Automorphisms and derivations: the grassmannian case

Clermont-Ferrand, 7 June 2023

Stéphane Launois (University of Kent)
Joint work with Tom Lenagan

TNN grassmannian and postroid varieties

A point P in the grassmannian $\mathcal{G}_{k n}(\mathbb{R})$ is totally nonnegative if its Plücker coordinates can be represented by the $k \times k$ minors of a $k \times n$ matrix A such that each of these $k \times k$ minors are nonnegative.

Cells are specified by stating precisely which Plücker coordinates are zero. If \mathcal{F} is a subset of Plücker coordinates then $S_{\mathcal{F}}^{\circ}$ is the cell where minors in \mathcal{F} are zero (and those not in \mathcal{F} are nonzero, so positive).

If $S_{\mathcal{F}}^{\circ} \neq \emptyset$, then \mathcal{F} defines a so-called postroid variety.

Quantum postroids

L-Lenagan-Nolan Let \mathcal{F} be a family of Plücker coordinates and \mathcal{F}_{q} the corresponding family of quantum Plücker coordinates. TFAE

- The totally nonnegative cell associated to \mathcal{F} in $\mathcal{G}_{k n}^{\mathrm{tnn}}$ is nonempty.
- \mathcal{F}_{q} is the set of all quantum minors that belong to torusinvariant prime in $\mathcal{G}_{q}(k, n)$.

When q is transcendental, \mathcal{F}_{q} generates a (completely) prime ideal. The corresponding quotient can be thought of as a quantum postroid.

Why do we care about tnn cells / positroids?

1. Link with soliton solutions of KP equation.
2. Link with scattering amplitudes in the $N=4$ SYM model.
3. They are fun!!

Today's aim: compute invariants of (q-)positroids. We will be modest an look at a specific case when $\mathcal{F}=\emptyset$. In this case, the quantum positroid is just the quantum grassmannian and we would like to compute its automorphism group, its Hochschild cohomology, its irreducible representations, etc.

Quantum 2×2 matrices

The coordinate ring of quantum 2×2 matrices

$$
\mathcal{O}_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right):=K\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is generated by four indeterminates a, b, c, d subject to the following rules:

$$
\begin{gathered}
a b=q b a, \quad c d=q d c \\
a c=q c a, \quad b d=q d b \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) c b
\end{gathered}
$$

The quantum determinant $a d-q b c$ is a central element

The algebra of $m \times p$ quantum matrices.
$R=O_{q}\left(\mathcal{M}_{m, p}\right):=K\left[\begin{array}{ccc}Y_{1,1} & \ldots & Y_{1, p} \\ \vdots & & \vdots \\ Y_{m, 1} & \ldots & Y_{m, p}\end{array}\right]$,
where each 2×2 sub-matrix is a copy of $O_{q}(M(2))$.
$O_{q}\left(\mathcal{M}_{m, p}\right)$ is an iterated Ore extension with the indeterminates $Y_{i, \alpha}$ adjoined in the lexicographic order and so is a noetherian integral domain.

In the square case $(m=p=n)$

$$
D_{q}=\sum_{\sigma \in S_{n}}(-q)^{l(\sigma)} Y_{1, \sigma(1)} \ldots Y_{n, \sigma(n)}
$$

is the quantum determinant. D_{q} is a central element.

Quantum minors of quantum matrices

They are the quantum determinants of square sub-matrices of $O_{q}\left(\mathcal{M}_{m, p}\right)$.

More precisely, if $I \subseteq \llbracket 1, m \rrbracket$ and $\wedge \subseteq \llbracket 1, p \rrbracket$ with $|I|=|\wedge|$, the quantum minor associated with the rows I and columns Λ is

$$
[I \mid \wedge]:=D_{q}\left(\mathcal{O}_{q}\left(M_{I, \Lambda}\right)\right)
$$

For example, [12|23] $=Y_{1,2} Y_{2,3}-q Y_{1,3} Y_{2,2}$ is the quantum minor of R associated with the rows 1,2 , and the columns 2,3.

The quantum grassmannian $\mathcal{G}_{q}(k, n)$

The quantum grassmannian $\mathcal{G}_{q}(k, n)$ is the subalgebra of $O_{q}\left(\mathcal{M}_{k, n}\right)$ generated by the maximal $k \times k$ quantum minors

Denote by $[I]$ the quantum minor $[1 \ldots k \mid I]$. There is a torus action of $\mathcal{H}=\left(K^{*}\right)^{n}$ given by column multiplication. \top

Example $\mathcal{G}_{q}(2,4)$ is generated by the six quantum minors [12], [13], [14], [23], [24], [34].

Most minors q^{\bullet}-commute, for example, [12] [34] $=q^{2}$ [34] [12], however, [13] [24] $=[24][13]+\left(q-q^{-1}\right)[14][23]$ and there is a quantum Plücker relation

$$
[12][34]-q[13][24]+q^{2}[14][23]=0 .
$$

Partial order:
$\left[i_{1}<\cdots<i_{k}\right] \leq\left[j_{1}<\cdots<j_{k}\right]$ whenever $i_{s} \leq j_{s}$ for all s.

Noncommutative dehomogenisation

- Let $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus \cdots$ be an \mathbb{N}-graded algebra and $x \in R_{1}$ be a nonzerodivisor that is normal (ie. $x R=R x$)
- Then $S:=R\left[x^{-1}\right]$ is \mathbb{Z}-graded
- Set $\operatorname{Dhom}(R, x):=S_{0} \quad\left(=R_{0}+R_{1} x^{-1}+R_{2} x^{-2}+\ldots\right)$, the noncommutative dehomogenisation of R at x.
- For $r \in R$, write $x r=\sigma(r) x$, with σ an automorphism of R.
- $R\left[x^{-1}\right] \cong \operatorname{Dhom}(R, x)\left[y, y^{-1} ; \sigma\right]$ (where y is x in disguise)

Noncommutative dehomogenisation of $\mathcal{G}_{q}(k, n)$ at $[12 \ldots k]$

- In $\mathcal{G}_{q}(k, n)$ the quantum Plücker coordinate $u:=[12 \ldots k]$ q^{\bullet}-commutes with each [I] and so is normal. Consequently, the Ore localisation at the powers of u exists and
- Theorem (Lenagan-Rigal) $\operatorname{Dhom}\left(\mathcal{G}_{q}(k, n), u\right) \cong O_{q}\left(\mathcal{M}_{k, n-k}\right)$

The dehomogenisation equality for $\mathcal{G}_{q}(k, n)$

- The dehomogenisation equality

$$
\mathcal{G}_{q}(k, n)\left[u^{-1}\right]=O_{q}\left(\mathcal{M}_{k, n-k}\right)\left[y, y^{-1} ; \sigma\right]
$$

can be used either to get properties of quantum matrices from the quantum grassmannian or, vice versa, to get properties of the quantum grassmannian from quantum matrices.

- Today, we use the known automorphism group of quantum matrices to calculate the automorphism group of the quantum grassmannian.

Obvious automorphisms of 2×2 quantum matrices

- Recall $O_{q}\left(\mathcal{M}_{2}\right)=K\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with

$$
\begin{gathered}
a b=q b a, \quad c d=q d c, \quad a c=q c a, \quad b d=q d b, \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) b c .
\end{gathered}
$$

- The torus $\mathcal{H}:=\left(K^{*}\right)^{4}$ acts on $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ so that $h:=\left(\alpha_{1}, \alpha_{2} ; \beta_{1}, \beta_{2}\right)$ multiplies row i by α_{i} and column j by β_{j}
- Transposition (flip over the diagonal) gives an automorphism of $\mathcal{O}_{q}\left(\mathcal{M}_{2}\right)$ because b and c satisfy the same commutation rules.

Obvious automorphisms of quantum matrices

- Recall $O_{q}\left(\mathcal{M}_{2}\right)=K\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with

$$
\begin{gathered}
a b=q b a, \quad c d=q d c, \quad a c=q c a, \quad b d=q d b, \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) b c .
\end{gathered}
$$

- Similarly, the torus $\mathcal{H}:=\left(K^{*}\right)^{k+n}$ acts by automorphisms on $\mathcal{O}_{q}\left(M_{k n}\right)$ so that $h:=\left(\alpha_{1}, \ldots, \alpha_{k} ; \beta_{1}, \ldots, \beta_{n}\right)$ multiplies row i by α_{i} and column j by β_{j}.
- When $k=n$, we also have the transpose automorphism.

The automorphism group of quantum matrices

From now on, q is not a root of unity.

- Theorem The automorphism group of $\mathcal{O}_{q}\left(\mathcal{M}_{m, n}\right)$ is $\mathcal{H}:=$ $\left(K^{*}\right)^{(m+n)}$ when $m \neq n$, and $\left(K^{*}\right)^{2 n} \rtimes\langle\tau\rangle$ when $m=n$
- History: Alev and Chamarie did the 2×2 case (1992). Conjecture of Andruskiewitsch-Dumas (2003) L-Lenagan: nonsquare case and the 3×3 case (2007, 2013). Yakimov:the $n \times n$ case in general (2013).

Obvious automorphisms of the quantum grassmannian

$$
\mathcal{G}_{q}(k, n)
$$

- Recall that $\mathcal{O}_{q}\left(G_{k n}\right)$ is the subalgebra of $\mathcal{O}_{q}\left(M_{k n}\right)$ generated by the $k \times k$ quantum minors $\left[i_{1}<\cdots<i_{k}\right.$].
- The torus $\mathcal{H}:=\left(K^{*}\right)^{n}$ of column automorphisms of $\mathcal{O}_{q}\left(M_{k n}\right)$ acts on $\mathcal{O}_{q}\left(G_{k n}\right)$ by restriction so that

$$
\left(h_{1}, \ldots, h_{n}\right) \circ\left[i_{1}<\cdots<i_{k}\right]=h_{i_{1}} \cdots h_{i_{k}}\left[i_{1}<\cdots<i_{k}\right]
$$

Strategy for the quantum grassmannian

- Given any automorphism ρ of $\mathcal{O}_{q}\left(G_{k n}\right)$ show that by adjusting ρ by elements of \mathcal{H} we can assume that the quantum Plücker coordinates $[1 \ldots k]$ and $[n-k+1 \ldots n]$ are fixed by ρ.
- With this assumption, we may extend ρ to act on the left hand side of the dehomogenisation equality

$$
\mathcal{O}_{q}\left(G_{k n}\right)\left(u^{-1}\right)=\mathcal{O}_{q}\left(M_{k, n-k}\right)\left[y, y^{-1} ; \sigma\right]
$$

and this transfers to an action on the right hand side.

- In this equality, y and u are essentially the same element, and so ρ fixes y and a $k \times k$ quantum minor ($=[n-k+1 \ldots n] u^{-1}$).

Strategy for the quantum grassmannian 2

- Now ρ acts on

$$
\mathcal{O}_{q}\left(M_{k, n-k}\right)\left[y, y^{-1} ; \sigma\right]
$$

and fixes y.

- Show that ρ takes $\mathcal{O}_{q}\left(M_{k, n-k}\right)$ to itself. Now we know how ρ acts on the right hand side of the dehomogenisation equality as we know the automorphism group of quantum matrices.
- Use the dehomogenisation equality

$$
\mathcal{O}_{q}\left(G_{k n}\right)\left(u^{-1}\right)=\mathcal{O}_{q}\left(M_{k, n-k}\right)\left[y, y^{-1} ; \sigma\right]
$$

to transfer this information back to $\mathcal{O}_{q}\left(G_{k n}\right)$.

The automorphism group of the quantum grassmannian

- Theorem The automorphism group of $\mathcal{O}_{q}\left(G_{24}\right)$ is $\left(K^{*}\right)^{4} \rtimes\langle\tau\rangle$ where $h=\left(h_{1}, h_{2}, h_{3}, h_{4}\right)$ acts on [$i j$] by multiplying by $h_{i} h_{j}$ and τ is the diagram automorphism which fixes [12], [13], [24] and [34] and interchanges [14] and [23].
- Theorem The automorphism group of $\mathcal{O}_{q}\left(G_{k n}\right)$ is $\left(K^{*}\right)^{n}$ when $2 k \neq n$ and $\left(K^{*}\right)^{n} \rtimes\langle\tau\rangle$ when $2 k=n$ (here, τ is the diagram automorphism).

Automorphisms and grading

Let $A=\oplus_{i \in \mathbb{N}} A_{i}$ be a \mathbb{N}-graded K-algebra with $A_{0}=K$. Assume that A is a domain generated as an algebra by x_{1}, \ldots, x_{n}, and that $A_{1}=K x_{1}+\cdots+K x_{n}$. We set $A_{\geq d}:=\oplus_{i \geq d} A_{i}$.

Assume that, for all i, there exist j and $q_{i j} \in K^{*}$ such that $x_{i} x_{j}=q_{i j} x_{j} x_{i}$.

Let σ be an automorphism of A and x be a nonzero homogeneous element of degree d of A.

Then $\sigma(x)=y_{d}+y_{>d}$, where $y_{d} \in A_{d} \backslash\{0\}$ and $y_{>d} \in A_{>d}$.

Automorphisms and normal elements

Lemma Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a graded algebra that is a domain with A_{0} equal to the base field and A generated in degree one. Suppose that $a=a_{1}+\cdots+a_{m}$ is a normal element with $a_{i} \in A_{i}$ for each i. Then a_{1} is a normal element.

Automorphisms and normal elements: UFD case

Chatters: An element p of a noetherian domain R is prime if (i) $p R=R p$, (ii) $p R$ is a height one prime ideal of R, and (iii) $R / p R$ is an integral domain. A noetherian domain R is a unique factorisation domain if R has at least one height one prime ideal, and every height one prime ideal is generated by a prime element.

Lemma: Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a graded algebra that is a domain with A_{0} equal to the base field. Suppose also that A is a unique factorisation domain. Let a be a homogeneous element of degree one that is normal.
Then a generates a prime ideal of height one.

Proof Let P be a prime that is minimal over the ideal $a R$. By the noncommutative principal ideal theorem, the height of P is one. Hence, $P=p R$ for some normal element p, as R is a UFD.

Thus, a is a (right) multiple of p. By degree considerations, p must have degree one and a must be a scalar multiple of p. Thus, a and p generate the same ideal, which is the prime ideal P.

Back to $\mathcal{G}_{q}(k, n)$

Set $[u]=[1, \ldots, k]$. This is a prime normal element and $u[I]=$ $q^{d(I)}[I] u$ with $d(I):=|I \backslash(I \cap u)|$.

Lemma: Suppose that $a=\sum a_{I}[I] \neq 0$, with $a_{I} \in K$, is a linear combination of quantum Plücker coordinates that is a normal element. Then $d(I)$ is the same for each I that has $a_{I} \neq 0$.

Back to $\mathcal{G}_{q}(k, n)$

Lemma: Let ρ be an automorphism of $\mathcal{G}_{q}(k, n)$. Then $\rho([u])_{1}=$ $\lambda[u]$, for some $\lambda \in K^{*}$.

Lemma: Let ρ be an automorphism of $\mathcal{G}_{q}(k, n)$. Then $\rho([u])=$ $\lambda[u]$, for some $\lambda \in K^{*}$.

Set $[w]:=[n-k+1, \ldots, n]$, the extreme rightmost quantum Plücker coordinate.

Corollary Let ρ be an automorphism of $\mathcal{G}_{q}(k, n)$. Then there exists $h \in \mathcal{H}$ such that $(h \circ \rho)([u])=u$ and $(h \circ \rho)([w])=[w]$.

Using dehomogenisation

Let ρ be an automorphism of $\mathcal{G}_{q}(k, n)$. Set $[u]=[1 \ldots k]$ and $[w]=[n-k+1, \ldots, n]$. At the expense of adjusting ρ by an element of \mathcal{H}, we can, and will, assume that $\rho([u])=[u]$ and $\rho([w])=[w]$.

The automorphism ρ now extends to $\mathcal{G}_{q}(k, n)\left[[u]^{-1}\right]$, and so to $\mathcal{O}_{q}(M(k, n-k))\left[y^{ \pm 1} ; \sigma\right]$, by the dehomogenisation equality and we know that $\rho(y)=y$.

Proposition Assume $\rho([u])=[u]$ and $\rho([w])=[w] . \quad \rho$ extends to an automorphism of $\mathcal{G}_{q}(k, n)\left[[u]^{-1}\right]=\mathcal{O}_{q}(M(k, n-k))\left[y^{ \pm 1} ; \sigma\right]$ such that $\rho(y)=y$ and $\rho\left(\mathcal{O}_{q}(M(k, n-k))\right)=\mathcal{O}_{q}(M(k, n-k))$.

Key point for previous proposition: two gradings

Recall $y=u$ and set $v=[w][u]^{-1}$
First, set $T_{i}:=\left\{a \in T \mid y a y^{-1}=q^{i} a\right\}$. One can easily check $x_{i j} \in T_{1}$.

Lemma (i) $T=\bigoplus_{i=1}^{\infty} T_{i} \quad$ (ii) $\rho\left(T_{i}\right)=T_{i}$.

Set $T^{(i)}:=\left\{a \in T \mid \operatorname{vav}^{-1}=q^{-i} a\right\}$. It is easy to show that $x_{i j} \in T^{(0)} \cup T^{(1)}, y=u \in T^{(k)}$ and $y^{-1} \in T^{(-k)}$.

Lemma (i) $T=\bigoplus_{i \in \mathbb{Z}} T^{(i)}$
(ii) $\rho\left(T^{(i)}\right)=T^{(i)}$.

Lemma $\left(T^{(0)} \cup T^{(1)}\right) \cap T_{1} \subseteq \mathcal{O}_{q}(M(k, n-k))$.

Derivations

The strategy can be adapted to compute derivations as well.

Let D be a derivation of $\mathcal{G}_{q}(k, n)$ and suppose that $D([I])=$ $b_{0}+\cdots+b_{t}$ is the homogeneous decomposition of $D([I])$. Then $b_{0}=0$.

Let D be a derivation of $\mathcal{G}_{q}(k, n)$ where $2 k \leq n$, and let $[w]=$ [$n-k+1, \ldots, n$] be the rightmost quantum Plücker coordinate. Suppose that $D([u])=a_{1}+\cdots+a_{s}$ is the homogeneous decomposition of $D([u])$ and that $D([w])=b_{1}+\cdots+b_{t}$ is the homogeneous decomposition of $D([I])$. Then a_{1} is a scalar multiple of $[u]$ and b_{1} is a scalar multiple of $[w]$.

Derivations

For each $i=1, \ldots, n$, there is a derivation D_{i} whose action on quantum Plücker coordinates is given by $D_{i}([I])=\delta(i \in I)[I]$.

Let $2 \leq k \leq n-2$. Then any derivation of $\mathcal{G}_{q}(k, n)$ is equal, modulo inner derivations, to a linear combination of D_{1}, \ldots, D_{n}. Furthermore, these n derivations are linearly independent modulo the inner derivations.

Conjecture: $H H^{1}\left(U_{q}^{+}(\mathfrak{g})\right)$ is a free Z-module of rank the rank of \mathfrak{g}.

