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TNN grassmannian and postroid varieties

A point P in the grassmannian G, (R) is totally nonnegative if
its Plucker coordinates can be represented by the k x k minors
of a kK x n matrix A such that each of these k£ x k minors are
nonnegative.

Cells are specified by stating precisely which Pllucker coordinates
are zero. If F is a subset of Plucker coordinates then SOF is the
cell where minors in F are zero (and those not in F are nonzero,
SO positive).

If S% # 0, then F defines a so-called postroid variety.



Quantum postroids

L-Lenagan-Nolan Let F be a family of Plucker coordinates and
Fq the corresponding family of quantum Plicker coordinates.
TFAE

e The totally nonnegative cell associated to F in Q}Cg” iS non-
empty.

o Fy; is the set of all quantum minors that belong to torus-
invariant prime in G4(k,n).

When q is transcendental, F, generates a (completely) prime
ideal. The corresponding quotient can be thought of as a quan-
tum postroid.



Why do we care about tnn cells / positroids?

1. Link with soliton solutions of KP equation.

2. Link with scattering amplitudes in the N =4 SYM model.

3. They are fun!!

Today's aim: compute invariants of (g-)positroids. We will be
modest an look at a specific case when F = (0. In this case,
the quantum positroid is just the quantum grassmannian and we
would like to compute its automorphism group, its Hochschild
cohomology, its irreducible representations, etc.



Quantum 2 x 2 matrices

The coordinate ring of quantum 2 x 2 matrices

OyMa(C) =K | |

IS generated by four indeterminates a, b, c,d subject to the follow-
ing rules:

ab = qba, cd = qdc
ac = qca, bd = qdb
bc = cb, ad — da = (q—q_l)cb.

The quantum determinant ad — gbc is a central element



The algebra of m x p quantum matrices.

Y

Y11 ... YEJ,_
R = Oq (Mm’p) =K :

i Ym71 o e e Ym,p i

where each 2 x 2 sub-matrix is a copy of Oq4 (M (2)).

Oq (Mm.p) is an iterated Ore extension with the indeterminates
Y; o @djoined in the lexicographic order and so is a noetherian
integral domain.

In the square case (m =p =n)

Dqg = Z (—Q)Z(U>Y1,a(1) e Yn,o(n)
ocESH

is the quantum determinant. D, is a central element.



Quantum minors of quantum matrices

They are the quantum determinants of square sub-matrices of
Oq (Mm.p).

More precisely, if I C [1,m] and A C [1,p] with | I |=| A |, the
quantum minor associated with the rows I and columns A is

LI A] i= Dg(Og(Mr p))-

For example, [12|23] = Y7 2Y2 3 —qY7 3Y2 2 is the quantum minor
of R associated with the rows 1,2, and the columns 2, 3.



The quantum grassmannian G;(k,n)

The quantum grassmannian G4(k, n) is the subalgebra of Oy (Mkn>
generated by the maximal k£ X £k quantum minors

Denote by [I] the quantum minor [1...k|I]. There is a torus
action of H = (K*)™ given by column multiplication. T

Example G,(2,4) is generated by the six quantum minors
[12], [13], [14], [23], [24], [34].

Most minors ¢®-commute, for example, [12][34] = ¢2[34][12],

however, [13][24] = [24] [13] + (¢ — ¢~ 1) [14] [23] and there is a
quantum Plucker relation

[12] [34] — q[13] [24] + ¢> [14] [23] = 0.

Partial order:
[i1 < - <] <[j1 <---<jr] whenever ig < js for all s.



[456]

356

aNaN

4‘3

NaVe aVWas

4‘3 4‘3

/\/\(\/\[

4‘3

N

124

[123]



[456]

)
1O
\H/

4‘3

%\/\/[/\/]

<t — ™

[126]

N\

<t — M

3/\/%\/\

<
QN

10

[123]



[456]

356

aNvaN

4‘3

NaVe aVWas

4‘3 4‘3

/\/\(\/\[

4‘3

NSNS

124

11

[123]



[456]

aNvaN

4‘3

\/\4/\/

4‘3 4‘3

/\/%\/\

4‘3

N

124

12

[123]



Noncommutative dehomogenisation

Let R= Ro®R1PRyP--- be an N-graded algebra and z € R4
be a nonzerodivisor that is normal (ie. R = Rx)

Then S := R[z~ 1] is Z-graded

Set Dhom(R,z) :=Sy (= Ro+ Riz~ 1+ Roz= 24+ ...), the
noncommutative dehomogenisation of R at =z.

For r € R, write zr = o(r)x, with o an automorphism of
R.

Rz~ 1] 2 Dhom(R, z)[y,y1; o] (where y is z in disguise)
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Noncommutative dehomogenisation of G,(k,n) at [12...k]

e In G4(k,n) the quantum Pllcker coordinate u := [12...k]
g*-commutes with each [I] and so is normal. Consequently,
the Ore localisation at the powers of u exists and

e Theorem (Lenagan-Rigal) Dhom(G,(k,n),u) = Oq (Mkn_k>
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The dehomogenisation equality for G,(k,n)

e [ he dehomogenisation equality

Ga(k,m)[u™"] = Og (M —p) [y, y™ 5 0]

can be used either to get properties of quantum matrices
from the quantum grassmannian or, vice versa, to get prop-
erties of the quantum grassmannian from quantum matrices.

e Today, we use the known automorphism group of quantum
matrices to calculate the automorphism group of the quan-
tum grassmannian.
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Obvious automorphisms of 2x2 quantum matrices

e Recall Oy (Mo) =K [Z z

] with
ab = qgba, cd = qdc, ac= qca, bd = qdb,
bc =cb, ad—da=(q— q_l)bc.

e Thetorus H := (K*)% acts on Oy(M5) so that h := (a1, as; 81, B2)
multiplies row ¢ by «; and column j by g,

e Transposition (flip over the diagonal) gives an automorphism

of Oq(My) because b and c satisfy the same commutation
rules.
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Obvious automorphisms of quantum matrices

e Recall Og (M) =K [z Z] with

ab = qgba, cd = qgdc, ac=qca, bd = qdb,

bc =cb, ad—da= (qg—q 1)bc.

e Similarly, the torus H := (K*)k*™ acts by automorphisms on

Oq¢(Mp,,) so that h := (az1,...,o; B1,-..,Bn) Multiplies row i
by «; and column j by 5;.

e \WWhen k£ = n, we also have the transpose automorphism.

17



T he automorphism group of quantum matrices

From now on, ¢ is not a root of unity.

e Theorem The automorphism group of Og(Mm.n) is H :
(K*)(Mm+1) when m # n, and (K*)2" x (1) when m =n

e History: Alev and Chamarie did the 2 x 2 case (1992).

Conjecture of Andruskiewitsch-Dumas (2003)
L-Lenagan: nonsquare case and the 3 x 3 case (2007, 2013).

Yakimov:the n x n case in general (2013).
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Obvious automorphisms of the quantum grassmannian
gCI(kan)

e Recall that O,(Gy,,) is the subalgebra of O4(Mj},,) generated
by the k x k quantum minors [i1 < --- < iz].

e The torus H := (K*)™ of column automorphisms of Oy(Mp,,)

acts on Oq4(Gy,,) by restriction so that

(M, hn) o lin < - o- < ig] = hyp - hylip <+ < iyl
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Strategy for the quantum grassmannian

e Given any automorphism p of O4(Gy,,) show that by adjusting
p by elements of H we can assume that the quantum PIlucker
coordinates [1...k] and [n—k+ 1...n] are fixed by p.

e With this assumption, we may extend p to act on the left
hand side of the dehomogenisation equality

OQ(Gkn)(U_l) — OC](Mk,n—k)[ya y_l; o]

and this transfers to an action on the right hand side.

e In this equality, y and u are essentially the same element, and
so p fixes y and a kx k quantum minor (= [n—k-+1...nJu"1).

20



Strategy for the quantum grassmannian 2

e Now p acts on

Oq(Mp - [y, y ™1 0]

and fixes y.

e Show that p takes Oq(My k) to itself. Now we know how p
acts on the right hand side of the dehomogenisation equality
as we know the automorphism group of quantum matrices.

e Use the dehomogenisation equality

OCI(Gkn)(u_l) — OQ(Mk,n—k:)[ya y_l; o]

to transfer this information back to Oy(Gy,,)-
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The automorphism group of the quantum grassmannian

e Theorem The automorphism group of Oy(Gag) is (K*)*x (r)
where h = (h1, ho, h3, hs) acts on [i5] by multiplying by h;h;
and 7 is the diagram automorphism which fixes [12], [13], [24]
and [34] and interchanges [14] and [23].

e Theorem The automorphism group of Ou(Gp,) is (K*)"
when 2k #%= n and (K*)"™ x (r) when 2k = n (here, 7 is the
diagram automorphism).
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Automorphisms and grading
Let A = ®,;cnA; be a N -graded K-algebra with Ag = K. Assume
that A is a domain generated as an algebra by x1,...,zn, and

that Ay = Kx1+ ---+ Kzpn. We set Azd L= @ZZCZA’L

Assume that, for all ¢, there exist 5 and qij € K* such that

Let o be an automorphism of A and x be a nonzero homogeneous
element of degree d of A.

Then a(x) = Y4 —+ Ysd> where Yd € Ad \ {O} and Ysd < A>d-

23



Automorphisms and normal elements

Lemma Let A = @725 A; be a graded algebra that is a domain

with Ag equal to the base field and A generated in degree one,
Suppose that a = a1+ --- 4+ am is a normal element with a; € A;

for each 2. Then a7 is a normal element.

24



Automorphisms and normal elements: UFD case

Chatters: An element p of a noetherian domain R is prime if
(i) pR = Rp, (ii) pR is a height one prime ideal of R, and (iii)
R/pR is an integral domain. A noetherian domain R is a unique
factorisation domain if R has at least one height one prime ideal,
and every height one prime ideal is generated by a prime element.

Lemma: Let A =®2,A; be a graded algebra that is a domain
with Ag equal to the base field. Suppose also that A is a unique
factorisation domain. Let a be a homogeneous element of degree
one that is normal.

Then a generates a prime ideal of height one.

Proof Let P be a prime that is minimal over the ideal aR. By

the noncommutative principal ideal theorem, the height of P is

one. Hence, P = pR for some normal element p, as R is a UFD.
25



Thus, a is a (right) multiple of p. By degree considerations,
p must have degree one and a must be a scalar multiple of p.
Thus, a and p generate the same ideal, which is the prime ideal
P.



Back to G,(k,n)

Set [u] = [1,...,k]. This is a prime normal element and u[l] =
¢ D[Nu with d(I) :=| I\ (INw) |.

Lemma: Suppose that a = > ay[I] # 0, with aj € K, is a linear
combination of quantum Plucker coordinates that is a normal
element. Then d(I) is the same for each I that has a; # 0.

26



Back to G,(k,n)

Lemma: Let p be an automorphism of G4(k,n). Then p([u]); =
Au], for some A € K*.

Lemma: Let p be an automorphism of Gy(k,n). Then p([u]) =
Au], for some A € K*.

Set [w] ;= [n—k+1,...,n], the extreme rightmost quantum
Plucker coordinate.

Corollary Let p be an automorphism of G,(k,n). Then there
exists h € H such that (hop)([u]) =u and (hop)([w]) = [w].
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Using dehomogenisation

Let p be an automorphism of G,(k,n). Set [u] = [1...k] and
[w] = [n—k+1,...,n]. At the expense of adjusting p by an
element of H, we can, and will, assume that p([u]) = [u] and

p(lw]) = [w].

The automorphism p now extends to Gy(k,n)[[u]~1], and so to
Oq(M(k,n—k))[yil; o], by the dehomogenisation equality and we
know that p(y) = v.

Proposition Assume p([u]) = [u] and p([w]) = [w]. p extends

to an automorphism of Gy(k,n)[[u] 1] = Oy(M(k,n — k))[y*!; o]
such that p(y) =y and p(O¢(M(k,n —k))) = Og(M(k,n —k)).
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Key point for previous proposition: two gradings
Recall y = u and set v = [w][u] !

First, set T, := {a € T | yay~! = ¢’a}. One can easily check
x;; € 1.

Lemma (i) T=@2, T; (i) p(T;) =T,

Set T() := {a € T | vav~! = ¢ %}. It is easy to show that
Tij € 7)) y 7)) Yy =u € T() and y~1e T(=k),

Lemma (i) T =@,z T (i) p(TD) =170,
Lemma (T<0> U T<1>) NTy C Oy(M(k,n — k)).
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Derivations
The strategy can be adapted to compute derivations as well.

Let D be a derivation of G4(k,n) and suppose that D([I]) =
bg+ - -+ bs is the homogeneous decomposition of D([I]). Then

bo = O.

Let D be a derivation of G4(k,n) where 2k < n, and let [w] =
[n—k4+1,...,n] be the rightmost quantum Pllicker coordinate.
Suppose that D([u]) = a1+ - -+as is the homogeneous decompo-
sition of D([u]) and that D([w]) = b1+ - -+ b is the homogeneous
decomposition of D([I]). Then aq is a scalar multiple of [u] and
by is a scalar multiple of [w].
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Derivations

For each : = 1,...,n, there is a derivation D; whose action on
quantum Plicker coordinates is given by D;([I]) = §(i € I)[I].

Let 2 < kK < n—2. Then any derivation of G,(k,n) is equal,
modulo inner derivations, to a linear combination of D+q,..., Dy.
Furthermore, these n derivations are linearly independent modulo
the inner derivations.

Conjecture: HHl(UC;"(g)) is a free Z-module of rank the rank
of g.
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