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Electrical Impedance Tomography

Inverse problem of EIT: From several current—voltage measurements on surface
electrodes, reconstruct the electrical conductivity distribution of an object.
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The continuum model

m Q CRY d>2 bounded Lipschitz domain with connected complement
m [' C 990 arbitrarily small open boundary piece

m Conductivity v € LE(Q) := {¢ € L>®(;R) | inf¢ > 0}

m Boundary current density f

m Electric potential u = u}

Continuum Model

f onT,

V' V :O i Q, . v =
(V) " v (Vo {0 on OO0\ T.

Local Neumann-to-Dirichlet map (current-to-voltage)
A(y) s L2(T) = L2(D),  frs ullr,

is compact and self-adjoint, with ¢ denoting a zero-mean condition on T.
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Forward and inverse problems

m Forward problem
Ay Aly)

m Calderén’s inverse conductivity problem
For which classes of coefficients do we have:

= Ay) = A(r2) = 1 =27
m An algorithm to evaluate A=1 : A(y) — 7?

= Inclusion/obstacle detection

Let v =0 +~p and D = supp(yp).
m Can we reconstruct D from g and A(y)?
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Monotonicity inequalities

Lemma 1 (Kang—Seo—Sheen)

For f € LZ(T') and 1,72 € LY (Q) there are the following estimates:

| Zn =)V do < (M) = A Dzaary < [ (=) Vup [P do
QN Q

This implies the following intuitive relation between conductivity and power:

Y1 > Y2 a.e.in = A(vy2) > A(m).
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Monotonicity-based reconstruction

= Tamburrino—Rubinacci: Bounds for inclusions using monotonicity
inequalities.

m Harrach—Ullrich: For closed set C' with connected complement, and for
piecewise analytic with —f. <~y —1 < fy:

supp(y —1) € C ifand only if A(1— BLxc) > A(y) > A(1 + Buxo)-

Henrik Garde Reconstruction of Inclusions — Inverse Conductivity Problem 6 /37



Extreme inclusions

m For¢e LY(Q) and €' = Cy Uy, let 0 = o(s, Cp, Css) denote

¢ inQ\C,
oc=140 inCy,
oo in Cu.

m The conductivity equation now becomes:
V- (cVu)=0in Q\C,

B f onT,
V'(UVU)_{O on 9(Q\ Cp) \ T,

Vu=0in CZ,
/ v (eVu)dS = 0 for each component C; of Ci.
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Convergence of ND maps

Theorem 2
Define the e-truncated version of o, with e > 0, by

S inQ\ C,
Oc = ¢ €6 in Co,
el inCy.

Then the following estimate holds
lufe — ufllmr@nco) < K Vel fllzzm),
with K > 0 independent of f and €. As a direct consequence

IA(ee) = Aol 23y < KVe.

Corollary: There is an H!-extension of uf onto the set Cy, satisfying
lufe = ufllm @) < KVellfllzzr)-
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Inverse problem for detection of extreme inclusions

m We denote a set of admissible test inclusions by

A={C € Q| C is the closure of an open set,
has connected complement,
and has Lipschitz boundary 0C'}.

Let 7o € L3°(R) satisfy the unique continuation principle (UCP), and
suppose 0 < v < oo is measurable and D = supp(y — ) € A.

m Inverse problem: Reconstruct D from knowledge of vy and A(7).

Some simplifying notation for some C € A:

= A% = A(O’(’}/(),C,@))
= AJ = A(0(70,0,0))
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General monotonicity method

m Suppose D = Dy U Do, U D_ U D, is a disjoint union, with
D, Dy, Dy, € A and Dy are measurable sets.

m Define 0 <y < o0 by

0 in Do,
in Do,
Y=497- inD_,
Y+ in Dy,
Y in Q\D.

m We assume + satisfies a technical assumption near D (next slide).

Theorem 3 (Candiani—-Dardé—Garde—Hyvonen)

For any C € A, then
D CC ifandonlyif A% > A(v) > A§.
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Technical assumption near 0D

m For each x € 9D, and every open neighbourhood W of z, there exists a relatively
open set V C D that intersects D, and V. C D N W for one set
D e {Do,Dso,D_,D4}.

m If D= D_, there exists an open ball B C V such that supg(y- — 7o) < 0.
m If D = Dy, there exists an open ball B C V such that infg(v+ — v0) > 0.

® In non-technical terms: The sign of 7 — 7o cannot change arbitrarily often near
any open part of 9D. And, either a jump from 7o or a local strict increase or
decrease from o near 9D.
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lllustration of numerical implementation
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Proof of D C C = AL > A(y) > A§

m Define the e-truncation of ~y, with ¢ > 0, as

€Yo in Do,
-1 in Do,
© o ay inC,
Ve = § V- in D_, Ya,C = .
) v inQ\C.
Y+ n D+7
Yo in \ D.

m Let 0 < g < 1 be small enough that €4y < v in D_ and 66170 >~in Dy.

m Assume D C C and 0 < € < ¢ then v, ¢ <7 < ¥e-1,¢. By monotonicity:
A(ve,c) = Ave) = Ave-1,0)-

Letting € — 0 gives A > A(y) > A§.
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On the unique continuation principle

For U C Q relatively open and connected, we say that ¢ € L (Q) satisfies the weak
unique continuation principle (UCP) in U for the conductivity equation if:

B If V-(sVv)=0inU° and v =0 in an open set B C U, then v =0 in U.
m If V- (sVv) =0 in U° with vanishing Cauchy data on OU N T, then v =0 in U.

m This is e.g. satisfied for:

md=2 LY
m d > 3: LT N Lipschitz
m d > 2: Piecewise analytic (allows discontinuities)
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Localised potentials

Lemma 4 (Gebauer)

Let U C Q be a relatively open connected set that intersects T'. Let B C U be an open
set and assume ¢ € LY () satisfies the UCP in U. Then there are sequences
(fi) € L3(T) and (ui) C Hy(Q) with u; = us, such that

lim / |Vui|* dz = oo and lim / |Vu;|? dz = 0.
B Q\U

i—00 i—00
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Simultaneous localization of power densities

Lemma 5

Forc € LY () and (f;) € LZ(T), suppose that u; = uf, satisfies

lim /|Vu1| dz = o0 and _lim/ |Vu;|? dz = 0.
Q\U

1—> 00 1—> 00

If C = CoUCu withC C Q\U and @; = u$, with o = o(s, Co, Css), then it also holds

lim /|Vﬁi|2dx =oco  and lim |Vii|? dz = 0.
B

i—00 1— 00 Q\U

If supp(s1 — ¢2) C Q\ U the localisation for ¢; is transferred to ¢» (Harrach—Ullrich).
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Improved monotonicity principles

Let C = CoUCe, s,51,52 € LP(Q), and f € L(T).
n Different background conductivity (01 = o(s1,Co,Coo) and o2 = o(s2,Co,Coo)):

/ 2 (1 — 2)|Vuz[? dz < (A2 — A1) f, ey < / (1 — s2)|Vug|* dz.
a\c ! Q\c

m With and without perfectly conducting inclusions (o1 = o(s,Co,Cs) and
o2 = a(s,Co,0)):

/ Clvu2|2dx S ((A2 — Al)f, f>L2(1") S K/ |V’LL2|2 dx,
where K > 0 is independent of f.

m With and without perfectly insulating inclusions (o1 = o(s,0,Cs) and
02 = U(§7 COy COO))

/ sIVur|? dz < (A2 — A1) f, 2y < / §|Vug|? da.
Co

Co
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Proof of D Z C = —~(AL > A(y) > A§)

m Assume D € C, i.e. D\ C contains an open ball B that can be connected to I via a
relatively open connected set U C 2.

= We may assume that U N C = ) and either of the following four options holds:

(a): Un(D\ Dy) =0, (b): UNn(D\ D-)=0,
(c): UN(D\ Dso) =0, (d): Un (D \ Do) = 0.

m In the following we consider case (d).
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Proof of D Z C = —~(AL > A(y) > A§)

m Recall the definition of 7, and now introduce also some new auxiliary conductivities:

0 in Dg
oo in Do y— in D_
y:i=4q 77— inD_ Y1 := 4 v+ in Dy
¥+ in Dy Y inQ\(D-UDy)
Yo inQ\D

and 2 := 0(71,0, Do) and ¢ := o (70, C, 0).
m We will now estimate each of the following terms:

AL — A(y) = [AL — A(0)] + [A(v0) — A(y1)] + [A(m1) = A(y2)] + [A(y2) — A(%)]

m Let (f;) simultaneously localize potentials ug ;, w14, u2,;, and uc ; in B along the set U.
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Proof of D Z C = —~(AL > A(y) > A§)

m Using the improved monotonicity inequalities:
(AL — A fis fi) 2oy < Slép(’yo) / [Vue | dz — 0
c
((Alyo) = AN fis fidp2ry < sup (11— ’Yo)/ |Vug,i|* dz — 0
D_uDy D_UDy
((A(v1) = A(v2)) fis fid 2y < K/ |Vur,i*dz — 0

((A(v2) = A fis fid 2y < —iLI)l(f(Vo) |Vauz ;|? dez — —co

= In total this gives lim ((Aaé A i, fi) L2y = —oo, e A% Z A().
11— 00
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Degenerate and singular inclusions

Extension of the method with Hyvénen:

m A nonnegative function w on R? is called an A, Muckenhoupt weight, if w
and 1/w are locally integrable and satisfy

1
3C > 0, VB open ball in R : (][ wdx) <][ dx) <C.
B B W

m If ¥ is a Lipschitz hypersurface, then w can locally behave as
dist(-,%)%, se€(-1,1).
Or near a point zg as

dist(-,z0)°, s € (—d,d).

m We can allow v to be the restriction of an Ay weight in the interior of D,
and still recover D with the Monotonicity Method.
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Examples - real data

Kuopio impedance tomograph
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Lipschitz cracks

Definition 7
A collection of cracks x lies in the class X if for some N € Ny
N
x =
i=1

where the o; C Q are (d — 1) dimensional orientable Lipschitz surfaces
with non-empty Lipschitz boundary do;, and with

dist(c;,0;) > 0 for i # j and dist(o;, 9€2) > 0 for all 7.

We refer to D € X as “a (Dy, Do) collection of cracks” if:
B D= DyUDy for Dy, Dy, € X,
m dist(Dg, Do) > 0,
m each crack in Dy is perfectly insulating,

m and each crack in D, is perfectly conducting.
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Conductivity problem with cracks

Conductivity problem where D is a (Dy, D) collection of cracks.

~V-(Vu)=0 inQ\D,

au . f on F’
P90 "o onoQ\T,
ou

— =0 onD
Y0 on 0
u is locally constant on D,

/ ['yo@}dS =0 for each component D; of D.
D, 0n
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Conductivity problem with cracks

m Weak problem for electric potential u = Upes:

/ YVu-Vodr = / folpds, You € Hgg‘?.
Q r
where
Hpr ={ve H(Q\ Dy) | v is locally constant on Dy}

Note that YVu extends to an L2-function in all of €.
m The local ND map is denoted Aggc’.
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Conductivity problem with cracks

A different way to understand the crack problems:

Do Doo 0
Hy > CHpe © Hp,-
And in the inner product (u,v), = [, v0Vu - Vvda:
n ué);’f is the orthogonal projection of uggff onto ’H@D“.

m upes s the orthogonal projection of up, ¢ onto Hpee
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Monotonicity reconstruction of cracks

Theorem 8 (Garde—Vogelius)

Let D be a (Dy, Do) collection of cracks. Given any C € A, then

DccC if and only if A% > Agg" > Ag.

Theorem 9 (Garde—Vogelius)
Let D € X.
m Given any x € X, then

xCD if and only if A% > A?(.
m Given any x € X, then

xCD if and only if Ag > Aq?.
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Monotonicity reconstruction of cracks

More complicated setting:
m No open set inside inclusion to localise in.
m Usual monotonicity inequalities become trivial when collapsing
inclusions to zero volume.
m Less general uniqueness results; we now assume vo € C?(€2) and
positive.
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Monotonicity reconstruction of cracks

The key idea for the “difficult direction” of the proof, is to construct:
m Sequence of Neumann boundary values (f,),
. ~ Yoo
m Sequence of potentials %, = (ST
m Sequence of potentials %, = u%c}‘;

such that @, and u,, localise (blow up) in a set intersecting X, and also
the difference

~ o~

Up — Unp

localise in the same way.
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Localised potentials

We will need the constructive version of localised potentials.

Lemma 10 (Gebauer '08)

Let H, K1, and K be Hilbert spaces, let A; € £ (K;,H) forj =1,2,
and assume that A% is injective. Assume that there exists yo € R(A1)
such that yo & R(Az). Forn € N we define

€n = (A243 + 11) 'y

and
fp=—D
| Aseal32
Then
lim |Ajzn|, =00 and  lim [|A3z,l|x, = 0.
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An auxiliary operator

mletVeA
m Let ¥ be a (X, X) collection of cracks.
For F € L*(V)4 we define w = wE F € HE‘” as the unique solution of:

/’yoVw-Vvdz:/F-Vvdm, Vo € Hgx.
Q 1%
We define Ly=(V) : L2(V)? — L2(T) as

Lg?(V)F: wgng‘F-

Then
(LEr(V)'f = Vugylv,  f € L(D).
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Let V € A and let ¥ be a (X¢,X) collection of cracks.
m If S € V then R(Ly=(V)) = R(LE= (V).
m If S € V then R(LY (V) = R(Ly> (V).

The proof becomes much more complicated due to different function
spaces involved.
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Ranges

Let 3 be a (Yo, X) collection of cracks. Assume that ¥y € V' and
Yoo EW for VW € A with dist(V, W) > 0.
m If Yo # 0 then there exists a sequence (fy) in L2(T') such that

lirn ((A?/V = Ag)fna fa) =0,
Tim (A = A) fus fn) = O,
lim ((Aggo - A%]w)fna fn) =00

n—oo

m Analogous result for ¥
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Key part of the proof

= Define A = L3> (V) — Ly=(V).
m Then A*f = V(ugg‘jf - u%‘}")h/
m By unique continuation and zero mean conditions on I':
*p . f Yoo _ Y

A*f =0 if and only if Us”y = Uy’
m From non-invisibility of cracks for full ND map: A # 0.
m Thereis a g € R(A)\ {0} such that also g € R(LQ?oo V) = R(L%f(V))

but g & R(L%“’(W)) (last part from usual proof of localised potentials).

m Using constructive version of localised potentials, there is a sequence (f,,)
such that

i [[(LG>= (W))* Fall 2 wys = 0,
Jim (G~ (V)" fall vy = o0,

and  lim [|A*f,[[12(y)e = o0.
n—oo
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Difficult direction of main result

m To prove
AL >ADx > A§  implies D cC,

we assume the contrapositive, i.e. D ¢ C.

m We have either of two cases:

m (a): There are V,W € A with dist(V, W) > 0 and non-empty x € X,
such that

x C Dy, X €V, cCcw, and Dy, eW.

m (b): There are V,W € A with dist(V, W) > 0 and non-empty x € X,
such that

X € Do, X EW, ccv, and Dy €V
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Difficult direction of main result

m Focusing on case (a):
AL = ADe = (AL — AD) + (A] = AP>) + (A= — AD)
< (Afy = AD) + (Ag = A) + (AF= = AD>).

m From our lemma, there is a sequence (f,) so that
Lim (A% — AQ)fus fu) = lm (A = A f, f) = 0
lim <(Aé7m - A)L()oo)fnvfn> = —0o0.

n—oo
m Hence D ¢ C implies A% 7 Ag;".
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