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Electrical Impedance Tomography

Inverse problem of EIT: From several current–voltage measurements on surface
electrodes, reconstruct the electrical conductivity distribution of an object.
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The continuum model

Ω ⊂ Rd, d ≥ 2, bounded Lipschitz domain with connected complement

Γ ⊆ ∂Ω arbitrarily small open boundary piece

Conductivity γ ∈ L∞+ (Ω) := {ς ∈ L∞(Ω;R) | inf ς > 0}

Boundary current density f

Electric potential u = uγf

Continuum Model

∇ · (γ∇u) = 0 in Ω, ν · (γ∇u)|∂Ω =
{
f on Γ,
0 on ∂Ω \ Γ.

Local Neumann-to-Dirichlet map (current-to-voltage)
Λ(γ) : L2

�(Γ)→ L2
�(Γ), f 7→ uγf |Γ,

is compact and self-adjoint, with � denoting a zero-mean condition on Γ.
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Forward and inverse problems

Forward problem
Λ : γ 7→ Λ(γ)

Calderón’s inverse conductivity problem
For which classes of coefficients do we have:

Λ(γ1) = Λ(γ2)⇒ γ1 = γ2?
An algorithm to evaluate Λ−1 : Λ(γ) 7→ γ?

Inclusion/obstacle detection
Let γ = γ0 + γD and D = supp(γD).

Can we reconstruct D from γ0 and Λ(γ)?
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Monotonicity inequalities

Lemma 1 (Kang–Seo–Sheen)

For f ∈ L2
�(Γ) and γ1, γ2 ∈ L∞+ (Ω) there are the following estimates:∫

Ω

γ2

γ1
(γ1−γ2)|∇uγ2

f |
2 dx ≤ 〈(Λ(γ2)−Λ(γ1))f, f〉L2(Γ) ≤

∫
Ω

(γ1−γ2)|∇uγ2
f |

2 dx

This implies the following intuitive relation between conductivity and power:

γ1 ≥ γ2 a.e. in Ω ⇒ Λ(γ2) ≥ Λ(γ1).
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Monotonicity-based reconstruction

Tamburrino–Rubinacci: Bounds for inclusions using monotonicity
inequalities.

Harrach–Ullrich: For closed set C with connected complement, and for γ
piecewise analytic with −βL ≤ γ − 1 ≤ βU:

supp(γ − 1) ⊆ C if and only if Λ(1− βLχC) ≥ Λ(γ) ≥ Λ(1 + βUχC).
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Extreme inclusions
For ς ∈ L∞+ (Ω) and C = C0 ∪ C∞, let σ = σ(ς, C0, C∞) denote

σ =


ς in Ω \ C,
0 in C0,

∞ in C∞.

The conductivity equation now becomes:

∇ · (σ∇u) = 0 in Ω \ C,

ν · (σ∇u) =
{
f on Γ,
0 on ∂(Ω \ C0) \ Γ,

∇u = 0 in C◦∞,∫
∂Ci

ν · (σ∇u) dS = 0 for each component Ci of C∞.
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Convergence of ND maps
Theorem 2
Define the ε-truncated version of σ, with ε > 0, by

σε =


ς in Ω \ C,
ες in C0,

ε−1ς in C∞.

Then the following estimate holds

‖uσεf − u
σ
f‖H1(Ω\C0) ≤ K

√
ε‖f‖L2(Γ),

with K > 0 independent of f and ε. As a direct consequence

‖Λ(σε)− Λ(σ)‖L (L2
�(Γ)) ≤ K

√
ε.

Corollary: There is an H1-extension of uσf onto the set C0, satisfying

‖uσεf − u
σ
f‖H1(Ω) ≤ K

√
ε‖f‖L2(Γ).
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Inverse problem for detection of extreme inclusions

We denote a set of admissible test inclusions by

A = {C b Ω | C is the closure of an open set,
has connected complement,
and has Lipschitz boundary ∂C}.

Let γ0 ∈ L∞+ (Ω) satisfy the unique continuation principle (UCP), and
suppose 0 ≤ γ ≤ ∞ is measurable and D = supp(γ − γ0) ∈ A.

Inverse problem: Reconstruct D from knowledge of γ0 and Λ(γ).

Some simplifying notation for some C ∈ A:
Λ∅C = Λ(σ(γ0, C, ∅))
ΛC∅ = Λ(σ(γ0, ∅, C))
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General monotonicity method

Suppose D = D0 ∪D∞ ∪D− ∪D+ is a disjoint union, with
D,D0, D∞ ∈ A and D± are measurable sets.

Define 0 ≤ γ ≤ ∞ by

γ =



0 in D0,

∞ in D∞,
γ− in D−,
γ+ in D+,

γ0 in Ω \D.

We assume γ satisfies a technical assumption near ∂D (next slide).

Theorem 3 (Candiani–Dardé–Garde–Hyvönen)
For any C ∈ A, then

D ⊆ C if and only if Λ∅C ≥ Λ(γ) ≥ ΛC∅ .
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Technical assumption near ∂D

For each x ∈ ∂D, and every open neighbourhood W of x, there exists a relatively
open set V ⊂ D that intersects ∂D, and V ⊂ D̃ ∩W for one set
D̃ ∈ {D0, D∞, D−, D+}.

If D̃ = D−, there exists an open ball B ⊂ V such that supB(γ− − γ0) < 0.
If D̃ = D+, there exists an open ball B ⊂ V such that infB(γ+ − γ0) > 0.

In non-technical terms: The sign of γ − γ0 cannot change arbitrarily often near
any open part of ∂D. And, either a jump from γ0 or a local strict increase or
decrease from γ0 near ∂D.
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Illustration of numerical implementation
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Proof of D ⊆ C ⇒ Λ∅C ≥ Λ(γ) ≥ ΛC
∅

Define the ε-truncation of γ, with ε > 0, as

γε =



εγ0 in D0,

ε−1γ0 in D∞,
γ− in D−,
γ+ in D+,

γ0 in Ω \D.

γα,C =
{
αγ0 in C,
γ0 in Ω \ C.

Let 0 < ε0 < 1 be small enough that ε0γ0 ≤ γ in D− and ε−1
0 γ0 ≥ γ in D+.

Assume D ⊆ C and 0 < ε ≤ ε0 then γε,C ≤ γε ≤ γε−1,C . By monotonicity:

Λ(γε,C) ≥ Λ(γε) ≥ Λ(γε−1,C).

Letting ε→ 0 gives Λ∅C ≥ Λ(γ) ≥ ΛC∅ .
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On the unique continuation principle

For U ⊆ Ω relatively open and connected, we say that ς ∈ L∞+ (Ω) satisfies the weak
unique continuation principle (UCP) in U for the conductivity equation if:

If ∇ · (ς∇v) = 0 in U◦ and v ≡ 0 in an open set B ⊆ U , then v ≡ 0 in U .
If ∇ · (ς∇v) = 0 in U◦ with vanishing Cauchy data on ∂U ∩ Γ, then v ≡ 0 in U .

This is e.g. satisfied for:
d = 2: L∞+
d ≥ 3: L∞+ ∩ Lipschitz
d ≥ 2: Piecewise analytic (allows discontinuities)
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Localised potentials
Lemma 4 (Gebauer)
Let U ⊂ Ω be a relatively open connected set that intersects Γ. Let B ⊂ U be an open
set and assume ς ∈ L∞+ (Ω) satisfies the UCP in U . Then there are sequences
(fi) ⊂ L2

�(Γ) and (ui) ⊂ H1
�(Ω) with ui = uςfi such that

lim
i→∞

∫
B

|∇ui|2 dx =∞ and lim
i→∞

∫
Ω\U
|∇ui|2 dx = 0.
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Simultaneous localization of power densities

Lemma 5
For ς ∈ L∞+ (Ω) and (fi) ⊂ L2

�(Γ), suppose that ui = uςfi satisfies

lim
i→∞

∫
B

|∇ui|2 dx =∞ and lim
i→∞

∫
Ω\U
|∇ui|2 dx = 0.

If C = C0 ∪C∞ with C ⊂ Ω \U and ûi = uσfi with σ = σ(ς, C0, C∞), then it also holds

lim
i→∞

∫
B

|∇ûi|2 dx =∞ and lim
i→∞

∫
Ω\U
|∇ûi|2 dx = 0.

If supp(ς1 − ς2) ⊂ Ω \ U the localisation for ς1 is transferred to ς2 (Harrach–Ullrich).
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Improved monotonicity principles
Lemma 6
Let C = C0 ∪ C∞, ς, ς1, ς2 ∈ L∞+ (Ω), and f ∈ L2

�(Γ).
Different background conductivity (σ1 = σ(ς1, C0, C∞) and σ2 = σ(ς2, C0, C∞)):∫

Ω\C

ς2

ς1
(ς1 − ς2)|∇u2|2 dx ≤ 〈(Λ2 − Λ1)f, f〉L2(Γ) ≤

∫
Ω\C

(ς1 − ς2)|∇u2|2 dx.

With and without perfectly conducting inclusions (σ1 = σ(ς, C0, C∞) and
σ2 = σ(ς, C0, ∅)):∫

C∞

ς|∇u2|2 dx ≤ 〈(Λ2 − Λ1)f, f〉L2(Γ) ≤ K
∫
C∞

|∇u2|2 dx,

where K > 0 is independent of f .
With and without perfectly insulating inclusions (σ1 = σ(ς, ∅, C∞) and
σ2 = σ(ς, C0, C∞)):∫

C0

ς|∇u1|2 dx ≤ 〈(Λ2 − Λ1)f, f〉L2(Γ) ≤
∫
C0

ς|∇u2|2 dx.
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Proof of D 6⊆ C ⇒¬(Λ∅C ≥ Λ(γ) ≥ ΛC
∅ )

Assume D 6⊆ C, i.e. D \ C contains an open ball B that can be connected to Γ via a
relatively open connected set U ⊂ Ω.
We may assume that U ∩ C = ∅ and either of the following four options holds:

(a): U ∩ (D \D+) = ∅, (b): U ∩ (D \D−) = ∅,

(c): U ∩ (D \D∞) = ∅, (d): U ∩ (D \D0) = ∅.

In the following we consider case (d).
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Proof of D 6⊆ C ⇒¬(Λ∅C ≥ Λ(γ) ≥ ΛC
∅ )

Recall the definition of γ, and now introduce also some new auxiliary conductivities:

γ :=


0 in D0
∞ in D∞
γ− in D−
γ+ in D+
γ0 in Ω \D

γ1 :=

γ− in D−
γ+ in D+
γ0 in Ω \ (D− ∪D+)

and γ2 := σ(γ1, ∅, D∞) and γC := σ(γ0, C, ∅).
We will now estimate each of the following terms:

Λ∅C − Λ(γ) = [Λ∅C − Λ(γ0)] + [Λ(γ0)− Λ(γ1)] + [Λ(γ1)− Λ(γ2)] + [Λ(γ2)− Λ(γ)]

Let (fi) simultaneously localize potentials u0,i, u1,i, u2,i, and uC,i in B along the set U .

Henrik Garde Reconstruction of Inclusions – Inverse Conductivity Problem 19 / 37



Proof of D 6⊆ C ⇒¬(Λ∅C ≥ Λ(γ) ≥ ΛC
∅ )

Using the improved monotonicity inequalities:

〈(Λ∅C − Λ(γ0))fi, fi〉L2(Γ) ≤ sup
C

(γ0)
∫
C

|∇uC,i|2 dx→ 0

〈(Λ(γ0)− Λ(γ1))fi, fi〉L2(Γ) ≤ sup
D−∪D+

(γ1 − γ0)
∫
D−∪D+

|∇u0,i|2 dx→ 0

〈(Λ(γ1)− Λ(γ2))fi, fi〉L2(Γ) ≤ K
∫
D∞

|∇u1,i|2 dx→ 0

〈(Λ(γ2)− Λ(γ))fi, fi〉L2(Γ) ≤ − inf
D0

(γ0)
∫
D0

|∇u2,i|2 dx→ −∞

In total this gives lim
i→∞

〈(Λ∅C − Λ(γ))fi, fi〉L2(Γ) = −∞, i.e. Λ∅C 6≥ Λ(γ).
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Degenerate and singular inclusions
Extension of the method with Hyvönen:

A nonnegative function w on Rd is called an A2 Muckenhoupt weight, if w
and 1/w are locally integrable and satisfy

∃C > 0, ∀B open ball in Rd :
(
−
∫
B

w dx
)(
−
∫
B

1
w

dx
)
≤ C.

If Σ is a Lipschitz hypersurface, then w can locally behave as

dist( · ,Σ)s, s ∈ (−1, 1).

Or near a point x0 as

dist( · , x0)s, s ∈ (−d, d).

We can allow γ to be the restriction of an A2 weight in the interior of D,
and still recover D with the Monotonicity Method.
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Examples - real data
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Lipschitz cracks
Definition 7
A collection of cracks χ lies in the class X if for some N ∈ N0

χ =
N⋃
i=1

σi,

where the σi ⊂ Ω are (d− 1) dimensional orientable Lipschitz surfaces
with non-empty Lipschitz boundary ∂σi, and with

dist(σi, σj) > 0 for i 6= j and dist(σi, ∂Ω) > 0 for all i.

We refer to D ∈ X as “a (D0, D∞) collection of cracks” if:
D = D0 ∪D∞ for D0, D∞ ∈ X ,
dist(D0, D∞) > 0,
each crack in D0 is perfectly insulating,
and each crack in D∞ is perfectly conducting.
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Conductivity problem with cracks

Conductivity problem where D is a (D0, D∞) collection of cracks.

−∇ · (γ0∇u) = 0 in Ω \D,

γ0
∂u

∂ν
=
{
f on Γ,
0 on ∂Ω \ Γ,

γ0
∂u

∂n
= 0 on D0,

u is locally constant on D∞,∫
Di

[
γ0
∂u

∂n

]
dS = 0 for each component Di of D∞.
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Conductivity problem with cracks

Weak problem for electric potential u = uD∞D0,f
:∫

Ω
γ0∇u · ∇v dx =

∫
Γ
fv|Γ dS, ∀v ∈ HD∞D0

.

where

HD∞D0
= {v ∈ H1

� (Ω \D0) | v is locally constant on D∞}.

Note that ∇u extends to an L2-function in all of Ω.
The local ND map is denoted ΛD∞D0

.
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Conductivity problem with cracks

A different way to understand the crack problems:

HD∞∅ ⊆ HD∞D0
⊆ H∅D0 .

And in the inner product 〈u, v〉∗ =
∫

Ω γ0∇u · ∇v dx:
uD∞∅,f is the orthogonal projection of uD∞D0,f

onto HD∞∅ .

uD∞D0,f
is the orthogonal projection of u∅D0,f

onto HD∞D0
.
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Monotonicity reconstruction of cracks

Theorem 8 (Garde–Vogelius)
Let D be a (D0, D∞) collection of cracks. Given any C ∈ A, then

D ⊂ C if and only if Λ∅C ≥ ΛD∞D0
≥ ΛC∅ .

Theorem 9 (Garde–Vogelius)
Let D ∈ X .

Given any χ ∈ X , then

χ ⊆ D if and only if Λ∅D ≥ Λ∅χ.

Given any χ ∈ X , then

χ ⊆ D if and only if Λχ∅ ≥ ΛD∅ .
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Monotonicity reconstruction of cracks

More complicated setting:
No open set inside inclusion to localise in.
Usual monotonicity inequalities become trivial when collapsing
inclusions to zero volume.
Less general uniqueness results; we now assume γ0 ∈ C2(Ω) and
positive.
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Monotonicity reconstruction of cracks

The key idea for the “difficult direction” of the proof, is to construct:
Sequence of Neumann boundary values (fn),
Sequence of potentials ũn = uΣ∞

Σ0,fn
,

Sequence of potentials ûn = uΣ∞
∅,fn ,

such that ũn and ûn localise (blow up) in a set intersecting Σ∞, and also
the difference

ũn − ûn
localise in the same way.
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Localised potentials
We will need the constructive version of localised potentials.

Lemma 10 (Gebauer ’08)
Let H, K1, and K2 be Hilbert spaces, let Aj ∈ L (Kj , H) for j = 1, 2,
and assume that A∗2 is injective. Assume that there exists y0 ∈ R(A1)
such that y0 6∈ R(A2). For n ∈ N we define

ξn =
(
A2A

∗
2 + 1

nI
)−1

y0

and
xn = ξn

‖A∗2ξn‖
3/2
K2

.

Then
lim
n→∞

‖A∗1xn‖K1 =∞ and lim
n→∞

‖A∗2xn‖K2 = 0.
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An auxiliary operator

Let V ∈ A.
Let Σ be a (Σ0,Σ∞) collection of cracks.

For F ∈ L2(V )d we define w = wΣ∞
Σ0,F

∈ HΣ∞
Σ0

as the unique solution of:∫
Ω
γ0∇w · ∇v dx =

∫
V
F · ∇v dx, ∀v ∈ HΣ∞

Σ0
.

We define LΣ∞
Σ0

(V ) : L2(V )d → L2
�(Γ) as

LΣ∞
Σ0

(V )F = wΣ∞
Σ0,F
|Γ.

Then
(LΣ∞

Σ0
(V ))∗f = ∇uΣ∞

Σ0,f
|V , f ∈ L2

�(Γ).
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Ranges

Lemma 11
Let V ∈ A and let Σ be a (Σ0,Σ∞) collection of cracks.

If Σ0 b V then R(LΣ∞
∅ (V )) = R(LΣ∞

Σ0
(V )).

If Σ∞ b V then R(L∅Σ0
(V )) = R(LΣ∞

Σ0
(V )).

The proof becomes much more complicated due to different function
spaces involved.
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Ranges

Lemma 12
Let Σ be a (Σ0,Σ∞) collection of cracks. Assume that Σ0 b V and
Σ∞ bW for V,W ∈ A with dist(V,W ) > 0.

If Σ0 6= ∅ then there exists a sequence (fn) in L2
�(Γ) such that

lim
n→∞

〈(Λ∅W − Λ∅∅)fn, fn〉 = 0,

lim
n→∞

〈(Λ∅∅ − ΛW∅ )fn, fn〉 = 0,

lim
n→∞

〈(ΛΣ∞
Σ0
− ΛΣ∞

∅ )fn, fn〉 =∞.

Analogous result for Σ∞.
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Key part of the proof

Define A = LΣ∞
Σ0

(V )− LΣ∞
∅ (V ).

Then A∗f = ∇(uΣ∞
Σ0,f
− uΣ∞
∅,f )|V .

By unique continuation and zero mean conditions on Γ:

A∗f = 0 if and only if uΣ∞
Σ0,f

= uΣ∞
∅,f .

From non-invisibility of cracks for full ND map: A 6= 0.
There is a g ∈ R(A) \ {0} such that also g ∈ R(LΣ∞

∅ (V )) = R(LΣ∞
Σ0

(V ))
but g 6∈ R(LΣ∞

∅ (W )) (last part from usual proof of localised potentials).
Using constructive version of localised potentials, there is a sequence (fn)
such that

lim
n→∞

‖(LΣ∞
∅ (W ))∗fn‖L2(W )d = 0,

lim
n→∞

‖(LΣ∞
∅ (V ))∗fn‖L2(V )d =∞,

and lim
n→∞

‖A∗fn‖L2(V )d =∞.
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Difficult direction of main result

To prove
Λ∅C ≥ ΛD∞D0

≥ ΛC∅ implies D ⊂ C,

we assume the contrapositive, i.e. D 6⊂ C.

We have either of two cases:
(a): There are V,W ∈ A with dist(V,W ) > 0 and non-empty χ ∈ X ,
such that

χ ⊆ D0, χ b V, C ⊆W, and D∞ bW.

(b): There are V,W ∈ A with dist(V,W ) > 0 and non-empty χ ∈ X ,
such that

χ ⊆ D∞, χ bW, C ⊆ V, and D0 b V.
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Difficult direction of main result
Focusing on case (a):

Λ∅C − ΛD∞D0
= (Λ∅C − Λ∅∅) + (Λ∅∅ − ΛD∞∅ ) + (ΛD∞∅ − ΛD∞D0

)

≤ (Λ∅W − Λ∅∅) + (Λ∅∅ − ΛW∅ ) + (ΛD∞∅ − ΛD∞χ ).

From our lemma, there is a sequence (fn) so that

lim
n→∞

〈(Λ∅W − Λ∅∅)fn, fn〉 = lim
n→∞

〈(Λ∅∅ − ΛW∅ )fn, fn〉 = 0

lim
n→∞

〈(ΛD∞∅ − ΛD∞χ )fn, fn〉 = −∞.

Hence D 6⊂ C implies Λ∅C 6≥ ΛD∞D0
.
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