6	1	0	0	0	1	1	1
Line 7	1	1	1	1	0	0	1

Complexity

$$
C_{\text {Proj }}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{m}{k}}{\binom{m-l}{k}}\right)
$$

A well know complexity tradeoff is $k=\lambda m$ then

$$
C_{\text {Proj }}=O\left(2^{m(\lambda+h(\lambda, \gamma))}\right)
$$

Complexity

$$
C_{\text {Proj }}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{m}{k}}{\binom{m-l}{k}}\right)
$$

A well know complexity tradeoff is $k=\lambda m$ then

$$
C_{\text {Proj }}=O\left(2^{m(\lambda+h(\lambda, \gamma))}\right)
$$

where $h(\lambda, \gamma)=H(\lambda)-(1-\gamma) H\left(\frac{\lambda}{1-\gamma}\right)$

In practice

Parameters

$$
n=200, \gamma m=60, N \in[250,2300], \text { step }=10
$$

- $C_{\text {Proj }}=O\left(2^{m(\lambda+h(\lambda, \gamma))}\right)$
- $C_{\text {Proj }}=O\left(2^{m(\lambda+h(\lambda, \gamma))}\right)$
- $C_{M O}=\tilde{O}\left(2^{y(\lambda, \gamma) m}\right)$
- $C_{\text {Proj }}=O\left(2^{m(\lambda+h(\lambda, \gamma))}\right)$
- $C_{M O}=\tilde{O}\left(2^{y(\lambda, \gamma) m}\right)$ where $y(\lambda, \gamma)=(1-\gamma)\left(1-\frac{H\left(H^{-1}(1-\lambda)-\gamma / 2\right)}{1-\gamma}\right)$
- $C_{\text {Proj }}=O\left(2^{m(\lambda+h(\lambda, \gamma))}\right)$
- $C_{M O}=\tilde{O}\left(2^{y(\lambda, \gamma) m}\right)$ where $y(\lambda, \gamma)=(1-\gamma)\left(1-\frac{H\left(H^{-1}(1-\lambda)-\gamma / 2\right)}{1-\gamma}\right)$
- With $\lambda=0.025$ and $\gamma=0.1 C_{M O} \geq C_{\text {Proj }} \Longrightarrow m \geq 256000 \Longrightarrow|L|=|R| \geq 2^{8000}$

At a fixed list size N and a fixed γ, what happens if the vectors are twice as long?

$$
2^{\lambda m}=2^{\frac{\lambda}{2} 2 m}
$$

Goal: Find $C=\left(x^{\prime}, y^{\prime}\right) \in L_{2} \times R_{2}$ such that $\left|x^{\prime}+y^{\prime}\right| \leq \gamma 2 m$

Complexity

$$
C_{\text {Proj } 2}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{2 m}{k}}{\binom{2 m(1-\gamma)}{k}}\right)
$$

If we choose $k=\lambda m$ then

$$
C_{\text {Proj2 }}=O\left(2^{m\left(\lambda+2 h\left(\frac{\lambda}{2}, \gamma\right)\right)}\right) \text { with } 2 h(\lambda / 2, \gamma) \leq h(\lambda, \gamma)
$$

Complexity

$$
C_{\text {Proj2 }}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{2 m}{k}}{\binom{2 m(1-\gamma)}{k}}\right)
$$

If we choose $k=\lambda m$ then

$$
C_{\text {Proj2 }}=O\left(2^{m\left(\lambda+2 h\left(\frac{\lambda}{2}, \gamma\right)\right)}\right) \text { with } 2 h(\lambda / 2, \gamma) \leq h(\lambda, \gamma)
$$

And if we concatenate L with itself, the same for R ?

Complexity

$$
C_{\text {Proj2 }}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{2 m}{k}}{\binom{2 m(1-\gamma)}{k}}\right)
$$

If we choose $k=\lambda m$ then

$$
C_{\text {Proj2 }}=O\left(2^{m\left(\lambda+2 h\left(\frac{\lambda}{2}, \gamma\right)\right)}\right) \text { with } 2 h(\lambda / 2, \gamma) \leq h(\lambda, \gamma)
$$

And if we concatenate L with itself, the same for R ?
That won't work: some of the k columns drawn can be identical

Complexity

$$
C_{\text {Proj2 }}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{2 m}{k}}{\binom{2 m(1-\gamma)}{k}}\right)
$$

If we choose $k=\lambda m$ then

$$
C_{\text {Proj2 }}=O\left(2^{m\left(\lambda+2 h\left(\frac{\lambda}{2}, \gamma\right)\right)}\right) \text { with } 2 h(\lambda / 2, \gamma) \leq h(\lambda, \gamma)
$$

And if we concatenate L with itself, the same for R ?
That won't work: some of the k columns drawn can be identical
\Longrightarrow Filtering on less than k columns

But let see the function $f(t)=t . h\left(\frac{\lambda}{t}, \gamma\right)$

But let see the function $f(t)=t . h\left(\frac{\lambda}{t}, \gamma\right)$

In fact, $f(t)$ is decreasing

At a fixed list size N and a fixed γ, what happens if the vectors are k times longer?

Complexity

$$
C_{\text {Projk }}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{k m}{k}}{\binom{k m(1-\gamma)}{k}}\right)
$$

If we choose $k=\lambda m$ then

$$
C_{\text {Projk }}=O\left(2^{m\left(\lambda+k \cdot h\left(\frac{\lambda}{k}, \gamma\right)\right)}\right)
$$

At a fixed list size N and a fixed γ, what happens if the vectors are k times longer?

Complexity

$$
C_{\text {Projk }}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{k m}{k}}{\binom{k m(1-\gamma)}{k}}\right)
$$

If we choose $k=\lambda m$ then

$$
C_{\text {Projk }}=O\left(2^{m\left(\lambda+k \cdot h\left(\frac{\lambda}{k}, \gamma\right)\right)}\right)
$$

Concatenate L with itself k times, the same for R ?

At a fixed list size N and a fixed γ, what happens if the vectors are k times longer?

Complexity

$$
C_{\text {Projk }}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{k m}{k}}{\binom{k m(1-\gamma)}{k}}\right)
$$

If we choose $k=\lambda m$ then

$$
C_{\text {Projk }}=O\left(2^{m\left(\lambda+k \cdot h\left(\frac{\lambda}{k}, \gamma\right)\right)}\right)
$$

Concatenate L with itself k times, the same for R ?
Again columns drawn can be identical

At a fixed list size N and a fixed γ, what happens if the vectors are k times longer?

Complexity

$$
C_{\text {Projk }}=O\left(\left(N+\frac{N^{2}}{2^{k}}\right) \frac{\binom{k m}{k}}{\binom{k m(1-\gamma)}{k}}\right)
$$

If we choose $k=\lambda m$ then

$$
C_{\text {Projk }}=O\left(2^{m\left(\lambda+k \cdot h\left(\frac{\lambda}{k}, \gamma\right)\right)}\right)
$$

Concatenate L with itself k times, the same for R ?
Again columns drawn can be identical It looks like drawing with replacement

The projection method drawing columns with replacement

Complexity

$$
C_{\text {ProjR }}=O\left(\left(N+\frac{N^{2}}{2^{m\left(1-\left(1-\frac{1}{m}\right)^{k}\right)}}\right)(1-\gamma)^{-k}\right)
$$

The projection method drawing columns with replacement

Complexity

$$
C_{\text {ProjR }}=O\left(\left(N+\frac{N^{2}}{2^{m\left(1-\left(1-\frac{1}{m}\right)^{k}\right)}}\right)(1-\gamma)^{-k}\right)
$$

If we choose $k=\frac{\ln (1-\lambda)}{\ln \left(1-\frac{1}{m}\right)}$ then

The projection method drawing columns with replacement

Complexity

$$
C_{\text {ProjR }}=O\left(\left(N+\frac{N^{2}}{2^{m\left(1-\left(1-\frac{1}{m}\right)^{k}\right)}}\right)(1-\gamma)^{-k}\right)
$$

If we choose $k=\frac{\ln (1-\lambda)}{\ln \left(1-\frac{1}{m}\right)}$ then

$$
C_{\text {ProjR }}=O\left(N(1-\gamma)^{-k}\right)=O\left(2^{m\left(\lambda+\log _{2}(1-\gamma) \ln (1-\lambda)\right)}\right)
$$

The projection method drawing columns with replacement

Complexity

$$
C_{\text {ProjR }}=O\left(\left(N+\frac{N^{2}}{2^{m\left(1-\left(1-\frac{1}{m}\right)^{k}\right)}}\right)(1-\gamma)^{-k}\right)
$$

If we choose $k=\frac{\ln (1-\lambda)}{\ln \left(1-\frac{1}{m}\right)}$ then

$$
C_{\text {ProjR }}=O\left(N(1-\gamma)^{-k}\right)=O\left(2^{m\left(\lambda+\log _{2}(1-\gamma) \ln (1-\lambda)\right)}\right)
$$

$$
\log _{2}(1-\gamma) \ln (1-\lambda) \leq h(\lambda, \gamma)
$$

Work in progress:

- Drawing columns with replacement in practice ?
- Concatenate lists seems to improve complexity of Esser, Kübler and Zweydinger algorithm

$$
2 y(\lambda / 2, \gamma) \leq y(\lambda, \gamma)
$$

Thank you

