Shooting for the Stars! The May-Ozerov Algorithm for Syndrome Decoding is "Galactic"

M. Hamdad

October, 2023

Shooting for the Stars! The May-Ozerov Algorithm for Syndrome Decoding is "Galactic"

M. Hamdad

October, 2023

Algorithms for Nearest Neighbor Problem and application to cryptanalysis of McEliece cryptosystem

M. Hamdad

October, 2023

- Boolean context
- Decoding random linear codes (DRLC) : Find x such that Hx= s with |x| ≤ w (NP-hard)
- Improve DRLC
 - ⇒ improve McEliece cryptosystem's cryptanalysis
- The best-known algorithms use in a crucial way a subroutine that solve NNP

Nearest Neighbor Problem in \mathbb{F}_2^m

Goal: Find $C = (x, y) \in L \times R$ such that $|x + y| \le \gamma m$

Nearest Neighbor Problem in \mathbb{F}_2^m

Goal: Find
$$C = (x, y) \in L \times R$$
 such that $|x + y| \le \gamma m$
Here $\gamma m = 1 \implies \gamma = \frac{1}{m}$

Algorithms for Nearest Neighbor Problem and application

The projection method

Probability that 2 bit strings we search coincide on k columns: $\binom{\binom{m}{k}}{\binom{m(1-\gamma)}{k}}$

The algorithm

- Pick k columns randomly
- Sort the 2 lists in lexicographic order according to the selected columns
- Compare all pairs of bit strings that coincide on the k columns
- Repeat $\simeq \frac{\binom{m}{k}}{\binom{m(1-\gamma)}{m}}$ times

k = 2, drawn column numbers = $\{0, 2\}$

L sorted

R sorted

k = 2, drawn column numbers = $\{1, 4\}$

L sorted

R sorted

Bit n°	4	1	0	2	3	5	6		Bit n°	4	1	0	2	3	5	6
Line 0	0	0	1	0	0	0	1		Line 0	0	1	1	1	1	1	0
Line 1	0	0	1	0	1	0	0		Line 1	0	1	1	1	0	0	1
Line 2	0	0	0	0	0	1	1		Line 2	0	1	0	1	1	1	0
Line 3	0	0	0	0	1	0	0		Line 3	0	1	0	1	0	1	1
Line 4	1	0	1	0	0	0	0		Line 4	1	0	1	0	1	1	1
Line 5	1	1	1	1	1	0	0		Line 5	1	0	1	0	0	1	1
Line 6	1	1	0	1	1	0	0	С	Line 6	1	0	0	0	1	1	1
Line 7	1	1	0	1	0	0	1	← →	Line 7	1	1	1	1	0	0	1

$$C_{Proj} = O\left(\left(N + rac{N^2}{2^k}
ight)rac{\binom{m}{k}}{\binom{m-l}{k}}
ight)$$

A well know complexity tradeoff is $k = \lambda m$ then

$$C_{Proj} = O\left(2^{m(\lambda+h(\lambda,\gamma))}
ight)$$

$$C_{Proj} = O\left(\left(N + rac{N^2}{2^k}
ight)rac{\binom{m}{k}}{\binom{m-l}{k}}
ight)$$

A well know complexity tradeoff is $k = \lambda m$ then

$$C_{Proj} = O\left(2^{m(\lambda+h(\lambda,\gamma))}
ight)$$

where $h(\lambda, \gamma) = H(\lambda) - (1 - \gamma)H\left(\frac{\lambda}{1 - \gamma}\right)$

In practice

Parameters

 $n = 200, \ \gamma m = 60, \ N \in [250, 2300], \ step = 10$

M. Hamdad

•
$$C_{Proj} = O\left(2^{m(\lambda+h(\lambda,\gamma))}\right)$$

•
$$C_{Proj} = O\left(2^{m(\lambda+h(\lambda,\gamma))}\right)$$

•
$$C_{MO} = \tilde{O}(2^{y(\lambda,\gamma)m})$$

•
$$C_{Proj} = O\left(2^{m(\lambda+h(\lambda,\gamma))}\right)$$

•
$$C_{MO} = \tilde{O}(2^{y(\lambda,\gamma)m})$$
 where $y(\lambda,\gamma) = (1-\gamma)\left(1 - \frac{H(H^{-1}(1-\lambda)-\gamma/2)}{1-\gamma}\right)$

•
$$C_{Proj} = O\left(2^{m(\lambda+h(\lambda,\gamma))}\right)$$

•
$$C_{MO} = \tilde{O}(2^{y(\lambda,\gamma)m})$$
 where $y(\lambda,\gamma) = (1-\gamma)\left(1 - \frac{H(H^{-1}(1-\lambda)-\gamma/2)}{1-\gamma}\right)$

• With $\lambda = 0.025$ and $\gamma = 0.1$ $C_{MO} \ge C_{Proj} \implies m \ge 256000 \implies |L| = |R| \ge 2^{8000}$

$$2^{\lambda m} = 2^{\frac{\lambda}{2}2m}$$

Goal: Find $C = (x^{'}, y^{'}) \in L_2 imes R_2$ such that $|x^{'} + y^{'}| \leq \gamma 2m$

$$C_{Proj2} = O\left(\left(N + \frac{N^2}{2^k}\right) \frac{\binom{2m}{k}}{\binom{2m(1-\gamma)}{k}}\right)$$

If we choose $k = \lambda m$ then

$$C_{Proj2} = O\left(2^{m(\lambda+2h(\frac{\lambda}{2},\gamma))}\right)$$
 with $2h(\lambda/2,\gamma) \le h(\lambda,\gamma)$

$$C_{Proj2} = O\left(\left(N + \frac{N^2}{2^k}\right) \frac{\binom{2m}{k}}{\binom{2m(1-\gamma)}{k}}\right)$$

If we choose $k = \lambda m$ then

$$C_{Proj2} = O\left(2^{m(\lambda+2h(\frac{\lambda}{2},\gamma))}\right)$$
 with $2h(\lambda/2,\gamma) \le h(\lambda,\gamma)$

And if we concatenate L with itself, the same for R ?

$$C_{Proj2} = O\left(\left(N + rac{N^2}{2^k}\right) rac{\binom{2m}{k}}{\binom{2m(1-\gamma)}{k}}
ight)$$

If we choose $k = \lambda m$ then

$$C_{Proj2} = O\left(2^{m(\lambda+2h(\frac{\lambda}{2},\gamma))}\right)$$
 with $2h(\lambda/2,\gamma) \le h(\lambda,\gamma)$

And if we concatenate L with itself, the same for R? That won't work: some of the k columns drawn can be identical

$$C_{Proj2} = O\left(\left(N + rac{N^2}{2^k}
ight)rac{\binom{2m}{k}}{\binom{2m(1-\gamma)}{k}}
ight)$$

If we choose $k = \lambda m$ then

$$C_{Proj2} = O\left(2^{m(\lambda+2h(\frac{\lambda}{2},\gamma))}\right)$$
 with $2h(\lambda/2,\gamma) \le h(\lambda,\gamma)$

And if we concatenate L with itself, the same for R? That won't work: some of the k columns drawn can be identical

 \implies Filtering on less than k columns

But let see the function $f(t) = t \cdot h(\frac{\lambda}{t}, \gamma)$

But let see the function $f(t) = t \cdot h(\frac{\lambda}{t}, \gamma)$

f(t) with $\lambda = 0.016$ and $\gamma = 0.1$

In fact, f(t) is decreasing

Complexity

$$C_{Projk} = O\left(\left(N + rac{N^2}{2^k}\right) rac{\binom{km}{k}}{\binom{km(1-\gamma)}{k}}
ight)$$

If we choose $k = \lambda m$ then

$$C_{Projk} = O\left(2^{m(\lambda+k.h(\frac{\lambda}{k},\gamma))}\right)$$

Complexity

$$C_{Projk} = O\left(\left(N + rac{N^2}{2^k}
ight)rac{\binom{km}{k}}{\binom{km(1-\gamma)}{k}}
ight)$$

If we choose $k = \lambda m$ then

$$C_{Projk} = O\left(2^{m(\lambda+k.h(\frac{\lambda}{k},\gamma))}\right)$$

Concatenate L with itself k times, the same for R ?

Complexity

$$C_{Projk} = O\left(\left(N + rac{N^2}{2^k}\right) rac{\binom{km}{k}}{\binom{km(1-\gamma)}{k}}
ight)$$

If we choose $k = \lambda m$ then

$$C_{Projk} = O\left(2^{m(\lambda+k.h(rac{\lambda}{k},\gamma))}
ight)$$

Concatenate L with itself k times, the same for R ? Again columns drawn can be identical

Complexity

$$C_{Projk} = O\left(\left(N + rac{N^2}{2^k}\right) rac{\binom{km}{k}}{\binom{km(1-\gamma)}{k}}
ight)$$

If we choose $k = \lambda m$ then

$$C_{Projk} = O\left(2^{m(\lambda+k.h(rac{\lambda}{k},\gamma))}
ight)$$

Concatenate L with itself k times, the same for R ? Again columns drawn can be identical It looks like drawing with replacement

Complexity

$$C_{ProjR} = O\left(\left(N + rac{N^2}{2^{m(1-(1-rac{1}{m})^k)}}
ight)(1-\gamma)^{-k}
ight)$$

Complexity

$$C_{ProjR} = O\left(\left(N + \frac{N^2}{2^{m(1-(1-\frac{1}{m})^k)}}\right)(1-\gamma)^{-k}\right)$$

If we choose $k = \frac{\ln(1-\lambda)}{\ln(1-\frac{1}{m})}$ then

Complexity

$$C_{ProjR} = O\left(\left(N + rac{N^2}{2^{m(1-(1-rac{1}{m})^k)}}
ight)(1-\gamma)^{-k}
ight)$$

If we choose $k = \frac{\ln(1-\lambda)}{\ln(1-\frac{1}{m})}$ then $C_{ProjR} = O\left(N(1-\gamma)^{-k}\right) = O\left(2^{m(\lambda+\log_2(1-\gamma)\ln(1-\lambda))}\right)$

Complexity

$$C_{ProjR} = O\left(\left(N + rac{N^2}{2^{m(1-(1-rac{1}{m})^k)}}
ight)(1-\gamma)^{-k}
ight)$$

If we choose $k = \frac{\ln(1-\lambda)}{\ln(1-\frac{1}{m})}$ then $C_{ProjR} = O\left(N(1-\gamma)^{-k}\right) = O\left(2^{m(\lambda+\log_2(1-\gamma)\ln(1-\lambda))}\right)$

 $\log_2(1-\gamma)\ln(1-\lambda) \leq h(\lambda,\gamma)$

Work in progress:

- Drawing columns with replacement in practice ?
- Concatenate lists seems to improve complexity of Esser, Kübler and Zweydinger algorithm

 $2y(\lambda/2,\gamma) \leq y(\lambda,\gamma)$

Thank you