Semi-Quantum Copy-Protection and More

collaboration with Huy Vu and Céline Chevalier

Copy-Protection of Point Functions

collaboration with Huy Vu and Céline Chevalier

Produce unclonable programs

Produce unclonable programs

Produce unclonable programs

Classical Impossibility

Classically

Classical Impossibility

Classically

.

Quantumly

1 Unclonability

Opy-Protection of Point Functions

③ Copy-Protection of Point Functions in the Plain Model

Quantum States

- A quantum state is a *superposition* of vectors
- To read it, one must *measure* the state:
 - the outcome is one of these vectors
 - the other ones are destroyed

Quantum States

- A quantum state is a *superposition* of vectors
- To read it, one must *measure* the state:
 - the outcome is one of these vectors
 - the other ones are destroyed

There is no quantum algorithm that clones arbitrary quantum states.

Point function:
$$PF_y(x) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

Copy-Protection of $\{\mathsf{PF}_y\}_{y \in \{0,1\}^n}$

Point function:
$$PF_y(x) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

Copy-Protection of $\{\mathsf{PF}_y\}_{y \in \{0,1\}^n}$

Anti-Piracy Security

Anti-Piracy Security

Anti-Piracy Security

Challenge Distributions

Product distribution: $(y, y), (y, \$), (\$, y), (\$, \$) \to p_{win} \le 1/2$ **Non-colliding distribution:** $(y, \$), (\$, y), (\$, \$) \to p_{win} \le 2/3$

	Security	Model	Distribution
CMP20	constant	QROM	non-colliding
AKL+22	negligible	QROM	product
CHV23	negligible	Plain Model	non-colliding
This work	negligible	Plain Model	product

$$A \subset \mathbb{F}_2^n$$
, $dim(A) = n/2$, $s, s' \in \mathbb{F}_2^n$

 $|A, s, s'\rangle$: superposition of all vectors in A + s (*regular coset*) and $A^{\perp} + s'$ (*dual coset*)

$$A \subset \mathbb{F}_2^n$$
, $dim(A) = n/2$, $s, s' \in \mathbb{F}_2^n$

 $|A, s, s'\rangle$: superposition of all vectors in A + s (*regular coset*) and $A^{\perp} + s'$ (*dual coset*)

$$A\subset \mathbb{F}_2^n$$
, $dim(A)=n/2$, $s,s'\in \mathbb{F}_2^n$

 $|A, s, s'\rangle$: superposition of all vectors in A + s (*regular coset*) and $A^{\perp} + s'$ (*dual coset*)

$$A\subset \mathbb{F}_2^n$$
, $dim(A)=n/2$, $s,s'\in \mathbb{F}_2^n$

 $|A, s, s'\rangle$: superposition of all vectors in A + s (*regular coset*) and $A^{\perp} + s'$ (*dual coset*)

Construction

We use a pseudorandom functions family PRF and indistinguishable obfuscation iO.

Protect(y) Return PRF(k, y), iO(P_k), $|A, s, s'\rangle$ $P_k(u, x)$: • Checks whether $u \in \begin{cases} A+s & \text{if } x_0 = 0\\ A^{\perp} + s' & \text{if } x_0 = 1 \end{cases}$

Return PRF(k, x)

 $\mathsf{Eval}(z, \widehat{\mathsf{P}_{\mathsf{k}}}, | \mathsf{A}, \mathsf{s}, \mathsf{s}' \rangle, \mathsf{x})$

• Compute
$$z' = \widehat{\mathsf{P}_k}(|A, s, s'\rangle, x)$$

• Return 1 if z' = z and 0 otherwise

 \rightarrow relies on Compute-and-Compare Obfuscation

$$\mathcal{B}(\sigma_1)$$
 distinguishes between y and $\$
 \Downarrow
 $\mathcal{B}(\sigma_1, x_1, A) \rightarrow u \in \left\{ egin{array}{c} A+s \ {
m or} \ A^{\perp}+s' \end{array}
ight.$ (depends on x_1)

Also works for C with (σ_2, x_2)

 $\mathcal{A}^*, \mathcal{B}^*, \mathcal{C}^*$ break anti-piracy security of our construction.

 $\mathcal{A}^*, \mathcal{B}^*, \mathcal{C}^*$ break anti-piracy security of our construction.

 $\mathcal{A}^*, \mathcal{B}^*, \mathcal{C}^*$ break anti-piracy security of our construction.

Problem when using product distribution !

We prove $p_{win}(MoE) \le 1/2$ and $p_{win}(MoE^n) \le negl(n)$

Thank you !