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Quantum (CSS) codes

H =
HZ

HX

Two matrices HX ,HZ with orthogonal row spaces.

Dimension of code is: n − dim HX − dim HZ .

Minimum distance dX defined as minimum weight of binary error eX orthogonal to
rows of HX and not in row-space of HZ .

Distance dZ defined similarly. Minimum distance of quantum code is:

d = min(dX ,dZ ).

We are interested in HX ,HZ low-density. Quantum LDPC codes.
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Example: Kitaev toric code.

HX =

HZ =

HX : rows consist of elementary cocycles.

HZ : rows consist of elementary cycles (faces).

Dimension: k = n − dim HX − dim HZ = dim ker σX/ ImσZ = 2. F2-homology of
torus.
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Kitaev’s toric code, minimum distance

Homologically non-trivial cycles.

and cocycles

We obtain the quantum code’s parameters

[[2m2,2,m]] d =
√

n/2.

Issues: raise the dimension, raise the minimum distance.
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Context: minimum distance beyond
√

n

I Freedman, Luo, Meyer 2002. d ≥
√

n log1/4 n.
I Evra, Kaufman, Z, 2020. d ≥

√
n log n.

I Kaufman, Tessler, 2020. d ≥
√

n logk n.
I Hastings, Haah, O’Donnell, 2020 d ≥ n0.6.
I Panteleev, Kalachev, 2021 d ≥ n/logn.
I Panteleev, Kalachev, 2022, asymptotically good quantum LDPC codes.
I Leverrier, Z, 2022. Quantum Tanner codes.
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Classical Tanner code.
Ingredients.

1. A regular graph (V ,E) of degree ∆.
2. A code C0 of length ∆.

Code is space of functions x : E → F2 such that for every vertex v ∈ V , x
restricted to E(v) is in C0.

v
∈ C0xe

E(v)

Sipser-Spielman 1996. Expander codes.
A codeword is a subgraph with minimum degree equal to minimum distance of C0.
If the graph is an expander then all such subgraphs must be large – by definition of
expansion.
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Tanner codes

Can one do a quantum version of a Tanner code ?

Say bipartite graph: one set of vertices carries X -checks (generators), the other
set the Z -checks.

Issue. Two neighbouring vertices typically share just one edge: in which case two
checks on the two vertices are either disjoint or not orthogonal.
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QLDPC codes, Kitaev toric code. Square complex version

HX =

HZ =

I Qubits are on squares !
I One set of vertices for X equations, one set of vertices for Z equations
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QLDPC codes, Kitaev toric code. Square complex version

HX =

HZ =

[[N,2,
√

N]] code
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Generalize to left-right Cayley complex

Left-right complex from Dinur, Evra, Livne, Lubotzky, Mozes 2022, used to
construct locally testable codes with constant rate, distance, and locality.

Form two Cayley graphs Cay(G,A) and Cay(G,B) over a group G.

g ag g gb
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The left-right Cayley complex

Four copies of G. V00,V10,V01,V11. A = A−1,B = B−1.

g ∈ V00 gb ∈ V10

ag ∈ V01 agb ∈ V11

|A| = |B| = ∆, so every vertex v incident to |Q(v)| = ∆2 squares.
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The graphs G�0 and G�1

g ∈ V00 gb ∈ V10

ag ∈ V01 agb ∈ V11
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The graphs G�0 and G�1

g ∈ V00 gb ∈ V10

ag ∈ V01 agb ∈ V11

Throw away V1 = V10 ∪ V01: squares are downgraded to edges,
we have a graph G�0 over vertex set V0 = V00 ∪ V11.
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The graphs G�0 and G�1

g ∈ V00 gb ∈ V10

ag ∈ V01 agb ∈ V11

Throw away V1 = V10 ∪ V01: squares are downgraded to edges,
we have a graph G�0 over vertex set V0 = V00 ∪ V11.

Throw away V0, we have G�1 .

Two graphs, that share the same edge set. Degree: ∆2.
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Q-neighbourhoods
The set Q(v) of squares {g,ag,gb,agb}incident to g can be labelled A× B.

Q(g,00) Q(gb,10)

Q(ag,01) Q(agb,11)

b b

a

a
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Quantum Tanner codes, Leverrier-Z 2022
Bits on squares.
Two sets of constraints, CA ⊗ CB on V0 and C⊥

A ⊗ C⊥
B on V1.

CA ⊗ CB C⊥
A ⊗ C⊥

B

C⊥
A ⊗ C⊥

B CA ⊗ CB

CA C⊥A

CB

C⊥B
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Generalises Kitaev Code

Kitaev case: |A| = |B| = 2.

CA = CB = C⊥A = C⊥B = {[00], [11]}.

Every check equation has the form:

1 1

1 1
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Tanner code view

C0 is Tanner code on G�0 and C1 is Tanner code on G�1 with inner codes

(CA ⊗ CB)⊥ = C⊥A ⊗ FB
2 + FA

2 ⊗ C⊥B

(C⊥A ⊗ C⊥B )⊥ = CA ⊗ FB
2 + FA

2 ⊗ CB.

Rate of quantum code: if CA and CB have rates ρ and 1− ρ, then quantum code
has rate (1− 2ρ)2.

Minimum distance: minimum weight of word of C1 that is not in C⊥0 .

Proved to be linear in length n if Cayley graphs Cay(G,A) and Cay(G,B) are
sufficiently expanding.
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Minimum distance

Tanner codeword that is not sum of generators.

CA ⊗ CB

CA ⊗ FB
2 + FA

2 ⊗ CB

CA ⊗ FB
2 + FA

2 ⊗ CB

CA ⊗ CB
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Minimum distance argument for quantum code
Expansion in G���1 implies that most local views have small weight. (Almost) single
columns or rows.

CA ⊗ FB
2 + FA

2 ⊗ CB

CA ⊗ FB
2 + FA

2 ⊗ CB
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Minimum distance argument

Collapse local views to single column: recover Cayley graph Cay(G,A).
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Minimum distance argument

Collapse local views to single column: recover Cayley graph Cay(G,A).

And Cayley graph Cay(G,B).
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Minimum distance argument

FA
2 ⊗ CB

CA ⊗ FB
2

Single row (column) codewords from local views on v ∈ V1 cluster on local views
of V0. Because of expansion in Cay(G,A),Cay(G,B).
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Minimum distance argument

FA
2 ⊗ CB

CA ⊗ FB
2

Such a local view of x is close to FA
2 ⊗ CB and to CA ⊗ FB

2 .

Therefore close to codeword of CA ⊗ CB.
Add it to x and decrease its weight.

Iterate and obtain that x is sum of generators.
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Robustness

Close to FA
2 ⊗ CB and close to CA ⊗ FB

2 implies close to CA ⊗ CB.

Robustness of tensor code.

Equivalently, for dual tensor codeword x = c + r , c ∈ CA ⊗ FB
2 , r ∈ FA

2 ⊗ CB,

|x | ≥ κ∆(‖c‖+ ‖r‖) ‖ ‖ number of columns/rows
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Robustness is equivalent to local testability of tensor code

Test whether y is close to CA ⊗ CB by testing closeness to CA and CB on a few
random rows/columns.

gives answer ‘close’ only when y close to c ∈ CA ⊗ FB
2 and close to r ∈ FA

2 ⊗ CB.
But then r + c has small weight so by robustness equals r ′ + c′ with ‖c‖ and ‖r‖
small.

So y close to c + c′ = r + r ′ ∈ CA ⊗ CB.
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Robustness of tensor/dual-tensor codes

|x | ≥ κ∆(‖c‖+ ‖r‖) ‖ ‖ number of columns/rows

∈ CA

∈ CB

x

First known to hold when |x | � ∆3/2 for randomly chosen codes CA,CB. Now
without any condition on |x |.

Gives minimum distance linear in length n, and also decoding in linear time.

Extended to parallel decoding.
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Robustness vs decoding

I Gu, Pattison, Tang, 2022: improved robustness and decoding of LZ codes
I Dinur, Hsieh, Lin, Vidick, 2022: complete robustness and decoding of dual

construction of PK codes
I Leverrier, Z, 2022: decoding LZ codes with reduced robustness
I Kalachev, Panteleev 2022: complete robustness

Problem: obtain robust tensor codes CA ⊗ CB for dim CA + dim CB ≥ ∆.
Replace random choice by constructions ??

For dim CA + dim CB ≤ ∆, Reed-Solomon codes (Polishchuk, Spielman, 1994).
(Not robust for higher rates).
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Connection to (classical) locally testable codes

If a code is LDPC then the syndrome σ(e) of a low-weight vector e is low-weight

Converse ?

Locally testable means that a syndrome σ(x) is low-weight iff it is the syndrome of
a low-weight vector σ(x) = σ(e).
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The Dinur et al code.
Tanner code on G���1 with inner code CA ⊗ CB. Note: also Tanner code on G���0 , so
redundant checks !

CA ⊗ CB

CA ⊗ CB

CA ⊗ CB

CA ⊗ CB
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Test

To test vector x , sample some local views and test whether belong to CA ⊗ CB.

CA ⊗ CB

CA ⊗ CB

Suppose few local views of x not in CA ⊗ CB. Choose the closest local view in
CA ⊗ CB and sum them all: mismatch vector Z .
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Mismatch vector Z is sum of generators
(if the quantum code has large distance).
So there is a Tanner codeword close to x .

CA ⊗ CB

CA ⊗ FB
2 + FA

2 ⊗ CB

CA ⊗ FB
2 + FA

2 ⊗ CB

CA ⊗ CB
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Other developments and open problems

I Hopkins, Lin 2022. Application to sum of squares approximation
I Anshu, Breukmann, Nirkhe, 2022. Proof of NLTS conjecture.

Open problems:

Alternatives to the left-right Cayley complex ?

locally testable quantum LDPC code ?
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