Multimodal analysis and inverse problems for brain imaging

Benjamin SULIS LMR UMR CNRS 9008 - Université de Reims Champagne-Ardenne

Marion DARBAS LAGA CNRS UMR 7539 - Université Sorbonne Paris Nord Stephanie LOHRENGEL LMR CNRS UMR 9008 - Université de Reims Champagne Ardenne

14 June 2023

Benjamin SULIS

Multimodal analysis and inverse problems

14 June 2023 1 / 25

Context and motivation

Eletroencephalography

Diffuse optical tomography

Neurovascular coupling

Benjamin SULIS

Multimodal analysis and inverse problems

1 Modelisation and forward problems

- Neurovascular coupling
- Computation of EEG measurements
- Generation of DOT data

Inverse problems

- EEG source localization
- DOT parameters identification
- Numerical coupling

Neurovascular coupling

- Generation of coupled measurements
- Resolution of associated inverse problems

Coupled measurements

• EEG depends on current

• DOT depends on concentrations

1. Roche-Labarbe, NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG, 2008

Stationary problem

Common forward problem

The electric potential u is solution of

$$\begin{cases} \nabla \cdot (\sigma \nabla u) = F \text{ in } \Omega \\ \sigma \partial_n u = 0 \text{ on } \partial \Omega \end{cases}$$

with σ the electrical conductivity of the head tissues.

Dipolar current source

$$F = \sum_{m=1}^{M} \mathbf{q}_m \cdot \nabla \delta_{\mathcal{S}_m}$$

where $\mathbf{q}_m \in \mathbb{R}^d$ is the moment and $S_m \in \Omega_2$ the position of the source of neuronal activity constrained to grey matter.

Decomposition of the potential

The substraction approach constists in decomposing the potential into a potential \tilde{u} which contains the singularity and a regular lifting w:

$$u = \tilde{u} + w.$$

Singular potential

The singular potential is solution of a Poisson equation and is given by

$$\tilde{u}(\mathbf{x}) = \frac{1}{2^{d-1}\pi\sigma_2}\mathbf{q}\cdot\frac{\mathbf{x}-S}{|\mathbf{x}-S|^d}, \ \forall x\in\mathbb{R}^d\setminus\{S\}.$$

Regular part

The regular part is obtained by solving the variational problem

$$\int_{\Omega} \sigma \nabla w \cdot \nabla v dx = \int_{\Omega} (\sigma_2 - \sigma) \nabla \tilde{u} \cdot \nabla v dx - \int_{\partial \Omega} \sigma_2 \partial_n \tilde{u} v ds.$$

Time-dependent EEG model

Elliptic equation

By means of a dimensional analysis and classical arguments we have

$$\nabla \cdot (\sigma \nabla u) = \nabla \cdot \mathbf{j}^{p} = \sum_{m=1}^{M} \mathbf{q}_{m}(t) \cdot \nabla \delta_{\mathcal{S}_{m}(t)} \quad \text{in } (0, T) \times \Omega$$

Modelisation of moments

 \mathbf{q}_m is generated by a system of ODEs (e.g. Hodgkin-Huxley).

DOT forward problem

Forward problem

The photons density ϕ is solution of

$$\begin{pmatrix} -\nabla \cdot (\kappa \nabla \phi) + \left(\mu_{a} + \frac{i\omega}{c}\right)\phi &= q \text{ in } \Omega \\ \phi + 2\chi \kappa \partial_{n} \phi &= 0 \text{ on } \partial\Omega \end{cases}$$

Parameters

- μ_a [1/mm] absorption
- μ_{s}^{\prime} [1/mm] reduced scattering
- $\kappa = \frac{1}{3(\mu_{a}+\mu_{s}')}$ [mm] diffusion
- χ internal reflexion
- ω source frequency

• $\mu^{AT+CSF} = \delta \mu^{AT} + (1-\delta) \mu^{CSF}$

Time-dependent forward solution

Time-depend DOT forward problem

The photons density ϕ is solution of

$$\begin{cases} -\nabla \cdot \left(\kappa(t, \mathbf{x}) \nabla \phi(t, \mathbf{x})\right) + \left(\mu_{a}(t, \mathbf{x}) + \frac{i\omega}{c}\right) \phi(t, \mathbf{x}) &= q \text{ in } (0, T) \times \Omega \\ \phi(t, \mathbf{x}) + 2\chi\kappa(t, \mathbf{x}) \partial_{n}\phi(t, \mathbf{x}) &= 0 \text{ on } (0, T) \times \partial\Omega \end{cases}$$

Parameters generation

 μ_{a} and κ come from a system of ODEs.

Benjamin SULIS

1 Modelisation and forward problems

- Neurovascular coupling
- Computation of EEG measurements
- Generation of DOT data

Inverse problems

- EEG source localization
- DOT parameters identification
- Numerical coupling

Theorem

 $(H_1) \ \mathbf{q}_m \in L^2(0, T)^d$ and $S_m \in C^0([0, T])^d$, $\forall m \in \{1, \dots, M\}$. (H_2) At time t, the points $(S_m(t))_m$ are mutually distinct (H_3) All sources are located in the same convex subdomain Ω_{p_0} Then, the locations and the moments are uniquely determined from a single measurement $g =: u_{|(0,T),\partial\Omega}$.

Lead field matrix

- \bullet Consider a source space $\mathcal{S} = \{\mathcal{S}_1, \dots, \mathcal{S}_R\} \subset \Omega$
- $u_m^{(i)}$ is the solution of the problem with the source term

$$F_m^{(i)} = \mathbf{e}^{(i)} \cdot \nabla \delta(\cdot - \mathcal{S}_m)$$

• $(\mathbf{p}_{\ell})_{\ell=1,\dots,L}$ are the measurement positions • $u_m(\mathbf{p}_{\ell}) = \left(u_m^{(1)}(\mathbf{p}_{\ell}), u_m^{(2)}(\mathbf{p}_{\ell})\right)$ and $\mathbf{q}_m = \left(\mathbf{q}_m^{(1)}, \mathbf{q}_m^{(2)}\right)$

Distributed source model

The measurements \mathbf{u}_{EEG} of u at points (\mathbf{p}_{ℓ}) are then given by

$$\mathbf{u}_{EEG} = \begin{pmatrix} u_1(\mathbf{p}_1) & u_2(\mathbf{p}_1) & \cdots & u_R(\mathbf{p}_1) \\ u_1(\mathbf{p}_2) & u_2(\mathbf{p}_2) & \cdots & u_R(\mathbf{p}_2) \\ \vdots & \vdots & \ddots & \vdots \\ u_1(\mathbf{p}_L) & u_2(\mathbf{p}_L) & \cdots & u_R(\mathbf{p}_L) \end{pmatrix} \begin{pmatrix} \mathbf{q}_1 \\ \mathbf{q}_2 \\ \vdots \\ \mathbf{q}_R \end{pmatrix} := \mathbb{L} \mathbf{q}$$

Lead field basis²

Let w_h be the nodal vector solution of the discrete problem

 $\mathbb{K}w_h = \mathbf{F},$

with **F** depending on of the singular potential \tilde{u} . We can obtain the measurements by means of a restriction matrix $\mathbb{R} \in \mathcal{M}_{L,R}$,

$$\mathbf{w}_{EEG} = \mathbb{R}w_h = \mathbb{R}\mathbb{K}^{-1}\mathbf{F}.$$

To compute $\mathbb{B}=\mathbb{R}\mathbb{K}^{-1}$ advantageously, notice that

$$\mathbb{B} = \mathbb{R}\mathbb{K}^{-1} \Leftrightarrow \mathbb{B}^t = \mathbb{K}^{-t}\mathbb{R}^t \Leftrightarrow \mathbb{K}^t\mathbb{B}^t = \mathbb{R}^t \Leftrightarrow \mathbb{K}\mathbb{B}^t = \mathbb{R}^t$$

We can now apply the subtraction approach

 $\mathbf{u}_{EEG} = \mathbb{R}(\tilde{u}_h + w_h) = \mathbb{B}(\mathbb{K}\tilde{u}_h + \mathbb{K}w_h) = \mathbb{B}(\mathbb{K}\tilde{u}_h + \mathbf{F})$

Finally we can define ${\mathbb L}$ such as

$$\mathbb{L} = \mathbb{B}(\mathbb{K} + \tilde{\mathbb{K}})\mathbb{A}$$

where $\tilde{\mathbb{K}}$ is such that $\mathbf{F} = \tilde{\mathbb{K}}\tilde{u}_h$ and \mathbb{A} satisfies $\tilde{u}_h = \mathbb{A}\mathbf{q}$.

^{2.} Wolters, Efficient Computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem, 2004

EEG inverse problem

Minimization problem

$$\left\{ \begin{array}{l} \mathsf{Find} \ \mathbf{q}_m \in \mathbb{R}^{(dR)} \text{ such that} \\ \mathbf{q}^* = \arg\min_{\mathbf{q} \in \mathbb{R}^{(dR)}} \|\mathbb{L}\mathbf{q} - \mathbf{u}_{EEG}\|^2 + \alpha \|\mathbf{q}\|^2. \end{array} \right.$$

sLORETA approach

• Minimum norm estimates

$$\mathbf{q}^* = \mathbb{L}^t (\mathbb{L}\mathbb{L}^t + lpha \mathbb{I})^{-1} \mathbf{u}_{EEG}$$

sLORETA

$$ilde{\mathbf{q}}_i^* = (\mathbf{q}_i^*)^t ([\mathbf{S}^*]_{ii})^{-1} \mathbf{q}_i^*$$

with \mathbf{S}^* defined by

$$\mathbf{S}^* = \mathbb{L}^t (\mathbb{L}\mathbb{L}^t + \alpha \mathbb{I})^{-1} \mathbb{L}$$

Parameters and informations

Characteristics of the problem

- Mesh comes from a MRI image
- 64 electrodes
- 11643 sources
- Lead field matrix shape

64 rows

- Computation LFM ~ 5h
- Resolution \sim 4.2s
- 2% noise on measurements

Layers of the mesh

Source localization

Exact and estimated source

DOT inverse problem

Cost function

The inverse problem consists in minimizing the cost function

$$J(\mu_{a},\kappa) = \left\| \frac{\phi[\mu_{a},\kappa] - \Phi}{\Phi} \right\|_{\partial\Omega}^{2} + \frac{\alpha_{\mu}}{2} \left\| \frac{\mu_{a} - \mu_{a,0}}{\mu_{a,0}} \right\|_{\Omega}^{2} + \frac{\alpha_{\kappa}}{2} \left\| \frac{\kappa - \kappa_{0}}{\kappa_{0}} \right\|_{\Omega}^{2} - \frac{\alpha_{\mu}}{2} \left\| \frac{\mu_{a} - \mu_{a,0}}{\kappa_{0}} \right\|_{\Omega}^{2}$$

Cost function gradient

The cost function gradient is given by $\frac{\partial J}{\partial \nu}(\nu) = \mathfrak{Re} \left\langle \frac{\partial \phi}{\partial \nu}(\nu), \frac{\phi(\nu) - \Phi}{|\Phi|^2} \right\rangle_{\partial \Omega}$

Adjoint method

To reduce the computation of the gradient, we solve the adjoint problem

$$\int_{\Omega} \kappa \nabla \mathbf{v} \cdot \nabla \bar{\mathbf{p}} \mathrm{d}x + \int_{\Omega} \left(\mu_{\mathbf{a}} + \frac{i\omega}{c} \right) \mathbf{v} \bar{\mathbf{p}} \mathrm{d}x + \frac{1}{2\chi} \int_{\partial \Omega} \mathbf{v} \bar{\mathbf{p}} \mathrm{d}s = -\mathfrak{Re} \left\langle \mathbf{v}, \frac{\phi - \Phi}{\Phi} \right\rangle_{\partial \Omega}$$

Difficulties to find regularization parameters

Identification of absorption and diffusion coefficients

Benjamin SULIS

Multimodal analysis and inverse problems

Parameter identification

Identification of absorption and diffusion coefficients

Benjamin SULIS

Multimodal analysis and inverse problems

Coupling EEG to DOT

Informations given by EEG

- Estimated position \tilde{S}_m
- Estimated moment $\tilde{\mathbf{q}}_m$

In regularization term

We can use these informations to constrain the reconstruction around an estimated function

$$J(\mu_{a}) = \frac{1}{2} \left\| \frac{\phi - \Phi}{\Phi} \right\|^{2} + \frac{\alpha}{2} \left\| \frac{\mu_{a} - \tilde{\mu}_{a,0}}{\tilde{\mu}_{a,0}} \right\|^{2}$$

with $\tilde{\mu}_{a,0} = \mu_{a,0} + A \exp\left(-\frac{1}{B} \|\mathbf{x} - \tilde{S}_{m}\|^{2}\right)$

Regularization term

Absorption coefficient reconstruction

Absorption coefficient

Absorption coefficient reconstruction

From DOT to EEG

Informations given by DOT

- Perturbation location
- Value in the perturbation

Source space reduction

We can use the location to include it in the mesh and reduce the source space :

- Thresholding the solution
- Mesh the thresholding
- Use the new mesh for EEG problem Source space before reduction : 11600

Source space after reduction : 750

Include the perturbation in the mesh

Source space reduction

Conclusion and perspectives

Conclusion

- Time-depending models
- Coupled measurements
- Numerical inverse problem coupling

Perspectives

- 3D inverse problems
- Method to find a DOT regularization parameter
- Time depend resolution of (coupled) inverse problems³
- 3. Gramfort, Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with non-stationary source activations, 2013