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Introduction

This presentation focuses on EEG however this discussion can easily be extended to MEG
and sEEG.

In EEG, the electric potential measured on the scalp is used to identify active areas of the
brain (inverse source localisation problem)

Because the head is geometrically and electrically complex an understanding of how the
electric potential is transmitted through the head is required to solve the inverse source
localisation problem.

Typically it is assumed that the head is a nested layered conductor with distinct layers
(brain, skull, scalp) having different but constant electric conductivities.

Using EEG data, a Cauchy data completion problem (recovery of the electric potential
and normal currents) can be solved on the outer surfaces of the scalp, skull and cortex
(inverse cortical mapping problem).
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Introduction

The inverse problems of source localisation and cortical mapping have largely been solved
separately even though they are closely related.

When inverse source localisation problem is solved either

I all quantities involved are expressed in terms of the source which required the use of inverse
operators for example in EEGLAB and Brainstorm,

I the inverse cortical mapping problem is solved first and then the inverse source localisation
problem is solved.

When the inverse cortical mapping problem is solved, there is little mention of the source.

The electric potential is harmonic outside the brain and techniques that use the
representations of harmonic functions are used.

We will take the view that the inverse problems of source localisation and cortical mapping
are different aspects of the same problem and we aim to solve them simultaneously.

The hope is that this will improve numerical accuracy and provide context in the analysis
of the recovery results.
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Introduction

The inverse problems of source localisation and cortical mapping have largely been solved
separately even though they are closely related.

When inverse source localisation problem is solved either

I all quantities involved are expressed in terms of the source which required the use of inverse
operators for example in EEGLAB and Brainstorm,

I the inverse cortical mapping problem is solved first and then the inverse source localisation
problem is solved.

When the inverse cortical mapping problem is solved, there is little mention of the source.

The electric potential is harmonic outside the brain and techniques that use the
representations of harmonic functions are used.

We will take the view that the inverse problems of source localisation and cortical mapping
are different aspects of the same problem and we aim to solve them simultaneously.

The hope is that this will improve numerical accuracy and provide context in the analysis
of the recovery results.

Nemaire Masimba IHU-LIRYC, IMB Université Bordeaux 3 / 17
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Introduction

When the inverse source localisation problem has been solved the source has been for the
most part modelled as a collection of dipoles.

With advances in medical imaging, we have images of the brain at a fine level. We
developed a mathematical framework for using other mathematical objects that use the
information in these images.

Within this framework, the sources can be modelled as members of various Banach spaces
such that

I the Newton potential maps the (distributional) divergence of the members of space
continuously.

I the space is uniformly smooth.

We will present a method for solving the inverse problems of source localisation and
cortical mapping simultaneously with the source modelled as vector measures supported
on the white matter fibres.
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Introduction

When the inverse source localisation problem has been solved the source has been for the
most part modelled as a collection of dipoles.

With advances in medical imaging, we have images of the brain at a fine level. We
developed a mathematical framework for using other mathematical objects that use the
information in these images.

Within this framework, the sources can be modelled as members of various Banach spaces
such that

I the Newton potential maps the (distributional) divergence of the members of space
continuously.

I the space is uniformly smooth.

We will present a method for solving the inverse problems of source localisation and
cortical mapping simultaneously with the source modelled as vector measures supported
on the white matter fibres.

Nemaire Masimba IHU-LIRYC, IMB Université Bordeaux 4 / 17
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Definitions and preliminaries

Let γ : [0, l ]→ R3 be a Lipschitz mapping and let S := γ([0, l ]). If γ is such that

H1(γ([a, b])) = b − a, ∀[a, b] ⊂ [0, l ],

then γ is an orientable rectifiable curve, where H1 is the 1-dimensional Hausdorff measure.

On S define the vector measure Rγ through the relation

〈Rγ , f〉 =

∫ l

0
f(γ(t)) · γ ′(t) dt, for f ∈ [Cc(R3)]3,

it follows that Rγ = γ ′H1 and |γ ′| = 1 a.e on [0, l ].

Hence for each white matter fibre we can define a collection of vector measure
Rhγ = h(γ(t))γ ′H1, with γ(t) being an arclength parametrisation of the white matter
fibre and h ∈ L1(γ ′H1).

In the source localisation we aim to recover h(γ(t)).
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Definitions and preliminaries

The head is taken to be made of nested layers with each layer having a constant electric
conductivity (σ) which may be different in each layers.

For each Σi , σ
−
i and σ+

i are σ inside and outside Σi , respectively, φ− and φ+ are the
non-tangential limits of φ approaching from inside and outside, respectively.
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Definitions and preliminaries

Recall that the sources are modelled as vector-fields µ0 ∈ [M(Ω)]3

The electric potential, φ = φ[µ0] and µ0 satisfy

div (σ∇φ) = divµ0.

Regularity of solutions to elliptic PDEs imply that φ satisfies the following transmission
conditions on each Σi , i = 1, 2, 3

φ− = φ+

σ− ∂νφ
− = σ+ ∂νφ

+.
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Definitions and preliminaries

Using a result of Gezelowitz, Sarvas showed that φ associated with µ0, at
x ∈ R3\supp(µ0) are:

σ(x)φ(x) =
1

4π

∫ l

0

(x − γ(t))

|x − γ(t)|3
· h(γ(t))γ ′(t)dt

−
3∑

i=1

σ−i − σ
+
i

4π

∫
Σi

φ(y)ν(y) · (x − y)

|x − y |3
dHi

2(y),

where Hi
2 is the 2-dimensional Hausdorff measure on Σi , ν is the unit outer normal on Σi .

Nemaire Masimba IHU-LIRYC, IMB Université Bordeaux 8 / 17
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Definitions and preliminaries

Given a subset of R3\Ω0, there may be non-zero µ0 ∈ [M(Ω0)]3 that generate φ ≡ 0
(electrically silent) in the subset.

If these subsets correspond to domains in which EEG measurements are made, we can
describe silent sources in [M(Ω0)]3.

It can be shown that all divergence-vector measure Rhγ are silent, that is all vector
measures such that,∫ l

0
∇u(γ(t)) · h(γ(t))γ ′(t) dt = 0, ∀u ∈ C∞c (Ω0).

A concrete example are all vector measures Rhγ with h = 1 and γ(0) = γ(l).

The existence of silent sources implies non-uniqueness of solutions to the inverse source
localisation problem hence it is ill-posed.
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Inverse problems

Problem 1

Given EEG data f and parameters α, β, λ, λi > 0, i = 1, 2, 3, find

(µ0, φ1, φ2, φ3) = arg inf
(µ0,φ1,φ2,φ3)

Tf ,λ(µ0, φ1, φ2, φ3),

where

Tf ,λ :=α ‖F1(µ0, φ1, φ2, φ3)− f ‖2 + β ‖F2(µ0, φ1, φ2, φ3)‖2

+ λR
(
‖µ0‖[M(Σ0)]3

)
+

3∑
i=1

λi ‖φi‖2
L2(Σi )

.
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Inverse problems

For any α, β, λ, λi > 0 a unique solution exists and is dependent on these parameters.

To solve the problem we propose an iterative alternating minimisation procedure that
generates a sequence of solutions{

(µ
{k}
0 , φ

{k}
1 , φ

{k}
2 , φ

{k}
3 )

}
k∈N

,

with some initial guess for k = 0 by solving the problems

µ
{k+1}
0 = arg inf

µ0

Tf ,λ(µ0, φ
{k}
1 , φ

{k}
2 , φ

{k}
3 )

(φ
{k+1}
1 , φ

{k+1}
2 , φ

{k+1}
3 ) = arg inf

(φ1,φ2,φ3)
Tf ,λ(µ

{k}
0 , φ1, φ2, φ3).

This is a minimising sequence for which Tf ,λ(µ
{k}
0 , φ

{k}
1 , φ

{k}
2 , φ

{k}
3 ) converges at least

linearly because of the uniform smoothness.
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Numerical experiments

Real evoked auditory data.

Recovery is performed for an N100 response which is thought to correspond to the
processing of auditory signals.

Used Bezier curves of degree 15 to approximate each fibre.

Used Bernstein polynomials of degree 3 to approximate h(γ(t)).

We plot |h(γ(t))|.
We also present the reconstructed electric potential on the scalp, skull and cortex.

The triangular meshes used on the scalp, skull and cortex are very coarse to save on
computational time.

The double layer potential approximations are exact on the triangular meshes.

Nemaire Masimba IHU-LIRYC, IMB Université Bordeaux 12 / 17



Numerical experiments

Real evoked auditory data.

Recovery is performed for an N100 response which is thought to correspond to the
processing of auditory signals.

Used Bezier curves of degree 15 to approximate each fibre.

Used Bernstein polynomials of degree 3 to approximate h(γ(t)).

We plot |h(γ(t))|.
We also present the reconstructed electric potential on the scalp, skull and cortex.

The triangular meshes used on the scalp, skull and cortex are very coarse to save on
computational time.

The double layer potential approximations are exact on the triangular meshes.

Nemaire Masimba IHU-LIRYC, IMB Université Bordeaux 12 / 17
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Figure: Source recovery with real auditory EEG data for the N100 response.
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Conclusions and further developments

We demonstrated that it is possible to solve the inverse problems of source localisation
and cortical mapping together and that there may be advantages in doing so.

We also showed that a different source model other than dipoles that takes advantage of
the anatomy of the brain can be used.

We provided the mathematical requirements for such a source model.

There is a need to improve the computational efficiency.

Of particular interest is to study if it is possible to change the regularisation parameters at
each step of the alternating minimisation algorithm in order to get a norm-minimising
equivalent solution in the end.
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Thank you :)
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