Lattices in cryptography: cryptanalysis, constructions and reductions

Alice Pellet--Mary

CNRS and Université de Bordeaux

Journées C2, 2023 Najac

Lattices

- $\mathcal{L} = \{\sum_{i=1}^n x_i \mathsf{b}_i \mid \forall i, x_i \in \mathbb{Z}\}$ is a lattice
- $lackbox{ } (\mathsf{b}_1,\ldots,\mathsf{b}_n)=:B\in\mathrm{GL}_n(\mathbb{R}) \text{ is a basis } (\mathsf{not} \ \mathsf{unique})$

Short basis problem

Input:

Output:

Shortest basis problem

$$\max_{i} \| \mathbf{c}_i \| \leq \min_{\mathsf{B}' \text{ basis of } \mathbf{L}} \left(\max_{i} \| \mathbf{b}_i' \| \right)$$

Short basis problem

Input:

Output:

Approximate short basis problem

$$\max_{i} \|\mathbf{c}_{i}\| \leq \gamma \cdot \min_{\mathsf{B}' \text{ basis of L}} \left(\max_{i} \|\mathbf{b}'_{i}\| \right)$$

Lattice reduction algorithms

Dimension 2: Lagrange-Gauss algorithm

video

Dimension 2: Lagrange-Gauss algorithm

video

Theorem: The algorithm

- finds a shortest basis
- runs in polynomial time

Input: basis
$$B = (b_1, \ldots, b_n)$$

Input: basis $B = (b_1, \ldots, b_n)$

(using Lagrange-Gauss algorithm)

Main idea: improve the basis locally on blocks of dimension 2

Input: basis $B = (b_1, \ldots, b_n)$

Main idea: improve the basis locally on blocks of dimension 2

(using Lagrange-Gauss algorithm)

Algorithm:

- while there exists i such that (b_i, b_{i+1}) is not a shortest basis of L_i $(L_i$ is roughly the lattice spanned by (b_i, b_{i+1})
 - \triangleright run Lagrange-Gauss on L_i

Input: basis $B = (b_1, \ldots, b_n)$

Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exists i such that (b_i, b_{i+1}) is not a shortest basis of L_i $(L_i \text{ is roughly the lattice spanned by } (b_i, b_{i+1}))$
 - ightharpoonup run Lagrange-Gauss on L_i

This algorithm

• finds an approximate short basis with $\gamma=2^n$

[LLL82] Lenstra, Lenstra, and Lovász. Factoring polynomials with rational coefficients. Mathematische annalen.

Input: basis $B = (b_1, \ldots, b_n)$

Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exists i such that (b_i, b_{i+1}) is not a shortest basis of L_i $(L_i$ is roughly the lattice spanned by (b_i, b_{i+1})
 - \triangleright run Lagrange-Gauss on L_i

This algorithm

- finds an approximate short basis with $\gamma = 2^n$
- does not run in polynomial time

Input: basis
$$B = (b_1, \ldots, b_n)$$

Main idea: improve the basis locally on blocks of dimension 2

(using Lagrange-Gauss algorithm)

Algorithm:

- while there exists i such that (b_i, b_{i+1}) is not a γ' -short basis of L_i with $\gamma' = 4/3$ $(L_i$ is roughly the lattice spanned by (b_i, b_{i+1})
 - \triangleright run Lagrange-Gauss on L_i

This algorithm

- finds an approximate short basis with $\gamma = 2^n$
- runs in polynomial time

Sieving:

[AKS01] Ajtai, Kumar, and Sivakumar. A sieve algorithm for the shortest lattice vector problem. STOC

Sieving:

Create many large vectors

Sieving:

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

Sieving

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

Repeat with the shorter vectors

Sieving

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

Repeat with the shorter vectors

Sieving

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

Repeat with the shorter vectors

Sieving:

- Create many large vectors
- Subtract close ones to create shorter vectors

7/25

Repeat with the shorter vectors

Size of the initial list: $2^{O(n)}$

Sieving

- Create many large vectors
- Subtract close ones to create shorter vectors
- Repeat with the shorter vectors

Size of the initial list: $2^{O(n)}$

finds a shortest basis

7/25

Sieving:

- Create many large vectors
- Subtract close ones to create shorter vectors
- Repeat with the shorter vectors

Size of the initial list: $2^{O(n)}$

finds a shortest basis

7/25

runs in time $2^{O(n)}$

Lagrange-Gauss algorithm: dim 2

- shortest basis
- polynomial time

Lagrange-Gauss algorithm: dim 2

- shortest basis
- polynomial time

LLL algorithm: dim n

- ullet γ -short basis with $\gamma=2^n$
- polynomial time

Lagrange-Gauss algorithm: dim 2

- shortest basis
- polynomial time

LLL algorithm: dim n

- $ightharpoonup \gamma$ -short basis with $\gamma=2^n$
- polynomial time

Sieving algorithm: $\dim n$

- shortest basis
- \blacktriangleright time $2^{O(n)}$

BKZ trade-offs

Lagrange-Gauss algorithm: dim 2

- shortest basis
- polynomial time

LLL algorithm: dim n

- $ightharpoonup \gamma$ -short basis with $\gamma=2^n$
- polynomial time

Sieving algorithm: $\dim n$

- shortest basis
- \triangleright time $2^{O(n)}$

BKZ algorithm: combine LLL + Sieving ⇒ various trade-offs

Finding a shortest basis in practice:

 $ightharpoonup n=2 \leadsto \text{easy, very efficient in practice}$

Finding a shortest basis in practice:

- $ightharpoonup n=2 \leadsto$ easy, very efficient in practice
- up to n = 60 or $n = 80 \rightsquigarrow$ a few minutes on a personal laptop

Finding a shortest basis in practice:

- lacksquare n=2 \leadsto easy, very efficient in practice
- up to n=60 or n=80 \leadsto a few minutes on a personal laptop
- up to $n=180 \leadsto$ few days on big computers with good code [DSW21]

Finding a shortest basis in practice:

- lacksquare n=2 \leadsto easy, very efficient in practice
- up to n=60 or n=80 \leadsto a few minutes on a personal laptop
- ullet up to n=180 \leadsto few days on big computers with good code <code>[DSW21]</code>
- from n = 500 to $n = 1000 \rightsquigarrow$ cryptography

Hash-and-sign signature

Input: $x = 3.7 \cdot b_1 - 1.4 \cdot b_2$

Input: $x = 3.7 \cdot b_1 - 1.4 \cdot b_2$ Algo: round each coordinate

Input: $x = 3.7 \cdot b_1 - 1.4 \cdot b_2$

Algo: round each coordinate

Output: $s = 4 \cdot b_1 - 1 \cdot b_2$

Input: $x = 3.7 \cdot b_1 - 1.4 \cdot b_2$

Algo: round each coordinate

Output: $s = 4 \cdot b_1 - 1 \cdot b_2$

The smaller the basis, the closer the solution

(called Babai's round-off algorithm)

Decoding in a lattice using a short basis

Input: $x = 3.7 \cdot b_1 - 1.4 \cdot b_2$

Algo: round each coordinate

Output: $s = 4 \cdot b_1 - 1 \cdot b_2$

The smaller the basis, the closer the solution

(called Babai's round-off algorithm)

$$=\left\{x_1b_1+x_2b_2\,\Big|\,|x_i|\leq \frac{1}{2}\right\}$$

KeyGen:

- $ightharpoonup pk = \mathsf{bad} \; \mathsf{basis} \; \mathsf{of} \; \mathcal{L}$
- $ightharpoonup sk = ext{short basis of } \mathcal{L}$

KeyGen:

- ightharpoonup pk =bad basis of \mathcal{L}
- $ightharpoonup sk = short basis of <math>\mathcal{L}$

Sign(m, sk):

 \rightarrow x = H(m) (hash the message)

KeyGen:

- ightharpoonup pk =bad basis of \mathcal{L}
- $ightharpoonup sk = short basis of <math>\mathcal{L}$

Sign(m, sk):

- ightharpoonup x = H(m) (hash the message)
- output $s \in \mathcal{L}$ close to x

KeyGen:

- ightharpoonup pk =bad basis of \mathcal{L}
- $ightharpoonup sk = short basis of <math>\mathcal{L}$

Sign(m, sk):

- ightharpoonup x = H(m) (hash the message)
- ightharpoonup output $s \in \mathcal{L}$ close to x

Verify(s, pk):

- lacktriangleright check that $s\in\mathcal{L}$
- lacksquare check that H(m)-s is small

Parallelepiped attack:

Parallelepiped attack:

ightharpoonup ask for a signature s on m

[NR06] Nguyen and Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. J. Cryptology

Alice Pellet-Mary Lattices in cryptography 17/10/2023 13/25

Parallelepiped attack:

- ask for a signature s on m
- ▶ plot H(m) s

Parallelepiped attack:

- ightharpoonup ask for a signature s on m
- ▶ plot H(m) s
- repeat

Parallelepiped attack:

- ightharpoonup ask for a signature s on m
- ▶ plot H(m) s
- repeat

Parallelepiped attack:

- ▶ ask for a signature s on m
- ▶ plot H(m) s
 - repeat

From the shape of the parallelepiped, one can recover the short basis

Idea: do not decode deterministically but randomly

Idea: do not decode deterministically but randomly

Sign(m, sk):

- lacksquare x=H(m) (hash the message)
- sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)

Idea: do not decode deterministically but randomly

Sign(m, sk):

- lacksquare x=H(m) (hash the message)
- sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)

Idea: do not decode deterministically but randomly

Sign(m, sk):

- ightharpoonup x = H(m) (hash the message)
- sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)

Idea: do not decode deterministically but randomly

Sign(m, sk):

- \rightarrow x = H(m) (hash the message)
- sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)

[GPV08] Gentry, Peikert, and Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions.

Alice Pellet-Mary

14/25

Idea: do not decode deterministically but randomly

Sign(m, sk):

- lacksquare x=H(m) (hash the message)
- sample $s \in \mathcal{L} \cap \mathcal{B}_r(x)$ (small radius r)

Lemma: if an adversary can forge signatures, then she can recover a short basis of \mathcal{L} using only pk (in the ROM)

17/10/2023

14/25

[GPV08] Gentry, Peikert, and Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions.

Alice Pellet-Mary Lattices in cryptography

Input: center x, radius r (and a short basis (b_1, \ldots, b_n))
Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

15/25

Input: center x, radius r

(and a short basis (b_1, \ldots, b_n))

Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

Sample $y \leftarrow \mathcal{U}(\mathcal{B}_r(x))$ (continuous distribution)

15/25

Input: center x, radius r (and a short basis (b_1, \ldots, b_n))
Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- Sample $y \leftarrow \mathcal{U}(\mathcal{B}_r(x))$ (continuous distribution)
- ightharpoonup s \leftarrow Babai_decoding(y)

15/25

Input: center x, radius r (and a short basis (b_1, \ldots, b_n))
Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- Sample $y \leftarrow \mathcal{U}(\mathcal{B}_r(x))$ (continuous distribution)
- ightharpoonup s \leftarrow Babai_decoding(y)
- lacksquare repeat until $\mathsf{s} \in \mathcal{B}_r(\mathsf{x})$

15/25

Input: center x, radius r (and a short basis (b_1, \ldots, b_n))
Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- Sample $y \leftarrow \mathcal{U}(\mathcal{B}_r(x))$ (continuous distribution)
- ightharpoonup s \leftarrow Babai_decoding(y)
- repeat until $s \in \mathcal{B}_r(x)$

Input: center x, radius r (and a short basis (b_1, \ldots, b_n))
Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- Sample $y \leftarrow \mathcal{U}(\mathcal{B}_{r'}(x))$ (continuous distribution)
- ightharpoonup s \leftarrow Babai_decoding(y)
- lacksquare repeat until $\mathsf{s} \in \mathcal{B}_r(\mathsf{x})$

15/25

Input: center x, radius r (and a short basis (b_1, \ldots, b_n)) $\mathsf{Output}\colon \mathsf{s} \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(\mathsf{x}))$

Algo:

- Sample y $\leftarrow \mathcal{U}(\mathcal{B}_{r'}(\mathsf{x}))$ (continuous distribution)
- $s \leftarrow Babai_decoding(y)$
- repeat until $s \in \mathcal{B}_r(x)$

[PP21] Plançon and Prest. Exact Lattice Sampling from Non-Gaussian Distributions. PKC.

15/25

Input: center x, radius r (and a short basis (b_1, \ldots, b_n)) Output: $s \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r(x))$

Algo:

- ightharpoonup Sample y $\leftarrow \mathcal{U}(\mathcal{B}_{r'}(\mathsf{x}))$ (continuous distribution)
- $s \leftarrow Babai_decoding(y)$
- repeat until $s \in \mathcal{B}_r(x)$

polynomial time if
$$r \ge 2n^2 \cdot \max_i \|b_i\|$$

Summary

Hash-and-sign signature scheme:

- requires a lattice \mathcal{L} + a short basis B_s + a bad basis B_p ;
- ightharpoonup provably secure if recovering a short basis from B_p is hard.

How to generate a hard lattice?

Objective

What we want: An algorithm KeyGen such that

- KeyGen computes
 - a random lattice L
 - ▶ a short basis B_s of \mathcal{L} (sk)
 - ightharpoonup a bad basis B_{p} of \mathcal{L} (pk)

Objective

What we want: An algorithm KeyGen such that

- KeyGen computes
 - ightharpoonup a random lattice $\mathcal L$
 - ightharpoonup a short basis B_s of \mathcal{L} (sk)
 - ightharpoonup a bad basis $\mathsf{B}_{m{p}}$ of \mathcal{L} (pk)
- ▶ computing a short basis of \mathcal{L} from B_p is hard with overwhelming probability

There is a basis B_0 of $\mathcal L$ that can be computed in poly time from any other basis B

 $\Rightarrow B_0$ is a worst possible basis

There is a basis B_0 of \mathcal{L} that can be computed in poly time from any other basis B

 \Rightarrow B₀ is a worst possible basis

Input: any basis B of \mathcal{L}

- Compute LLL-reduced basis $C = (c_1, \dots, c_n)$
 - poly time
 - ▶ $\max_i \|c_i\| \le 2^n \cdot \min_{C'} \max_i \|c_i'\|$ (C' ranging over all bases of \mathcal{L})

There is a basis B_0 of $\mathcal L$ that can be computed in poly time from any other basis B

 $\Rightarrow B_0$ is a worst possible basis

Input: any basis B of \mathcal{L}

- ▶ Compute LLL-reduced basis $C = (c_1, ..., c_n)$
 - poly time
 - ▶ $\max_i \|c_i\| \le 2^n \cdot \min_{C'} \max_i \|c_i'\|$ (C' ranging over all bases of \mathcal{L})
- ▶ sample many vectors $\mathbf{v}_j \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r)$ (with $r = 2n^2 \cdot 2^n \cdot \min_{C'} \max_i \|\mathbf{c}_i'\|$)
 - ightharpoonup until they generate ${\cal L}$
 - ightharpoonup poly time because $r \geq 2n^2 \cdot \max_i \|c_i\|$

There is a basis B_0 of $\mathcal L$ that can be computed in poly time from any other basis B

 \Rightarrow B₀ is a worst possible basis

Input: any basis B of \mathcal{L}

- ▶ Compute LLL-reduced basis $C = (c_1, ..., c_n)$
 - poly time
 - ▶ $\max_i \|c_i\| \le 2^n \cdot \min_{C'} \max_i \|c_i'\|$ (C' ranging over all bases of \mathcal{L})
- ▶ sample many vectors $\mathbf{v}_j \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r)$ (with $r = 2n^2 \cdot 2^n \cdot \min_{\mathbf{C}'} \max_i \|\mathbf{c}_i'\|$)
 - ightharpoonup until they generate ${\cal L}$
 - ▶ poly time because $r \ge 2n^2 \cdot \max_i \|c_i\|$
- extract a basis B₀ from the v_j's
 - ▶ linear algebra ⇒ poly time

There is a random basis B_0 of $\mathcal L$ that can be computed in poly time from any other basis $\mathsf B$

 $\Rightarrow B_0$ is a worst possible distribution over bases

Input: any basis B of \mathcal{L}

- ▶ Compute LLL-reduced basis $C = (c_1, ..., c_n)$
 - poly time
 - ▶ $\max_i \|c_i\| \le 2^n \cdot \min_{C'} \max_i \|c_i'\|$ (C' ranging over all bases of \mathcal{L})
- ▶ sample many vectors $\mathbf{v}_j \leftarrow \mathcal{U}(\mathcal{L} \cap \mathcal{B}_r)$ (with $r = 2n^2 \cdot 2^n \cdot \min_{C'} \max_i \|\mathbf{c}_i'\|)$
 - ightharpoonup until they generate ${\cal L}$
 - ▶ poly time because $r \ge 2n^2 \cdot \max_i \|c_i\|$
- extract a basis B₀ from the v_j's
 - ► linear algebra ⇒ poly time

Objective

What we want: An algorithm KeyGen such that

- KeyGen computes
 - a random lattice L
 - ightharpoonup a short basis B_s of \mathcal{L} (sk)
 - ightharpoonup a bad basis B_p of \mathcal{L} (pk)
- computing a short basis from B_p is hard with overwhelming probability

Objective

What we want: An algorithm KeyGen such that

- KeyGen computes
 - ightharpoonup a random lattice ${\cal L}$
 - ightharpoonup a short basis B_s of \mathcal{L} (sk)
 - ightharpoonup a worst possible basis B_p of \mathcal{L} (pk)
- computing a short basis from B_p is hard with overwhelming probability

[DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms [...] Eurocrypt [BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of \mathbb{Z}^n ? [...] Eurocrypt

21/25

rotate (choose O

[DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms [...] Eurocrypt [BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of \mathbb{Z}^n ? [...] Eurocrypt

21/25

rotate

→
(choose O
orthogonal
matrix)

B worst-possible basis of $\ensuremath{\mathcal{L}}$

[[]DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms [...] Eurocrypt
[BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of Zⁿ? [...] Eurocrypt

B worst-possible basis of ${\cal L}$

Lattice Isomorphism Problem (LIP) assumption recovering O from B is hard

 \Leftrightarrow computing a shortest basis of ${\mathcal L}$ is hard

[DW22] Ducas and van Woerden. On the lattice isomorphism problem, quadratic forms [...] Eurocrypt
[BGPS23] Bennett, Ganju, Peetathawatchai, Stephens-Davidowitz. Just how hard are rotations of Zⁿ? [...] Eurocrypt

rotate → (choose *O* orthogonal matrix)

B worst-possible basis of ${\cal L}$

21/25

Lattice Isomorphism Problem (LIP) assumption recovering O from B is hard

 \Leftrightarrow computing a shortest basis of ${\mathcal L}$ is hard

► Hawk: hash-and-sign + (module) LIP [DPPW23]

[DPPW23] Ducas, Postlethwaite, Pulles, van Woerden. Hawk: Module LIP makes lattice signatures [...] Asiacrypt

Start with $(q\mathbb{Z})^2$

- Start with $(q\mathbb{Z})^2$
- sample random short $v \in \mathbb{Z}^2$ $(\|v\| \approx \sqrt{q})$

- lacksquare Start with $(q\Z)^2$
- sample random short $\mathsf{v} \in \mathbb{Z}^2$ $(\|\mathsf{v}\| pprox \sqrt{q})$
- $ightharpoonup \mathcal{L}$ spanned by v and $(q\mathbb{Z})^2$

- lacksquare Start with $(q\mathbb{Z})^2$
- sample random short $\mathsf{v} \in \mathbb{Z}^2$ $(\|\mathsf{v}\| pprox \sqrt{q})$
- $ightharpoonup \mathcal{L}$ spanned by v and $(q\mathbb{Z})^2$
- $ightharpoonup B_p$ worst-possible basis of ${\cal L}$

- lacksquare Start with $(q\mathbb{Z})^2$
- sample random short $\mathsf{v} \in \mathbb{Z}^2$ $(\|\mathsf{v}\| pprox \sqrt{q})$
- $ightharpoonup \mathcal{L}$ spanned by v and $(q\mathbb{Z})^2$
- lacksquare B $_p$ worst-possible basis of ${\cal L}$
- ▶ B_s short basis (using knowledge of v short)

- lacksquare Start with $(q\mathbb{Z})^2$
- sample random short $\mathsf{v} \in \mathbb{Z}^2$ $(\|\mathsf{v}\| pprox \sqrt{q})$
- \triangleright \mathcal{L} spanned by v and $(q\mathbb{Z})^2$
- lacksquare B $_{p}$ worst-possible basis of ${\cal L}$
- ▶ B_s short basis (using knowledge of v short)

Issue: dimension 2

 \Rightarrow short basis problem is easy

- Start with $(q\mathbb{Z})^2$
- sample random short $v \in \mathbb{Z}^2$
- \mathcal{L} spanned by v and $(q\mathbb{Z})^2$
- B_p worst-possible basis of \mathcal{L}
- B_s short basis (using knowledge of v short)

Issue: dimension 2

⇒ short basis problem is easy

Solution: use polynomials in $\mathbb{Z}[X]/(X^d+1)$ instead of integers

module lattice of dimension 2d

- lacksquare Start with $(q\mathbb{Z})^2$
- sample random short $\mathsf{v} \in \mathbb{Z}^2$ $(\|\mathsf{v}\| pprox \sqrt{q})$
- \triangleright \mathcal{L} spanned by v and $(q\mathbb{Z})^2$
- lacksquare B_p worst-possible basis of $\mathcal L$
- ► B_s short basis
 (using knowledge of v short)

Issue: dimension 2

⇒ short basis problem is easy

Solution: use polynomials in $\mathbb{Z}[X]/(X^d+1)$ instead of integers

- module lattice of dimension 2d
 - Falcon: hash-and-sign + NTRU

22/25

[Falcon] Fouque, Hoffstein, Kirchner, Lyubashevsky, Pornin, Prest, Ricosset, Seiler, Whyte, Zhang. NIST standard

Short Integer Solution (SIS) assumption

Let
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n}) \ (m > n \log q)$$
 and

$$\mathcal{L}(A) := \{ \mathbf{x} \in \mathbb{Z}^m \, | \, \mathbf{x}A = 0 \, \operatorname{mod} \, q \}.$$

Finding a short basis of $\mathcal{L}(A)$ is hard with overwhelming probability.

[Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.

Short Integer Solution (SIS) assumption

Let
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n}) \ (m > n \log q)$$
 and

$$\mathcal{L}(A) := \{ \mathbf{x} \in \mathbb{Z}^m \, | \, \mathbf{x}A = 0 \, \operatorname{mod} \, q \}.$$

Finding a short basis of $\mathcal{L}(A)$ is hard with overwhelming probability.

Lemma: if there exists one lattice for which the short basis problem is hard, then the SIS assumption holds. [Ajt96]

[Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.

Short Integer Solution (SIS) assumption

Let
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n}) \ (m > n \log q)$$
 and

$$\mathcal{L}(A) := \{ \mathbf{x} \in \mathbb{Z}^m \, | \, \mathbf{x}A = 0 \, \operatorname{mod} \, q \}.$$

Finding a short basis of $\mathcal{L}(A)$ is hard with overwhelming probability.

Lemma: if there exists one lattice for which the short basis problem is hard, then the SIS assumption holds. [Ajt96]

Lemma: one can sample A uniformly + a short basis B_s of $\mathcal{L}(A)$ in polynomial time [Ajt99]

[Ajt99] Ajtai. Generating hard instances of the short basis problem. ICALP.

Short Integer Solution (SIS) assumption

Let
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n}) \ (m > n \log q)$$
 and

$$\mathcal{L}(A) := \{ \mathbf{x} \in \mathbb{Z}^m \, | \, \mathbf{x}A = 0 \, \operatorname{mod} \, q \}.$$

Finding a short basis of $\mathcal{L}(A)$ is hard with overwhelming probability.

Lemma: if there exists one lattice for which the short basis problem is hard, then the SIS assumption holds. [Ajt96]

Lemma: one can sample A uniformly + a short basis B_s of $\mathcal{L}(A)$ in polynomial time [Ajt99]

► GPV: hash-and-sign + SIS [GPV08]

 $[\mathsf{GPV08}] \ \mathsf{Gentry}, \ \mathsf{Peikert}, \ \mathsf{Vaikuntanathan}. \ \mathsf{Trapdoors} \ \mathsf{for} \ \mathsf{hard} \ \mathsf{lattices} \ \mathsf{and} \ \mathsf{new} \ \mathsf{cryptographic} \ \mathsf{constructions}. \ \mathsf{STOC}$

23/25

17/10/2023

Conclusion

Some concrete questions: (come ask me if you want to know more)

- can we generate a random prime ideal p in a number field K together with a short element in it?
- can we re-randomize an NTRU instance?

Some concrete questions: (come ask me if you want to know more)

- can we generate a random prime ideal p in a number field K together with a short element in it?
- can we re-randomize an NTRU instance?

Open position: 2 years post-doc on quantum cryptanalysis (Bordeaux)

Some concrete questions: (come ask me if you want to know more)

- can we generate a random prime ideal p in a number field K together with a short element in it?
- can we re-randomize an NTRU instance?

Open position: 2 years post-doc on quantum cryptanalysis (Bordeaux)

Thank you