Semi-Quantum Copy-Protection and More

collaboration with Huy Vu and Céline Chevalier

SCIENCES
SORBONNE
UNIVERSITEE

Copy-Protection of Point Functions

collaboration with Huy Vu and Céline Chevalier

SCIENCES
SORBONNE
UNIVERSITÉ

What is Copy-Protection ?

Produce unclonable programs

What is Copy-Protection ?

Produce unclonable programs

What is Copy-Protection ?

Produce unclonable programs

Classical Impossibility

Classically

Classical Impossibility

Classically

Quantumly

Overview

(1) Unclonability
(2) Copy-Protection of Point Functions
(3) Copy-Protection of Point Functions in the Plain Model

Unclonability

Quantum States

- A quantum state is a superposition of vectors
- To read it, one must measure the state:
- the outcome is one of these vectors
- the other ones are destroyed

Example

$|00\rangle+|01\rangle \mid \longrightarrow$ Measurement $+\longrightarrow 01$

Quantum States

- A quantum state is a superposition of vectors
- To read it, one must measure the state:
- the outcome is one of these vectors
- the other ones are destroyed

Example

No-Cloning Theorem

There is no quantum algorithm that clones arbitrary quantum states.

Copy-Protection of Point Functions

Definitions

Point function: $\mathrm{PF}_{y}(x)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}$
Copy-Protection of $\left\{\mathrm{PF}_{y}\right\}_{y \in\{0,1\}^{n}}$

Definitions

Point function: $\mathrm{PF}_{y}(x)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}$
Copy-Protection of $\left\{\mathrm{PF}_{y}\right\}_{y \in\{0,1\}^{n}}$

Anti-Piracy Security

Anti-Piracy Security

Anti-Piracy Security

Challenge Distributions

Product distribution: $(y, y),(y, \$),(\$, y),(\$, \$) \rightarrow p_{\text {win }} \leq 1 / 2$
Non-colliding distribution: $(y, \$),(\$, y),(\$, \$) \rightarrow p_{\text {win }} \leq 2 / 3$

History

	Security	Model	Distribution
CMP20	constant	QROM	non-colliding
AKL+22	negligible	QROM	product
CHV23	negligible	Plain Model	non-colliding
This work	negligible	Plain Model	product

In the Plain Model

Coset States

$A \subset \mathbb{F}_{2}^{n}, \operatorname{dim}(A)=n / 2, s, s^{\prime} \in \mathbb{F}_{2}^{n}$
$\left|A, s, s^{\prime}\right\rangle$: superposition of all vectors in $A+s$ (regular coset) and $A^{\perp}+s^{\prime}$ (dual coset)

It is only possible to get information on either the regular coset of the dual one: $p_{\text {win }}(\mathrm{MoE}) \leq \operatorname{negl}(n)$

Coset States

$A \subset \mathbb{F}_{2}^{n}, \operatorname{dim}(A)=n / 2, s, s^{\prime} \in \mathbb{F}_{2}^{n}$
$\left|A, s, s^{\prime}\right\rangle$: superposition of all vectors in $A+s$ (regular coset) and $A^{\perp}+s^{\prime}$ (dual coset)

It is only possible to get information on either the regular coset of the dual one: $p_{\text {win }}(\mathrm{MoE}) \leq \operatorname{negl}(n)$

Coset States

$A \subset \mathbb{F}_{2}^{n}, \operatorname{dim}(A)=n / 2, s, s^{\prime} \in \mathbb{F}_{2}^{n}$
$\left|A, s, s^{\prime}\right\rangle$: superposition of all vectors in $A+s$ (regular coset) and $A^{\perp}+s^{\prime}$ (dual coset)

It is only possible to get information on either the regular coset of the dual one: $p_{\text {win }}(\mathrm{MoE}) \leq \operatorname{negl}(n)$

Coset States

$A \subset \mathbb{F}_{2}^{n}, \operatorname{dim}(A)=n / 2, s, s^{\prime} \in \mathbb{F}_{2}^{n}$
$\left|A, s, s^{\prime}\right\rangle$: superposition of all vectors in $A+s$ (regular coset) and $A^{\perp}+s^{\prime}$ (dual coset)

It is only possible to get information on either the regular coset of the dual one: $p_{\text {win }}(\mathrm{MoE}) \leq \operatorname{negl}(n)$

Construction

We use a pseudorandom functions family PRF and indistinguishable obfuscation iO.

Protect(y)

Return $\operatorname{PRF}(\mathrm{k}, y), \mathrm{iO}\left(\mathrm{P}_{\mathrm{k}}\right),\left|A, s, s^{\prime}\right\rangle$
$\mathrm{P}_{\mathrm{k}}(u, x)$:

- Checks whether $u \in \begin{cases}A+s & \text { if } x_{0}=0 \\ A^{\perp}+s^{\prime} & \text { if } x_{0}=1\end{cases}$
- Return $\operatorname{PRF}(k, x)$
$\operatorname{Eval}\left(z, \widehat{\mathrm{P}_{\mathrm{k}}},\left|A, s, s^{\prime}\right\rangle, x\right)$
- Compute $z=\widehat{\mathrm{P}_{\mathrm{k}}}\left(\left|A, s, s^{\prime}\right\rangle, x\right)$
- Return 1 if $z^{\prime}=z$ and 0 otherwise

Security: Main Argument

\rightarrow relies on Compute-and-Compare Obfuscation

$$
\begin{gathered}
\mathcal{B}\left(\sigma_{1}\right) \text { distinguishes between } y \text { and } \$ \\
\Downarrow \\
\mathcal{B}\left(\sigma_{1}, x_{1}, A\right) \rightarrow u \in\left\{\begin{array}{l}
A+s \\
\text { or } \\
A^{\perp}+s^{\prime}
\end{array} \text { (depends on } x_{1}\right. \text {) }
\end{gathered}
$$

Also works for \mathcal{C} with $\left(\sigma_{2}, x_{2}\right)$

Reduction

$\mathcal{A}^{*}, \mathcal{B}^{*}, \mathcal{C}^{*}$ break anti-piracy security of our construction.

Reduction

$\mathcal{A}^{*}, \mathcal{B}^{*}, \mathcal{C}^{*}$ break anti-piracy security of our construction.

Reduction

$\mathcal{A}^{*}, \mathcal{B}^{*}, \mathcal{C}^{*}$ break anti-piracy security of our construction.

Problem when using product distribution!

A New Monogamy-of-Entanglement Game

A New Monogamy-of-Entanglement Game

A New Monogamy-of-Entanglement Game

We prove $p_{\text {win }}(\operatorname{MoE}) \leq 1 / 2$ and $p_{\text {win }}\left(\operatorname{MoE}^{n}\right) \leq \operatorname{negl}(n)$

Thank you!

