
Liliana Arrachea (2023)

Quantum thermodynamics

and transport

Focus on heat-work conversion

Lecture 3



Thermodynamic cycles



Work

Heat

Heat Finite-time efficiency

η =
W
Q

≤ ηC

Carnot heat engine

Power

P =
W
τC

3FQ� 1SPH� 1IZT� �� 	����
 ������ 3FWJFX

'JHVSF �� *MMVTUSBUJPO PG B $BSOPU DZDMF JO B RVCJU GPS UIF IFBU FOHJOF BOE SFGSJHFSBUPS PQFSBUJPOT�

XIFO XPSL JT EFMJWFSFE CZ UIF ESJWJOH TPVSDFT JOUP UIF TZT�
UFN� *O FBDI TUFQ 8J→K NBZ IBWF BOZ TJHO
 EFQFOEJOH PO UIF
QSPUPDPM�

5IF IFBU BOE UIF XPSL JO UIF EJGGFSFOU TUFQT PG UIF DZDMF BSF
EFàOFE JO FRVBUJPO 	�
� 5IF DPOTFSWBUJPO PG UIF FOFSHZ JO UIF
DZDMF JNQMJFT

8= 2I +2D. 	��


'PS B RVBTJ�TUBUJD FWPMVUJPO XF DBO VTF UIF EFàOJUJPOT PG
FRVBUJPO 	�
 UP FYQMJDJUMZ WFSJGZ UIBU UIJT SFMBUJPO IPMET GPS UIF
DPOTFSWBUJWF XPSL 8(DPOT)
 BOE UIF RVBTJTUBUJD IFBU FYDIBOHFT
2(RT)

I 
 2(RT)
D � *O BEEJUJPO
 TJODF GPS UIF RVBTJ�TUBUJD QSPDFTTFT

UIFSF JT OP FOUSPQZ QSPEVDUJPO
 BOE UIF UPUBM DIBOHF PG UIF
FOUSPQZ JO UIFTF SFWFSTJCMF QSPDFTTFT SFBET

∑

α

∆4α =
∑

α

2(RT)
α

5α
= �. 	��


5IFSFGPSF
 FRVBUJPO 	��
 DBO CF FYQSFTTFE BT

8(DPOT) = 2(RT)
I

(5I − 5D)
5I

, $BSOPU, 	��


XIJDI XIFO TVCTUJUVUFE JO FRVBUJPO 	��
 MFBET UP UIF XFMM�
LOPXO $BSOPU SFTVMUT GPS UIF FGàDJFODZ BOE UIF DPFGàDJFOU PG
QFSGPSNBODF


η$ =
5I − 5D
5I

, $01=
�
η$

, $BSOPU. 	��


'PS OPO�FRVJMJCSJVN àOJUF�UJNF QSPUPDPMT
 UIF DPNQPOFOUT
8(OPO−DPOT) BOE 2(OPO−FR)

α DPOUSJCVUF BT XJMM CF EJTDVTTFE
CFMPX� 'VSUIFSNPSF
 B QSFDJTF EFTDSJQUJPO TIPVME BMTP UBLF
JOUP BDDPVOU UIF UJNF�EFQFOEFOU QSPDFTTFT PG TXJUDIJOH PO BOE
PGG UIF DPOUBDUT UP UIF SFTFSWPJST� 5IF MBUUFS BSF VTVBMMZ OFH�
MFDUFE JO UIF MJUFSBUVSF BMUIPVHI
 SFDFOUMZ
 UIF FGGFDU PG TNPPUI
DIBOHFT JO UIF TZTUFN�SFTFSWPJS DPVQMJOH XFSF GPVOE UP TQFFE�
VQ UIF JTPUIFSNBM FWPMVUJPOT PG $BSOPU DZDMFT <���>�

5IF 0UUP DZDMF JT BMTP CBTFE PO B GPVS�TUSPLF QSPUPDPM� 5IF
NBJO EJGGFSFODF XJUI SFTQFDU UP UIF $BSOPU POF JT JO UIF TUFQT

	�
 BOE 	�
 XIFSF UIF FWPMVUJPO JO DPOUBDU XJUI UIF SFTFSWPJST
UBLFT QMBDF BU DPOTUBOU#
 IFODF POMZ IFBU JT FYDIBOHFE JO UIFTF
QSPDFTTFT� 5IJT DZDMF JT WFSZ DPOWFOJFOU GSPN UIF DPNQVUB�
UJPOBM QPJOU PG WJFX
 TJODF POMZ IFBU JT FYDIBOHFE JO UIF TUSPLFT
	�
 BOE 	�
 XIJMF POMZ XPSL JT FYDIBOHFE JO UIF TUSPLFT 	�

BOE 	�

 XIJDI JNQMJFT JNQPSUBOU TJNQMJàDBUJPOT JO UIF DBMDV�
MBUJPOT� 5IF JNQMFNFOUBUJPO PG 0UUP DZDMFT IBT CFFO UIF GPDVT
PG NBOZ UIFPSFUJDBM BOE FYQFSJNFOUBM XPSLT <��
 ��
 ���
 ���>
XJUI SFDFOU GPDVT PO NBOZ�CPEZ FGGFDUT <���> BOE TQFFE VQ
QSPUPDPMT <���m���> UP FOIBODF UIF QFSGPSNBODF� 5IJT DZDMF
IBT CFFO XJEFMZ BOBMZ[FE JO UIF MJUFSBUVSF BOE XF EFGFS UIF
SFBEFS UP <��
 ��
 ���
 ���>�

���� 'JOJUF�UJNF $BSOPU IFBU FOHJOF

" HPPE QBSU PG UIF MJUFSBUVSF PO DZDMFT JO RVCJUT GPDVTFT PO B
$BSOPU DZDMFT XJUI B RVBTJ�TUBUJD FWPMVUJPO JO UIF TUFQT XIFSF
UIF TZTUFN JT JO DPOUBDU UP SFTFSWPJST
 BOE B GBTU FWPMVUJPO JO
UIF TUFQT XIFSF JU JT EFDPVQMFE <���m���
 ���m���>� 3FDFOUMZ

àOJUF�UJNF FGGFDUT JO UIF FWPMVUJPO JO DPOUBDU UP UIF SFTFSWPJST
XFSF BEESFTTFE <���
 ���
 ���>� "U àOJUF UJNF
 CFTJEFT UIF FGà�
DJFODZ
 UIF PUIFS RVBOUJUJFT RVBMJGZJOH UIF QFSGPSNBODF PG UIF
NBDIJOF BSF UIF PVUQVU QPXFS
 JO UIF DBTF PG UIF IFBU FOHJOF

BOE UIF DPPMJOH QPXFS
 JO UIF DBTF PG UIF SFGSJHFSBUPS� 'PS B
NBDIJOF PQFSBUJOH JO B QFSJPE τ UIFTF RVBOUJUJFT SFBE

1(IF) =−8
τ
, 1(DPPM) =−2D

τ
. 	��


5IF ESBXCBDL PG UIF àOJUF�UJNF PQFSBUJPO JT UIF FOFSHZ EJTTJQ�
BUJPO BOE FOUSPQZ QSPEVDUJPO� 5IF FGGFDU PG UIF EJTTJQBUJPO JO
$BSOPU DZDMFT XIFSF UIF FWPMVUJPO JO DPOUBDU XJUI UIF SFTFS�
WPJST UBLFT QMBDF BU àOJUF UJNFT XBT BOBMZ[FE JO UIF MJUFSBUVSF
JO <���
 ���>� 5IF NBJO TUFQ JT UP JODMVEF UIF DPOUSJCVUJPO PG
UIF EJTTJQBUFE FOFSHZ EVF UP UIF àOJUF�UJNF FWPMVUJPO EVSJOH
UIF TUSPLFT XIFSF UIF TZTUFN FWPMWFT DPVQMFE UP UIF SFTFSWPJST�
5IF DPSSFTQPOEJOH IFBU FYDIBOHFT XJUI UIF DPME BOE IPU CBUIT
SFBE

2α = 2(SFW)
α +8EJTT

α = 5α∆4α + 5αΣα, α= D,I, 	��


��

3FQ� 1SPH� 1IZT� �� 	����
 ������ 3FWJFX

'JHVSF �� *MMVTUSBUJPO PG B $BSOPU DZDMF JO B RVCJU GPS UIF IFBU FOHJOF BOE SFGSJHFSBUPS PQFSBUJPOT�

XIFO XPSL JT EFMJWFSFE CZ UIF ESJWJOH TPVSDFT JOUP UIF TZT�
UFN� *O FBDI TUFQ 8J→K NBZ IBWF BOZ TJHO
 EFQFOEJOH PO UIF
QSPUPDPM�

5IF IFBU BOE UIF XPSL JO UIF EJGGFSFOU TUFQT PG UIF DZDMF BSF
EFàOFE JO FRVBUJPO 	�
� 5IF DPOTFSWBUJPO PG UIF FOFSHZ JO UIF
DZDMF JNQMJFT

8= 2I +2D. 	��


'PS B RVBTJ�TUBUJD FWPMVUJPO XF DBO VTF UIF EFàOJUJPOT PG
FRVBUJPO 	�
 UP FYQMJDJUMZ WFSJGZ UIBU UIJT SFMBUJPO IPMET GPS UIF
DPOTFSWBUJWF XPSL 8(DPOT)
 BOE UIF RVBTJTUBUJD IFBU FYDIBOHFT
2(RT)

I 
 2(RT)
D � *O BEEJUJPO
 TJODF GPS UIF RVBTJ�TUBUJD QSPDFTTFT

UIFSF JT OP FOUSPQZ QSPEVDUJPO
 BOE UIF UPUBM DIBOHF PG UIF
FOUSPQZ JO UIFTF SFWFSTJCMF QSPDFTTFT SFBET

∑

α

∆4α =
∑

α

2(RT)
α

5α
= �. 	��


5IFSFGPSF
 FRVBUJPO 	��
 DBO CF FYQSFTTFE BT

8(DPOT) = 2(RT)
I

(5I − 5D)
5I

, $BSOPU, 	��


XIJDI XIFO TVCTUJUVUFE JO FRVBUJPO 	��
 MFBET UP UIF XFMM�
LOPXO $BSOPU SFTVMUT GPS UIF FGàDJFODZ BOE UIF DPFGàDJFOU PG
QFSGPSNBODF


η$ =
5I − 5D
5I

, $01=
�
η$

, $BSOPU. 	��


'PS OPO�FRVJMJCSJVN àOJUF�UJNF QSPUPDPMT
 UIF DPNQPOFOUT
8(OPO−DPOT) BOE 2(OPO−FR)

α DPOUSJCVUF BT XJMM CF EJTDVTTFE
CFMPX� 'VSUIFSNPSF
 B QSFDJTF EFTDSJQUJPO TIPVME BMTP UBLF
JOUP BDDPVOU UIF UJNF�EFQFOEFOU QSPDFTTFT PG TXJUDIJOH PO BOE
PGG UIF DPOUBDUT UP UIF SFTFSWPJST� 5IF MBUUFS BSF VTVBMMZ OFH�
MFDUFE JO UIF MJUFSBUVSF BMUIPVHI
 SFDFOUMZ
 UIF FGGFDU PG TNPPUI
DIBOHFT JO UIF TZTUFN�SFTFSWPJS DPVQMJOH XFSF GPVOE UP TQFFE�
VQ UIF JTPUIFSNBM FWPMVUJPOT PG $BSOPU DZDMFT <���>�

5IF 0UUP DZDMF JT BMTP CBTFE PO B GPVS�TUSPLF QSPUPDPM� 5IF
NBJO EJGGFSFODF XJUI SFTQFDU UP UIF $BSOPU POF JT JO UIF TUFQT

	�
 BOE 	�
 XIFSF UIF FWPMVUJPO JO DPOUBDU XJUI UIF SFTFSWPJST
UBLFT QMBDF BU DPOTUBOU#
 IFODF POMZ IFBU JT FYDIBOHFE JO UIFTF
QSPDFTTFT� 5IJT DZDMF JT WFSZ DPOWFOJFOU GSPN UIF DPNQVUB�
UJPOBM QPJOU PG WJFX
 TJODF POMZ IFBU JT FYDIBOHFE JO UIF TUSPLFT
	�
 BOE 	�
 XIJMF POMZ XPSL JT FYDIBOHFE JO UIF TUSPLFT 	�

BOE 	�

 XIJDI JNQMJFT JNQPSUBOU TJNQMJàDBUJPOT JO UIF DBMDV�
MBUJPOT� 5IF JNQMFNFOUBUJPO PG 0UUP DZDMFT IBT CFFO UIF GPDVT
PG NBOZ UIFPSFUJDBM BOE FYQFSJNFOUBM XPSLT <��
 ��
 ���
 ���>
XJUI SFDFOU GPDVT PO NBOZ�CPEZ FGGFDUT <���> BOE TQFFE VQ
QSPUPDPMT <���m���> UP FOIBODF UIF QFSGPSNBODF� 5IJT DZDMF
IBT CFFO XJEFMZ BOBMZ[FE JO UIF MJUFSBUVSF BOE XF EFGFS UIF
SFBEFS UP <��
 ��
 ���
 ���>�

���� 'JOJUF�UJNF $BSOPU IFBU FOHJOF

" HPPE QBSU PG UIF MJUFSBUVSF PO DZDMFT JO RVCJUT GPDVTFT PO B
$BSOPU DZDMFT XJUI B RVBTJ�TUBUJD FWPMVUJPO JO UIF TUFQT XIFSF
UIF TZTUFN JT JO DPOUBDU UP SFTFSWPJST
 BOE B GBTU FWPMVUJPO JO
UIF TUFQT XIFSF JU JT EFDPVQMFE <���m���
 ���m���>� 3FDFOUMZ

àOJUF�UJNF FGGFDUT JO UIF FWPMVUJPO JO DPOUBDU UP UIF SFTFSWPJST
XFSF BEESFTTFE <���
 ���
 ���>� "U àOJUF UJNF
 CFTJEFT UIF FGà�
DJFODZ
 UIF PUIFS RVBOUJUJFT RVBMJGZJOH UIF QFSGPSNBODF PG UIF
NBDIJOF BSF UIF PVUQVU QPXFS
 JO UIF DBTF PG UIF IFBU FOHJOF

BOE UIF DPPMJOH QPXFS
 JO UIF DBTF PG UIF SFGSJHFSBUPS� 'PS B
NBDIJOF PQFSBUJOH JO B QFSJPE τ UIFTF RVBOUJUJFT SFBE

1(IF) =−8
τ
, 1(DPPM) =−2D

τ
. 	��


5IF ESBXCBDL PG UIF àOJUF�UJNF PQFSBUJPO JT UIF FOFSHZ EJTTJQ�
BUJPO BOE FOUSPQZ QSPEVDUJPO� 5IF FGGFDU PG UIF EJTTJQBUJPO JO
$BSOPU DZDMFT XIFSF UIF FWPMVUJPO JO DPOUBDU XJUI UIF SFTFS�
WPJST UBLFT QMBDF BU àOJUF UJNFT XBT BOBMZ[FE JO UIF MJUFSBUVSF
JO <���
 ���>� 5IF NBJO TUFQ JT UP JODMVEF UIF DPOUSJCVUJPO PG
UIF EJTTJQBUFE FOFSHZ EVF UP UIF àOJUF�UJNF FWPMVUJPO EVSJOH
UIF TUSPLFT XIFSF UIF TZTUFN FWPMWFT DPVQMFE UP UIF SFTFSWPJST�
5IF DPSSFTQPOEJOH IFBU FYDIBOHFT XJUI UIF DPME BOE IPU CBUIT
SFBE

2α = 2(SFW)
α +8EJTT

α = 5α∆4α + 5αΣα, α= D,I, 	��


��

3FQ� 1SPH� 1IZT� �� 	����
 ������ 3FWJFX

'JHVSF �� *MMVTUSBUJPO PG B $BSOPU DZDMF JO B RVCJU GPS UIF IFBU FOHJOF BOE SFGSJHFSBUPS PQFSBUJPOT�

XIFO XPSL JT EFMJWFSFE CZ UIF ESJWJOH TPVSDFT JOUP UIF TZT�
UFN� *O FBDI TUFQ 8J→K NBZ IBWF BOZ TJHO
 EFQFOEJOH PO UIF
QSPUPDPM�

5IF IFBU BOE UIF XPSL JO UIF EJGGFSFOU TUFQT PG UIF DZDMF BSF
EFàOFE JO FRVBUJPO 	�
� 5IF DPOTFSWBUJPO PG UIF FOFSHZ JO UIF
DZDMF JNQMJFT

8= 2I +2D. 	��


'PS B RVBTJ�TUBUJD FWPMVUJPO XF DBO VTF UIF EFàOJUJPOT PG
FRVBUJPO 	�
 UP FYQMJDJUMZ WFSJGZ UIBU UIJT SFMBUJPO IPMET GPS UIF
DPOTFSWBUJWF XPSL 8(DPOT)
 BOE UIF RVBTJTUBUJD IFBU FYDIBOHFT
2(RT)

I 
 2(RT)
D � *O BEEJUJPO
 TJODF GPS UIF RVBTJ�TUBUJD QSPDFTTFT

UIFSF JT OP FOUSPQZ QSPEVDUJPO
 BOE UIF UPUBM DIBOHF PG UIF
FOUSPQZ JO UIFTF SFWFSTJCMF QSPDFTTFT SFBET

∑

α

∆4α =
∑

α

2(RT)
α

5α
= �. 	��


5IFSFGPSF
 FRVBUJPO 	��
 DBO CF FYQSFTTFE BT

8(DPOT) = 2(RT)
I

(5I − 5D)
5I

, $BSOPU, 	��


XIJDI XIFO TVCTUJUVUFE JO FRVBUJPO 	��
 MFBET UP UIF XFMM�
LOPXO $BSOPU SFTVMUT GPS UIF FGàDJFODZ BOE UIF DPFGàDJFOU PG
QFSGPSNBODF


η$ =
5I − 5D
5I

, $01=
�
η$

, $BSOPU. 	��


'PS OPO�FRVJMJCSJVN àOJUF�UJNF QSPUPDPMT
 UIF DPNQPOFOUT
8(OPO−DPOT) BOE 2(OPO−FR)

α DPOUSJCVUF BT XJMM CF EJTDVTTFE
CFMPX� 'VSUIFSNPSF
 B QSFDJTF EFTDSJQUJPO TIPVME BMTP UBLF
JOUP BDDPVOU UIF UJNF�EFQFOEFOU QSPDFTTFT PG TXJUDIJOH PO BOE
PGG UIF DPOUBDUT UP UIF SFTFSWPJST� 5IF MBUUFS BSF VTVBMMZ OFH�
MFDUFE JO UIF MJUFSBUVSF BMUIPVHI
 SFDFOUMZ
 UIF FGGFDU PG TNPPUI
DIBOHFT JO UIF TZTUFN�SFTFSWPJS DPVQMJOH XFSF GPVOE UP TQFFE�
VQ UIF JTPUIFSNBM FWPMVUJPOT PG $BSOPU DZDMFT <���>�

5IF 0UUP DZDMF JT BMTP CBTFE PO B GPVS�TUSPLF QSPUPDPM� 5IF
NBJO EJGGFSFODF XJUI SFTQFDU UP UIF $BSOPU POF JT JO UIF TUFQT

	�
 BOE 	�
 XIFSF UIF FWPMVUJPO JO DPOUBDU XJUI UIF SFTFSWPJST
UBLFT QMBDF BU DPOTUBOU#
 IFODF POMZ IFBU JT FYDIBOHFE JO UIFTF
QSPDFTTFT� 5IJT DZDMF JT WFSZ DPOWFOJFOU GSPN UIF DPNQVUB�
UJPOBM QPJOU PG WJFX
 TJODF POMZ IFBU JT FYDIBOHFE JO UIF TUSPLFT
	�
 BOE 	�
 XIJMF POMZ XPSL JT FYDIBOHFE JO UIF TUSPLFT 	�

BOE 	�

 XIJDI JNQMJFT JNQPSUBOU TJNQMJàDBUJPOT JO UIF DBMDV�
MBUJPOT� 5IF JNQMFNFOUBUJPO PG 0UUP DZDMFT IBT CFFO UIF GPDVT
PG NBOZ UIFPSFUJDBM BOE FYQFSJNFOUBM XPSLT <��
 ��
 ���
 ���>
XJUI SFDFOU GPDVT PO NBOZ�CPEZ FGGFDUT <���> BOE TQFFE VQ
QSPUPDPMT <���m���> UP FOIBODF UIF QFSGPSNBODF� 5IJT DZDMF
IBT CFFO XJEFMZ BOBMZ[FE JO UIF MJUFSBUVSF BOE XF EFGFS UIF
SFBEFS UP <��
 ��
 ���
 ���>�

���� 'JOJUF�UJNF $BSOPU IFBU FOHJOF

" HPPE QBSU PG UIF MJUFSBUVSF PO DZDMFT JO RVCJUT GPDVTFT PO B
$BSOPU DZDMFT XJUI B RVBTJ�TUBUJD FWPMVUJPO JO UIF TUFQT XIFSF
UIF TZTUFN JT JO DPOUBDU UP SFTFSWPJST
 BOE B GBTU FWPMVUJPO JO
UIF TUFQT XIFSF JU JT EFDPVQMFE <���m���
 ���m���>� 3FDFOUMZ

àOJUF�UJNF FGGFDUT JO UIF FWPMVUJPO JO DPOUBDU UP UIF SFTFSWPJST
XFSF BEESFTTFE <���
 ���
 ���>� "U àOJUF UJNF
 CFTJEFT UIF FGà�
DJFODZ
 UIF PUIFS RVBOUJUJFT RVBMJGZJOH UIF QFSGPSNBODF PG UIF
NBDIJOF BSF UIF PVUQVU QPXFS
 JO UIF DBTF PG UIF IFBU FOHJOF

BOE UIF DPPMJOH QPXFS
 JO UIF DBTF PG UIF SFGSJHFSBUPS� 'PS B
NBDIJOF PQFSBUJOH JO B QFSJPE τ UIFTF RVBOUJUJFT SFBE

1(IF) =−8
τ
, 1(DPPM) =−2D

τ
. 	��


5IF ESBXCBDL PG UIF àOJUF�UJNF PQFSBUJPO JT UIF FOFSHZ EJTTJQ�
BUJPO BOE FOUSPQZ QSPEVDUJPO� 5IF FGGFDU PG UIF EJTTJQBUJPO JO
$BSOPU DZDMFT XIFSF UIF FWPMVUJPO JO DPOUBDU XJUI UIF SFTFS�
WPJST UBLFT QMBDF BU àOJUF UJNFT XBT BOBMZ[FE JO UIF MJUFSBUVSF
JO <���
 ���>� 5IF NBJO TUFQ JT UP JODMVEF UIF DPOUSJCVUJPO PG
UIF EJTTJQBUFE FOFSHZ EVF UP UIF àOJUF�UJNF FWPMVUJPO EVSJOH
UIF TUSPLFT XIFSF UIF TZTUFN FWPMWFT DPVQMFE UP UIF SFTFSWPJST�
5IF DPSSFTQPOEJOH IFBU FYDIBOHFT XJUI UIF DPME BOE IPU CBUIT
SFBE

2α = 2(SFW)
α +8EJTT

α = 5α∆4α + 5αΣα, α= D,I, 	��


��

Heat-work conversionTR TL

P

V

Qh

Qh



Single ion heat engine with maximum e�ciency at maximum power
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We propose an experimental scheme to realize a nano heat engine with a single ion. An Otto cycle
may be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it
to engineered laser reservoirs. The quantum e�ciency at maximum power is analytically determined
in various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate
its feasibility and its ability to operate at maximum e�ciency of 30% under realistic conditions.

PACS numbers: 37.10.Ty, 37.10.Vz, 05.70.-a

Miniaturization has lead to the development of increas-
ingly smaller devices. This ongoing size reduction from
the macroscale to the nanoscale is approaching the ul-
timate limit, given by the atomic nature of matter [1].
Prominent macro-devices are heat engines that convert
thermal energy into mechanical work, and hence motion
[2]. A fundamental question is whether these machines
can be scaled down to the single particle level, while re-
taining the same working principles as, for instance, those
of a car engine. It is interesting to note in this context
that biological molecular motors are based on completely
di↵erent mechanisms that exploit the constructive role of
thermal fluctuations [3, 4]. At the nanoscale, quantum
properties become important and have thus to be fully
taken into account. Quantum heat engines have been the
subject of extensive theoretical studies in the last fifty
years [5–14]. However, while classical micro heat engines
have been fabricated, using optomechanical [15], micro-
electromechanical [16–18], and colloidal systems [19], to
date no quantum heat engine has been built.

In this paper, we take a step towards that goal by
proposing a single ion heat engine using a linear Paul
trap. Specifically, we present a scheme which has the
potential to implement a quantum Otto cycle using
currently available state-of-the-art ion-trap technology.
Laser-cooled ions in linear Paul traps are quantum sys-
tems with remarkable properties [20]: they o↵er an un-
precedented degree of preparation and control of their
parameters, permit their cooling to the ground state, and
allow the coupling to engineered reservoirs [21]. For these
reasons, they have played a prominent role in the exper-
imental study of quantum computation and information
processing applications [22, 23]. They are also invaluable
tools for the investigation of quantum thermodynamics
[24]. The quantum Otto cycle for a harmonic oscillator
is a quantum generalization of the common four-stroke
car engine and a paradigm for thermodynamic quantum
devices [25–27]. It consists of two isentropic processes
during which the frequency of the oscillator (the trap
frequency) is varied, and of two isochoric processes, that

in this situation correspond to a change of temperature
at constant frequency, see Fig. 1(a). In the present pro-
posal, we simulate the Otto cycle by confining a single ion
in a novel trap geometry with an asymmetric electrode
configuration (see Fig. 1(c)) and coupling it alternatingly
to two engineered laser reservoirs. As for all realistic ma-
chines, this Otto engine runs in finite time and has thus
non-zero power [28]. We determine the e�ciency at max-
imum power in the limit of adiabatic and strongly nona-
diabatic processes, which we express in terms of the nona-
diabaticity parameter introduced by Husimi [29]. We fur-
ther present semiclassical Monte Carlo simulations, with
realistic parameters, that demonstrate the experimental
feasibility of such a device. The proposal and the sin-
gle ion trap design idea have several unique advantages:
First, all of the parameters of the engine, in particular the
temperatures of the baths, are tunable over a wide range,
in contrast to existing engines. As a result, maximum ef-
ficiency can be achieved. Moreover, at low temperatures,
the engine may operate in the quantum regime, where
the discreteness of the energy spectrum plays an impor-
tant role. In addition, the coupling to the laser reservoirs
can be either switched on and o↵ externally, or by the in-
trinsic dynamics of the ion itself. In this latter mode, the
heat engine runs autonomously [30]. Since trapped ions
are perfect oscillator models, the results described here
may in principle be extended to analogous systems, such
as micro- and nanomechanical oscillators [31–34], o↵ering
a broad spectrum of potential applications.

Quantum Otto cycle. We consider a quantum engine
whose working medium is a single harmonic oscillator
with time-dependent frequency !t, changing between !1

and !2. The engine is alternatingly coupled to two heat
baths at inverse temperatures �i = 1/(kBTi) (i = 1, 2),
where kB is the Boltzmann constant. The Otto cycle
consists of four consecutive steps as shown in Fig. 1(a):
(1) Isentropic compression A(!1,�1) ! B(!2,�1): the
frequency is varied during time ⌧1 while the system is
isolated. The evolution is unitary and the von Neumann
entropy of the oscillator is thus constant. Note that state
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B is non-thermal even for slow (adiabatic) processes.
(2) Hot isochore B(!2,�1) ! C(!2,�2): the oscillator is
weakly coupled to a reservoir at inverse temperature �2

at fixed frequency and allowed to relax during time ⌧2 to
the thermal state C. This equilibration is much shorter
than the expansion/compression phases (see below).
(3) Isentropic expansion C(!2,�2) ! D(!1,�2): the fre-
quency is changed back to its initial value during time
⌧3. The isolated oscillator evolves unitarily into the non-
thermal state D at constant entropy.
(4) Cold isochore D(!1,�2) ! A(!1,�1): the system
is weakly coupled to a reservoir at inverse temperature
�1 > �2 and quickly relaxes to the initial thermal state
A during ⌧4. The frequency is again kept constant.

In order to determine the e�ciency of the quantum
Otto cycle, we need to evaluate work and heat for each of
the above steps. During stroke (2) and (4), the frequency
is constant, and thus only heat is exchanged with the
reservoirs. On the other hand, during stroke (1) and
(3), the system is isolated and only work is performed by
modulating the frequency. Since the dynamics is unitary
in the latter, the Schrödinger equation for the parametric
oscillator can be solved exactly and its mean energy can
be obtained analytically. The average quantum energies
hHi of the oscillator at the four stages of the cycle are

hHiA =
~!1

2
coth
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, (1a)
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, (1d)

where we have introduced the two adiabaticity parame-
ters Q⇤

1 and Q
⇤
2 [29]. They are equal to one for adiabatic

(slow) processes and increase with the degree of nonadia-
baticity. Their explicit expressions for any given modula-
tion !t, can be found in Refs. [35, 36]. Equations (1a-d)
reduce to their classical limits when ~ ! 0. The mean
work, denoted by hW1i, done during the first stroke is

hW1i = hHiB�hHiA =

✓
~!2

2
Q

⇤
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~!1
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coth
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2
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(2)
whereas the mean heat hQ2i exchanged with the hot
reservoir during the second stroke reads,

hQ2i = hHiC � hHiB

=
~!2
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In a similar way, the average work and heat for the third

FIG. 1. (Color online) (a) Energy-frequency diagram of the
Otto cycle for the radial degree of freedom of the ion. The
continuous line represents the ideal process, while the dots
show the results of the Monte Carlo simulations. (b) The
pictograms illustrate the four individual strokes of the cycle
for the radial thermal state. (c) Geometry of the tapered Paul
trap: the rf-electrodes have an angle of ✓ = 20� with the trap
axis, the length of the trap is 5mm, the radial distance of the
ion to the rf-electrodes is r0 = 1mm.

and fourth stroke are given by,

hW3i = hHiD�hHiC =
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and
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�Q

⇤
2 coth

✓
�2~!2

2

◆�
.(5)

For a heat engine, heat is absorbed from the hot reservoir,
hQ2i � 0, and flows into the cold reservoir, hQ4i  0. As
a result, the two conditions have to be satisfied:

Q
⇤
1  coth (�2 ~!2/2)

coth (�1 ~!1/2)
Q

⇤
2 � coth (�1 ~!1/2)

coth (�2 ~!2/2)
. (6)

The e�ciency of this quantum engine, defined as the ratio
of the total work per cycle and the heat received from the
hot reservoir, then follows as

⌘ = �hW1i+ hW3i
hQ1i

= 1� !1

!2

coth (�1 ~!1/2)�Q
⇤
2 coth (�2 ~!2/2)

Q
⇤
1 coth (�1 ~!1/2)� coth (�2 ~!2/2)

. (7)

The above exact expression is valid for arbitrary tem-
peratures and frequency modulations, and allows for a
detailed investigation of the performance of the engine.

1. Single particle in harmonic trap

We begin with a single particle trapped in a harmonic oscillator,
which has probably become the most studied setup for finite-time
quantum Otto engines, see for instance Refs. 30, 109, 110, and 153. Its
Hamiltonian reads

HðtÞ ¼ p2

2m
þ 1
2
mx2ðtÞ x2; (44)

where x and p are the position and momentum operators of an oscilla-
tor of mass m. The angular frequency plays the role of “inverse vol-
ume,” and we consider situations in which xðtÞ can be varied between
x1 and x2. In addition, the particle is alternatingly coupled to two
heat baths at inverse temperatures, b1 and b2, see Fig. 7 for an illustra-
tion of the scenario.

The quantum Otto cycle is then implemented through the fol-
lowing four strokes:

(1) Isentropic compression Aðx1;b1Þ! Bðx2;b1Þ: the frequency
is varied during time s1 while the system is isolated. The evolu-
tion is unitary and the von Neumann entropy of the oscillator
is, thus, constant. Note that state B is nonthermal even for slow
(adiabatic) processes. In this step, work W1 ¼ hHiB % hHiA is
performed on the medium, and the average thermal energy is
again given by Eq. (33). At the end of the unitary stroke, we
have154–157

hHiB ¼
!hx2

2
Q&compcoth

b1!hx1

2

! "
: (45)

Here Q&comp is a dimensionless parameter that measures the
degree of adiabaticity of the isentropic compression and expan-
sion strokes, respectively.154–157 Its exact form is determined by
the protocol under which the trapping frequency is modulated,
but in general Q& ' 1 with Q& ¼ 1 corresponding to a
completely adiabatic stroke.

(2) Hot isochore Bðx2; b1Þ! Cðx2; b2Þ: the oscillator is weakly
coupled to a reservoir at inverse temperature b2 at fixed fre-
quency and allowed to relax during time s2 to the thermal state
C. This equilibration is much shorter than the expansion/

compression strokes and only an amount of heat Q2 ¼ hHiC
%hHiB is transferred. Note that at C the system is again in equi-
librium, and its energy is accordingly given by Eq. (33).

(3) Isentropic expansion Cðx2;b2Þ! Dðx1; b2Þ: the frequency is
changed back to its initial value during time s3. The isolated
oscillator evolves unitarily into the nonthermal state D at con-
stant entropy. An amount of work W3 ¼ hHiD % hHiC is
extracted from the medium during this stroke, which we can
compute with154–157

hHiD ¼
!hx1

2
Q&exp coth

b2!hx2

2

! "
: (46)

(4) Cold isochore Dðx1; b2Þ! Aðx1;b1Þ: the system is weakly
coupled to a reservoir at inverse temperature b1 > b2 and
quickly relaxes to the initial thermal state A during s4. The fre-
quency is again kept constant and an amount of heat Q4

¼ hHiA % hHiD is transferred from the working medium.

During the first and third strokes (compression and expansion), the
quantum oscillator is isolated, and the corresponding work values are

W1 ¼
!hx2

2
Q&comp %

x1

x2

! "
coth

b1!hx1

2

! "
;

W3 ¼
!hx1

2
Q&exp %

x2

x1

! "
coth

b2!hx2

2

! "
:

(47)

During the thermalization strokes (isochoric processes), heat is
exchanged with the reservoirs, and we have

Q2 ¼
!hx2

2
coth

b2!hx2

2

! "
% Q&compcoth

b1!hx1

2

! "# $
;

Q4 ¼
!hx1

2
coth

b1!hx1

2

! "
% Q&exp coth

b2!hx2

2

! "# $
:

(48)

The efficiency of this quantum engine, defined as the ratio of the total
work per cycle and the heat received from the hot reservoir, is then as
follows:110

g ¼ %W1 þW3

Q2

¼ 1% x1

x2

coth b1 !hx1=2ð Þ % Q&exp coth b2 !hx2=2ð Þ
Q&comp coth b1 !hx1=2ð Þ % coth b2 !hx2=2ð Þ ; (49)

and the power output per cycle, P ¼ %ðW1 þW3Þ=scyc becomes

P ¼ hHiA 1% Q&compx2=x1

% &
þ 1% Q&exp x1=x2

% &
hHiC

h i
=scyc:

(50)

It is easy to see that for slow driving (adiabatic limit), during the isen-
tropic processes Q&i ¼ 1, the thermal machine efficiency is gADO
¼ 1% x1=x2, whereas the power vanishes. As we will see shortly, this
single particle engine was realized in ion traps based on a theoretical
proposal.110

2. Many particles in harmonic trap

The natural question then is how the engine performance
changes if not one, but two quantum particles are trapped in the

FIG. 7. Schematic representation of the four-stroke quantum Otto cycle for a har-
monic trap with time-dependent frequency. Reprinted with permission from N. M.
Myers and S. Deffner, Phys. Rev. E 101, 012110 (2020). Copyright 2020, American
Physical Society.
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B is non-thermal even for slow (adiabatic) processes.
(2) Hot isochore B(!2,�1) ! C(!2,�2): the oscillator is
weakly coupled to a reservoir at inverse temperature �2

at fixed frequency and allowed to relax during time ⌧2 to
the thermal state C. This equilibration is much shorter
than the expansion/compression phases (see below).
(3) Isentropic expansion C(!2,�2) ! D(!1,�2): the fre-
quency is changed back to its initial value during time
⌧3. The isolated oscillator evolves unitarily into the non-
thermal state D at constant entropy.
(4) Cold isochore D(!1,�2) ! A(!1,�1): the system
is weakly coupled to a reservoir at inverse temperature
�1 > �2 and quickly relaxes to the initial thermal state
A during ⌧4. The frequency is again kept constant.

In order to determine the e�ciency of the quantum
Otto cycle, we need to evaluate work and heat for each of
the above steps. During stroke (2) and (4), the frequency
is constant, and thus only heat is exchanged with the
reservoirs. On the other hand, during stroke (1) and
(3), the system is isolated and only work is performed by
modulating the frequency. Since the dynamics is unitary
in the latter, the Schrödinger equation for the parametric
oscillator can be solved exactly and its mean energy can
be obtained analytically. The average quantum energies
hHi of the oscillator at the four stages of the cycle are
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where we have introduced the two adiabaticity parame-
ters Q⇤

1 and Q
⇤
2 [29]. They are equal to one for adiabatic

(slow) processes and increase with the degree of nonadia-
baticity. Their explicit expressions for any given modula-
tion !t, can be found in Refs. [35, 36]. Equations (1a-d)
reduce to their classical limits when ~ ! 0. The mean
work, denoted by hW1i, done during the first stroke is

hW1i = hHiB�hHiA =
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whereas the mean heat hQ2i exchanged with the hot
reservoir during the second stroke reads,

hQ2i = hHiC � hHiB

=
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In a similar way, the average work and heat for the third

FIG. 1. (Color online) (a) Energy-frequency diagram of the
Otto cycle for the radial degree of freedom of the ion. The
continuous line represents the ideal process, while the dots
show the results of the Monte Carlo simulations. (b) The
pictograms illustrate the four individual strokes of the cycle
for the radial thermal state. (c) Geometry of the tapered Paul
trap: the rf-electrodes have an angle of ✓ = 20� with the trap
axis, the length of the trap is 5mm, the radial distance of the
ion to the rf-electrodes is r0 = 1mm.

and fourth stroke are given by,
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and
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=
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⇤
2 coth

✓
�2~!2

2

◆�
.(5)

For a heat engine, heat is absorbed from the hot reservoir,
hQ2i � 0, and flows into the cold reservoir, hQ4i  0. As
a result, the two conditions have to be satisfied:

Q
⇤
1  coth (�2 ~!2/2)

coth (�1 ~!1/2)
Q

⇤
2 � coth (�1 ~!1/2)

coth (�2 ~!2/2)
. (6)

The e�ciency of this quantum engine, defined as the ratio
of the total work per cycle and the heat received from the
hot reservoir, then follows as

⌘ = �hW1i+ hW3i
hQ1i

= 1� !1

!2

coth (�1 ~!1/2)�Q
⇤
2 coth (�2 ~!2/2)

Q
⇤
1 coth (�1 ~!1/2)� coth (�2 ~!2/2)

. (7)

The above exact expression is valid for arbitrary tem-
peratures and frequency modulations, and allows for a
detailed investigation of the performance of the engine.
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We propose an experimental scheme to realize a nano heat engine with a single ion. An Otto cycle
may be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it
to engineered laser reservoirs. The quantum e�ciency at maximum power is analytically determined
in various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate
its feasibility and its ability to operate at maximum e�ciency of 30% under realistic conditions.
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Miniaturization has lead to the development of increas-
ingly smaller devices. This ongoing size reduction from
the macroscale to the nanoscale is approaching the ul-
timate limit, given by the atomic nature of matter [1].
Prominent macro-devices are heat engines that convert
thermal energy into mechanical work, and hence motion
[2]. A fundamental question is whether these machines
can be scaled down to the single particle level, while re-
taining the same working principles as, for instance, those
of a car engine. It is interesting to note in this context
that biological molecular motors are based on completely
di↵erent mechanisms that exploit the constructive role of
thermal fluctuations [3, 4]. At the nanoscale, quantum
properties become important and have thus to be fully
taken into account. Quantum heat engines have been the
subject of extensive theoretical studies in the last fifty
years [5–14]. However, while classical micro heat engines
have been fabricated, using optomechanical [15], micro-
electromechanical [16–18], and colloidal systems [19], to
date no quantum heat engine has been built.

In this paper, we take a step towards that goal by
proposing a single ion heat engine using a linear Paul
trap. Specifically, we present a scheme which has the
potential to implement a quantum Otto cycle using
currently available state-of-the-art ion-trap technology.
Laser-cooled ions in linear Paul traps are quantum sys-
tems with remarkable properties [20]: they o↵er an un-
precedented degree of preparation and control of their
parameters, permit their cooling to the ground state, and
allow the coupling to engineered reservoirs [21]. For these
reasons, they have played a prominent role in the exper-
imental study of quantum computation and information
processing applications [22, 23]. They are also invaluable
tools for the investigation of quantum thermodynamics
[24]. The quantum Otto cycle for a harmonic oscillator
is a quantum generalization of the common four-stroke
car engine and a paradigm for thermodynamic quantum
devices [25–27]. It consists of two isentropic processes
during which the frequency of the oscillator (the trap
frequency) is varied, and of two isochoric processes, that

in this situation correspond to a change of temperature
at constant frequency, see Fig. 1(a). In the present pro-
posal, we simulate the Otto cycle by confining a single ion
in a novel trap geometry with an asymmetric electrode
configuration (see Fig. 1(c)) and coupling it alternatingly
to two engineered laser reservoirs. As for all realistic ma-
chines, this Otto engine runs in finite time and has thus
non-zero power [28]. We determine the e�ciency at max-
imum power in the limit of adiabatic and strongly nona-
diabatic processes, which we express in terms of the nona-
diabaticity parameter introduced by Husimi [29]. We fur-
ther present semiclassical Monte Carlo simulations, with
realistic parameters, that demonstrate the experimental
feasibility of such a device. The proposal and the sin-
gle ion trap design idea have several unique advantages:
First, all of the parameters of the engine, in particular the
temperatures of the baths, are tunable over a wide range,
in contrast to existing engines. As a result, maximum ef-
ficiency can be achieved. Moreover, at low temperatures,
the engine may operate in the quantum regime, where
the discreteness of the energy spectrum plays an impor-
tant role. In addition, the coupling to the laser reservoirs
can be either switched on and o↵ externally, or by the in-
trinsic dynamics of the ion itself. In this latter mode, the
heat engine runs autonomously [30]. Since trapped ions
are perfect oscillator models, the results described here
may in principle be extended to analogous systems, such
as micro- and nanomechanical oscillators [31–34], o↵ering
a broad spectrum of potential applications.

Quantum Otto cycle. We consider a quantum engine
whose working medium is a single harmonic oscillator
with time-dependent frequency !t, changing between !1

and !2. The engine is alternatingly coupled to two heat
baths at inverse temperatures �i = 1/(kBTi) (i = 1, 2),
where kB is the Boltzmann constant. The Otto cycle
consists of four consecutive steps as shown in Fig. 1(a):
(1) Isentropic compression A(!1,�1) ! B(!2,�1): the
frequency is varied during time ⌧1 while the system is
isolated. The evolution is unitary and the von Neumann
entropy of the oscillator is thus constant. Note that state
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B is non-thermal even for slow (adiabatic) processes.
(2) Hot isochore B(!2,�1) ! C(!2,�2): the oscillator is
weakly coupled to a reservoir at inverse temperature �2

at fixed frequency and allowed to relax during time ⌧2 to
the thermal state C. This equilibration is much shorter
than the expansion/compression phases (see below).
(3) Isentropic expansion C(!2,�2) ! D(!1,�2): the fre-
quency is changed back to its initial value during time
⌧3. The isolated oscillator evolves unitarily into the non-
thermal state D at constant entropy.
(4) Cold isochore D(!1,�2) ! A(!1,�1): the system
is weakly coupled to a reservoir at inverse temperature
�1 > �2 and quickly relaxes to the initial thermal state
A during ⌧4. The frequency is again kept constant.

In order to determine the e�ciency of the quantum
Otto cycle, we need to evaluate work and heat for each of
the above steps. During stroke (2) and (4), the frequency
is constant, and thus only heat is exchanged with the
reservoirs. On the other hand, during stroke (1) and
(3), the system is isolated and only work is performed by
modulating the frequency. Since the dynamics is unitary
in the latter, the Schrödinger equation for the parametric
oscillator can be solved exactly and its mean energy can
be obtained analytically. The average quantum energies
hHi of the oscillator at the four stages of the cycle are
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~!1

2
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where we have introduced the two adiabaticity parame-
ters Q⇤

1 and Q
⇤
2 [29]. They are equal to one for adiabatic

(slow) processes and increase with the degree of nonadia-
baticity. Their explicit expressions for any given modula-
tion !t, can be found in Refs. [35, 36]. Equations (1a-d)
reduce to their classical limits when ~ ! 0. The mean
work, denoted by hW1i, done during the first stroke is

hW1i = hHiB�hHiA =
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whereas the mean heat hQ2i exchanged with the hot
reservoir during the second stroke reads,
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In a similar way, the average work and heat for the third

FIG. 1. (Color online) (a) Energy-frequency diagram of the
Otto cycle for the radial degree of freedom of the ion. The
continuous line represents the ideal process, while the dots
show the results of the Monte Carlo simulations. (b) The
pictograms illustrate the four individual strokes of the cycle
for the radial thermal state. (c) Geometry of the tapered Paul
trap: the rf-electrodes have an angle of ✓ = 20� with the trap
axis, the length of the trap is 5mm, the radial distance of the
ion to the rf-electrodes is r0 = 1mm.

and fourth stroke are given by,
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For a heat engine, heat is absorbed from the hot reservoir,
hQ2i � 0, and flows into the cold reservoir, hQ4i  0. As
a result, the two conditions have to be satisfied:

Q
⇤
1  coth (�2 ~!2/2)

coth (�1 ~!1/2)
Q

⇤
2 � coth (�1 ~!1/2)

coth (�2 ~!2/2)
. (6)

The e�ciency of this quantum engine, defined as the ratio
of the total work per cycle and the heat received from the
hot reservoir, then follows as

⌘ = �hW1i+ hW3i
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= 1� !1

!2

coth (�1 ~!1/2)�Q
⇤
2 coth (�2 ~!2/2)
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The above exact expression is valid for arbitrary tem-
peratures and frequency modulations, and allows for a
detailed investigation of the performance of the engine.
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(2) Hot isochore B(!2,�1) ! C(!2,�2): the oscillator is
weakly coupled to a reservoir at inverse temperature �2

at fixed frequency and allowed to relax during time ⌧2 to
the thermal state C. This equilibration is much shorter
than the expansion/compression phases (see below).
(3) Isentropic expansion C(!2,�2) ! D(!1,�2): the fre-
quency is changed back to its initial value during time
⌧3. The isolated oscillator evolves unitarily into the non-
thermal state D at constant entropy.
(4) Cold isochore D(!1,�2) ! A(!1,�1): the system
is weakly coupled to a reservoir at inverse temperature
�1 > �2 and quickly relaxes to the initial thermal state
A during ⌧4. The frequency is again kept constant.

In order to determine the e�ciency of the quantum
Otto cycle, we need to evaluate work and heat for each of
the above steps. During stroke (2) and (4), the frequency
is constant, and thus only heat is exchanged with the
reservoirs. On the other hand, during stroke (1) and
(3), the system is isolated and only work is performed by
modulating the frequency. Since the dynamics is unitary
in the latter, the Schrödinger equation for the parametric
oscillator can be solved exactly and its mean energy can
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for the radial thermal state. (c) Geometry of the tapered Paul
trap: the rf-electrodes have an angle of ✓ = 20� with the trap
axis, the length of the trap is 5mm, the radial distance of the
ion to the rf-electrodes is r0 = 1mm.
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For a heat engine, heat is absorbed from the hot reservoir,
hQ2i � 0, and flows into the cold reservoir, hQ4i  0. As
a result, the two conditions have to be satisfied:
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The e�ciency of this quantum engine, defined as the ratio
of the total work per cycle and the heat received from the
hot reservoir, then follows as
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The above exact expression is valid for arbitrary tem-
peratures and frequency modulations, and allows for a
detailed investigation of the performance of the engine.
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(2) Hot isochore B(!2,�1) ! C(!2,�2): the oscillator is
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at fixed frequency and allowed to relax during time ⌧2 to
the thermal state C. This equilibration is much shorter
than the expansion/compression phases (see below).
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quency is changed back to its initial value during time
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is weakly coupled to a reservoir at inverse temperature
�1 > �2 and quickly relaxes to the initial thermal state
A during ⌧4. The frequency is again kept constant.

In order to determine the e�ciency of the quantum
Otto cycle, we need to evaluate work and heat for each of
the above steps. During stroke (2) and (4), the frequency
is constant, and thus only heat is exchanged with the
reservoirs. On the other hand, during stroke (1) and
(3), the system is isolated and only work is performed by
modulating the frequency. Since the dynamics is unitary
in the latter, the Schrödinger equation for the parametric
oscillator can be solved exactly and its mean energy can
be obtained analytically. The average quantum energies
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Isentropic compression:

(2) Hot isochore:

(3) Isentropic expansion:

(4) Cold isochore:

1. Single particle in harmonic trap

We begin with a single particle trapped in a harmonic oscillator,
which has probably become the most studied setup for finite-time
quantum Otto engines, see for instance Refs. 30, 109, 110, and 153. Its
Hamiltonian reads

HðtÞ ¼ p2

2m
þ 1
2
mx2ðtÞ x2; (44)

where x and p are the position and momentum operators of an oscilla-
tor of mass m. The angular frequency plays the role of “inverse vol-
ume,” and we consider situations in which xðtÞ can be varied between
x1 and x2. In addition, the particle is alternatingly coupled to two
heat baths at inverse temperatures, b1 and b2, see Fig. 7 for an illustra-
tion of the scenario.

The quantum Otto cycle is then implemented through the fol-
lowing four strokes:

(1) Isentropic compression Aðx1;b1Þ! Bðx2;b1Þ: the frequency
is varied during time s1 while the system is isolated. The evolu-
tion is unitary and the von Neumann entropy of the oscillator
is, thus, constant. Note that state B is nonthermal even for slow
(adiabatic) processes. In this step, work W1 ¼ hHiB % hHiA is
performed on the medium, and the average thermal energy is
again given by Eq. (33). At the end of the unitary stroke, we
have154–157

hHiB ¼
!hx2

2
Q&compcoth

b1!hx1

2

! "
: (45)

Here Q&comp is a dimensionless parameter that measures the
degree of adiabaticity of the isentropic compression and expan-
sion strokes, respectively.154–157 Its exact form is determined by
the protocol under which the trapping frequency is modulated,
but in general Q& ' 1 with Q& ¼ 1 corresponding to a
completely adiabatic stroke.

(2) Hot isochore Bðx2; b1Þ! Cðx2; b2Þ: the oscillator is weakly
coupled to a reservoir at inverse temperature b2 at fixed fre-
quency and allowed to relax during time s2 to the thermal state
C. This equilibration is much shorter than the expansion/

compression strokes and only an amount of heat Q2 ¼ hHiC
%hHiB is transferred. Note that at C the system is again in equi-
librium, and its energy is accordingly given by Eq. (33).

(3) Isentropic expansion Cðx2;b2Þ! Dðx1; b2Þ: the frequency is
changed back to its initial value during time s3. The isolated
oscillator evolves unitarily into the nonthermal state D at con-
stant entropy. An amount of work W3 ¼ hHiD % hHiC is
extracted from the medium during this stroke, which we can
compute with154–157
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2
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(4) Cold isochore Dðx1; b2Þ! Aðx1;b1Þ: the system is weakly
coupled to a reservoir at inverse temperature b1 > b2 and
quickly relaxes to the initial thermal state A during s4. The fre-
quency is again kept constant and an amount of heat Q4

¼ hHiA % hHiD is transferred from the working medium.

During the first and third strokes (compression and expansion), the
quantum oscillator is isolated, and the corresponding work values are
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During the thermalization strokes (isochoric processes), heat is
exchanged with the reservoirs, and we have
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The efficiency of this quantum engine, defined as the ratio of the total
work per cycle and the heat received from the hot reservoir, is then as
follows:110

g ¼ %W1 þW3

Q2

¼ 1% x1
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coth b1 !hx1=2ð Þ % Q&exp coth b2 !hx2=2ð Þ
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and the power output per cycle, P ¼ %ðW1 þW3Þ=scyc becomes

P ¼ hHiA 1% Q&compx2=x1

% &
þ 1% Q&exp x1=x2

% &
hHiC

h i
=scyc:

(50)

It is easy to see that for slow driving (adiabatic limit), during the isen-
tropic processes Q&i ¼ 1, the thermal machine efficiency is gADO
¼ 1% x1=x2, whereas the power vanishes. As we will see shortly, this
single particle engine was realized in ion traps based on a theoretical
proposal.110

2. Many particles in harmonic trap

The natural question then is how the engine performance
changes if not one, but two quantum particles are trapped in the

FIG. 7. Schematic representation of the four-stroke quantum Otto cycle for a har-
monic trap with time-dependent frequency. Reprinted with permission from N. M.
Myers and S. Deffner, Phys. Rev. E 101, 012110 (2020). Copyright 2020, American
Physical Society.
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1. Single particle in harmonic trap

We begin with a single particle trapped in a harmonic oscillator,
which has probably become the most studied setup for finite-time
quantum Otto engines, see for instance Refs. 30, 109, 110, and 153. Its
Hamiltonian reads
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where x and p are the position and momentum operators of an oscilla-
tor of mass m. The angular frequency plays the role of “inverse vol-
ume,” and we consider situations in which xðtÞ can be varied between
x1 and x2. In addition, the particle is alternatingly coupled to two
heat baths at inverse temperatures, b1 and b2, see Fig. 7 for an illustra-
tion of the scenario.

The quantum Otto cycle is then implemented through the fol-
lowing four strokes:

(1) Isentropic compression Aðx1;b1Þ! Bðx2;b1Þ: the frequency
is varied during time s1 while the system is isolated. The evolu-
tion is unitary and the von Neumann entropy of the oscillator
is, thus, constant. Note that state B is nonthermal even for slow
(adiabatic) processes. In this step, work W1 ¼ hHiB % hHiA is
performed on the medium, and the average thermal energy is
again given by Eq. (33). At the end of the unitary stroke, we
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Here Q&comp is a dimensionless parameter that measures the
degree of adiabaticity of the isentropic compression and expan-
sion strokes, respectively.154–157 Its exact form is determined by
the protocol under which the trapping frequency is modulated,
but in general Q& ' 1 with Q& ¼ 1 corresponding to a
completely adiabatic stroke.

(2) Hot isochore Bðx2; b1Þ! Cðx2; b2Þ: the oscillator is weakly
coupled to a reservoir at inverse temperature b2 at fixed fre-
quency and allowed to relax during time s2 to the thermal state
C. This equilibration is much shorter than the expansion/

compression strokes and only an amount of heat Q2 ¼ hHiC
%hHiB is transferred. Note that at C the system is again in equi-
librium, and its energy is accordingly given by Eq. (33).

(3) Isentropic expansion Cðx2;b2Þ! Dðx1; b2Þ: the frequency is
changed back to its initial value during time s3. The isolated
oscillator evolves unitarily into the nonthermal state D at con-
stant entropy. An amount of work W3 ¼ hHiD % hHiC is
extracted from the medium during this stroke, which we can
compute with154–157

hHiD ¼
!hx1

2
Q&exp coth

b2!hx2

2

! "
: (46)

(4) Cold isochore Dðx1; b2Þ! Aðx1;b1Þ: the system is weakly
coupled to a reservoir at inverse temperature b1 > b2 and
quickly relaxes to the initial thermal state A during s4. The fre-
quency is again kept constant and an amount of heat Q4

¼ hHiA % hHiD is transferred from the working medium.
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FIG. 1. (a) Heat engine setup composed of a single trapped ion (green), lasers for cooling, damping and observation of the
ion (blue), radio-frequency electrodes in funnel geometry (red), end-caps (gold) and outer electrodes (gray). The position of
the ion is imaged on an ICCD camera. Opposing voltage noise waveforms are additionally supplied to the outer electrodes,
in order to generate electric field noise without a↵ecting the trap frequencies. (b) Position of the ion (black) determined from
the average of more than 200 000 camera images at each time step. The error bars result from the uncertainty of Gaussian fits
to the recorded fluorescence images. The measured positions are described by a sinusoidal fit (green line). Background colors
indicate the periodic interaction with the hot (red) and cold (blue) reservoirs which give rise to a periodic driving force (blue
line) according to Eq. (1), shown relative to its mean value of 5.03⇥10�21. (c) Thermodynamic cycle of the engine for one radial
direction: trap frequencies in the radial direction !r are deduced directly from the measured z-positions. The temperature T
of the radial state of motion and thus the corresponding mean phonon number n̄r is determined from separate measurements
(see text and Fig. 2). The values of !r and n̄r are given with respect to the center of the cycle at !0r/2⇡ = 447.9(2) kHz
and n̄0r = 26160(445). The shaded area enclosed by the cycle reflects the work performed by the engine, where red and blue
colors indicate heating and cooling periods, respectively. The black line is the calculated trajectory of the cycle, see text. The
pictograms in the corners illustrate the di↵erent strokes of an idealized cycle.

with a temperature-dependent time-averaged width �r =p
kBT/m!2

r
, where kB is the Boltzmann constant. Ow-

ing to the geometry of the funnel potential, the ion ex-
periences an average force in axial direction given by,

Fz(T ) = �
Z 1

0

⇠r(r,�, T )
dU

dz
d�dr. (3)

The heat engine is driven by alternately heating and cool-
ing the ion in radial direction by switching the electric
noise on and o↵; the cooling laser is always on. Heat-
ing expands the width of the radial thermal state. As a
result, the ion moves along the z-axis to a weaker radial
confinement. We calculate a static displacement of 11 nm
for the relative change of Fz corresponding to Fig. 1.
During this first step of the engine, the axial potential
energy of the ion increases and work is produced. The
second step occurs during exposure to the cold reservoir
when the electric field noise is switched o↵. Here the
radial width �r and the corresponding force Fz decrease
as the temperature is reduced, and the ion moves back
to its initial position owing to the restoring force of the

axial potential. The combination of heating and cooling
give rise to a closed thermodynamic cycle and leads to a
periodic force Fz(T ) in the axial direction (see Fig. 1c).
When the cycle repeats itself at a rate which is close to
the axial trap frequency, the engine e↵ectively drives the
harmonic oscillation. The work produced in each radial
cycle is then transferred to the axial degree of freedom
and stored in the amplitude of the oscillation. The essen-
tially frictionless nature of the system leads to an ever-
increasing oscillation. The axial motion thus plays a role
similar to the flywheel of a mechanical engine.

In order to contain this oscillation, we provide ad-
justable damping by introducing an additional cooling
laser in the axial direction. Steady state operation is
reached when the work generated by the engine is bal-
anced by the energy dissipated by the damping. We mea-
sure the amplitude of the steady state oscillation of the
ion in the z-direction by recording fluorescence images
with the ICCD camera, using an exposure time of 700 ns
which is much shorter than the axial oscillation period.
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We report the experimental realization of a single-atom heat engine. An ion is confined in a
linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and
cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct
measurements of the ion dynamics, we determine the thermodynamic cycles for various temperature
di↵erences of the reservoirs. We use these cycles to evaluate power P and e�ciency ⌘ of the engine,
obtaining up to P = 342 yJ and ⌘ = 2.8h, consistent with analytical estimations. Our results
demonstrate that thermal machines can be reduced to the ultimate limit of single atoms.

Heat engines have played a central role in our modern
society since the industrial revolution. Converting ther-
mal energy into mechanical work, they are ubiquitously
employed to generate motion, from cars to airplanes [1].
The working fluid of a macroscopic engine typically con-
tains of the order of 1024 particles. In the last decade,
dramatic experimental progress has lead to the miniatur-
ization of thermal machines down to the microscale, us-
ing microelectromechanical [2], piezoresistive [3] and cold
atom [4] systems, as well as single colloidal particles [5, 6]
and single molecules [7]. In his 1959 talk “There is plenty
of room at the bottom”, Richard Feynman already envi-
sioned tiny motors working at the atomic level [8]. How-
ever, to date no such device has been built.

Here we report the realization of a single-atom heat
engine whose working agent is an ion, held within a mod-
ified linear Paul trap. We use laser cooling and electric
field noise to engineer cold and hot reservoirs. We fur-
ther employ fast thermometry methods to determine the
temperature of the ion [9]. The thermodynamic cycle of
the engine is established for various temperature di↵er-
ences of the reservoirs, from which we deduce work and
heat, and thus power output and e�ciency. We addition-
ally show that the work produced by the engine can be
e↵ectively stored and used to drive an oscillator against
friction. Our device demonstrates the working principles
of a thermodynamic heat engine with a working agent re-
duced to the ultimate single particle limit, thus fulfilling
Feynman’s dream.

Trapped ions o↵er an exceptional degree of prepara-
tion, control and measurement of their parameters, al-
lowing for ground state cooling [10] and coupling to engi-
neered reservoirs [11]. Owing to their unique properties,
they have recently become invaluable tools for the in-
vestigation of quantum thermodynamics [12–17]. They
additionally provide an ideal setup to operate and char-
acterize a single particle heat engine.

In our experiment, a single 40Ca+ ion is trapped in a
linear Paul trap with a funnel-shaped electrode geome-
try, as shown in Fig. 1a [15]. The electrodes are driven

symmetrically at a radio-frequency voltage of 830Vpp

at 21MHz, resulting in a tapered harmonic pseudo-
potential [10] of the form U = (m/2)

P
i
!2

i
i2, where m

is the atomic mass and i 2 {x, y} denote the trap axes
as seen in Fig. 1a. The axial confinement is realized with
constant voltages on the two end-cap electrodes, resulting
in a trap frequency of !z/2⇡ = 81 kHz. The trap angle
✓ = 10� and the radial extent of the trap r0 = 1.1mm at
z = 0 characterize the geometry of the funnel. The re-
sulting radial trap frequencies !x,y decrease in the axial
z-direction as

!x,y =
!0x,0y

(1 + z tan ✓/r0)2
. (1)

The eigenfrequencies in the radial directions at the trap
minimum z = 0 are !0x/2⇡ = 447 kHz and !0y/2⇡ =
450 kHz, with the degeneracy lifted, but su�ciently close
to permit the approximation of cylindrical symmetry
with r2 = x2 + y2 and a mean radial trap frequency
!r. An additional set of outer electrodes is employed to
compensate for stray fields. The trapped ion is cooled
by a laser beam at 397 nm, which is red-detuned to the
internal electronic S1/2 � P1/2 transition [10], and the
resulting fluorescence is recorded by a rapidly-gated in-
tensified charge-coupled device (ICCD) camera.
The heating and cooling of the ion is designed such

that the ion thermalizes as if in contact with a thermal
reservoir. A cold bath interaction is realized by exposing
the ion to a laser cooling beam, leading to an equilibrium
temperature of TC = 3.4mK [9, 18]. A hot reservoir in-
teraction with finite temperature TH is designed by ad-
ditionally exposing the ion to white electric field noise.
The interplay of photon scattering and noise leads to a
thermal state of the ion at temperature T at any given
moment [9, 20, 21].
In our setup, heating and cooling act on the radial

degrees of freedom. The resulting time-averaged spatial
distribution of the thermal state is of the form,

⇠r(r,�, T ) =
1

2⇡�2
r

exp


�(r � r0)2

2�2
r

�
, (2)
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Simplifications of the “Otto description”

• Perfect separation of strokes where only work or only 
heat is exchanged.


• The time-dependent processes of switching on and off 
the contacts to the baths.



Pumping



Archimides  screw





Two operations

Pumping Generator

Work

Work



Charge pumping
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Single-Electron Pump Based on Charging Effects. 
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PACS. 73.400 - Tunnelling: general. 
PACS. 06.20H - Measurement standards and calibration. 
PACS. 73.40R - Metal-insulator-metal structures. 

Abstract. - We have designed and operated a device consisting of three nanoscale tunnel 
junctions biased below the Coulomb gap. Phase shifted r.f. voltages of frequency f applied to 
two gates upump~ one electron per cycle through the device. This is shown experimentally by 
plateaus in the current-voltage characteristic at Z = f ef, the sign of the current depending on 
the relative phase of the r.f. voltages and not on the sign of the bias voltage. 

Although electric charge is quantized in units of e ,  the current in usual electronic circuits 
behaves as the flow of a continuous fluid. Discrete charge carriers do not manifest 
themselves directly at this macroscopic level because the total charge that has passed 
through a given section of the circuit at one instant of time fluctuates by many charge 
quanta, both thermally and quantum-mechanically. In nanoscale tunnel junction arrays, 
however, recent theoretical and experimental investigations of charging effects 111 have led 
to experiments showing that electron transfers can be time-correlated [2] or even controlled 
one by one [3]. The latter work is based on a &umstile>) device consisting of a linear array of 
normal tunnel junctions in which the charge on the middle electrode is changed by a gate 
voltage applied through a capacitor. When the gate voltage alternates between properly 
chosen values, electrons are transferred through the array one per cycle, in the direction 
imposed by the bias voltage. The turnstile principle is a first step towards the achievement 
of a current standard based on charge transfer controlled at  the single-electron level. 

In this letter, we present a new type of single-charge controlling device which, in 
contrast with the turnstile, operates reversibly. The direction of electron transfer is not 
determined by the sign of the bias voltage but by the phase relationship between two gate 
voltages, which provide the energy required for the transfer. We have called this device an 
electron “pump. because it is the electron fluid analog of the peristaltic pump. The ability to 
reverse the current delivered by the pump is an important feature in the design of 
metrological experiments. 

A common basis to the turnstile and the pump principles is the blockade [l] of electron 
tunnelling in multi-junction circuits first demonstrated experimentally with two planar 
tunnel junctions by Fulton and Dolan[4]. Consider a general linear array built, like our 
device shown in fig. la), with N normal tunnel junctions of capacitance C(J3 and with true 
capacitors Ci connected to the metallic &lands. between junctions. A bias voltage source is 
connected to the end junctions and gate voltage sources are connected to the capacitors. The 
state of the circuit at a given instant of time is entirely determined by its electronic 
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U) 

C c‘ c 

Fig. 1. - Principle of reversible transfer of a single electron using a “pumps controlled by two gate 
voltages U1 and Uz. a) Circuit schematic: the nanoscale junctions constituting the pump are 
represented by double-box symbols. b)  Stable configuration diagram for V = 0 and C = C’ = C”. One 
turn around a triple point such as P or N ,  obtained by modulating the gate voltages by two phase- 
shifted signals, induces one electron to go around the circuit. 

The pump is operated by first applying d.c. voltages to the gates so as to place the circuit 
in the vicinity of a triple point, the bias voltage being much lower than the Coulomb gap 
voltage, which is given by el3C when C = C’ = Cf‘(’). Two periodic signals with the same 
frequency f but dephased by @ - x12 are then superimposed on the gate voltages. The circuit 
then follows a closed trajectory like the circle shown around point P in fig. lb). If the 
frequency f is low enough (f << (RC)-l), the system remains in the stable configuYation 
associated with its location in gate voltage space. This configuration changes along the 
trajectory when domain boundaries are crossed. Suppose that the initial island configuration 
is (0,O) and that the trajectory is followed counterclockwise. The circuit goes first from (0,O) 
to (1,O) by letting one electron tunnel through the leftmost junction. Then the island 
configuration changes to (0 , l )  when one electron goes through the central junction. Finally, 
the system returns to its initial island configuration (0,O) by letting one electron out through 
the rightmost junction. In a complete cycle one electron is transferred from the left end to 
the right end of the device. If the sense of rotation in gate voltage space is reversed, in 
practice by adding x to the phase shift @, the electron transfer will take place in the opposite 
direction. Note that the same original positive rotation around a type. triple point also 
produces a transfer in the opposite direction. In summary, these geometrical considerations 
show that for zero bias voltage V, two r.f. gate voltages induce a current I = ef around the 
circuit, provided that the d.c. gate voltages are set in the vicinity of a triple point. The 
direction of current is determined solely by the phase shift @ and the type of the triple point. 

As the voltage V is increased, electrons can still be pumped, even if V and I have opposite 
signs, provided that the trajectory followed in gate voltage space encloses the conduction 
regions. Numerical simulations have shown that regular electron transfers can persist up to 
one-fifth of the Coulomb gap voltage for an optimal r.f. amplitude. Co-tunnelling events 151, 
which provide the mechanism for transitions between nonneighbour configurations, are 
expected to slightly degrade the regularity of the pump. If the electrodes of the pump were 
in an ideal superconducting state with all electrons paired (no quasi-particle present), the 
same type of gate voltage modulation around a triple point of the pair configuration stability 

(l) The critical charge (see ref. [31) of each junction of the pump is found to be e/3 when c = C’ = C”. 



Scattering approach to parametric pumping
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A dc current can be pumped through a quantum dot by periodically varying two independent parameters X1
and X2 , like a gate voltage or magnetic field. We present a formula that relates the pumped current to the
parametric derivatives of the scattering matrix S(X1 ,X2) of the system. As an application we compute the
statistical distribution of the pumped current in the case of a chaotic quantum dot. @S0163-1829~98!52240-0#

An electron pump is a device that generates a d.c. current
between two electrodes that are kept at the same bias. In
recent years, electron pumps consisting of small semicon-
ductor quantum dots have received considerable experimen-
tal and theoretical attention.1–11 A quantum dot is a small
metal or semiconductor island, confined by gates, and con-
nected to the outside world via point contacts. Several dif-
ferent mechanisms have been proposed to pump charge
through such systems, ranging from a low-frequency modu-
lation of gate voltages in combination with the Coulomb
blockade1,2,11 to photon-assisted transport at or near a reso-
nance frequency of the dot.5–8 Their applicability depends on
the characteristic size of the system and the operation fre-
quency.
Most experimental realizations of electron pumps in semi-

conductor quantum dots made use of the principle of Cou-
lomb blockade. If the dot is coupled to the outside world via
tunneling point contacts, the charge on the dot is quantized,
and ~apart from degeneracy points! transport is inhibited as a
result of the high energy cost of adding an extra electron to
the dot. Pothier et al. constructed an electron pump that op-
erates at arbitrarily low frequency and with a reversible
pumping direction.2 The pump consists of two weakly
coupled quantum dots in the Coulomb blockade regime and
operates via a mechanism that closely resembles a peristaltic
pump: Charge is pumped through the double dot array from
the left to the right and electron-by-electron as the voltage
U1}sin(vt) of the left dot reaches its minima and maxima
before the voltage U2}sin(vt2f) of the right one.2 The
pumping direction can be reversed by reversing the phase
difference f of the two gate voltages.
A similar mechanism was proposed by Spivak, Zhou, and

Beal Monod for an electron pump consisting of single quan-
tum dot only.4 In this case a d.c. current is generated by
adiabatic variation of two different gate voltages that deter-
mine the shape of the nanostructure, or any other pair of
parameters X1 and X2 , like magnetic field or Fermi energy,
that modify the ~quantum mechanical! properties of the sys-
tem, see Fig. 1~a!. The magnitude of the current is propor-
tional to the frequency v with which X1 and X2 are varied
and ~for small variations! to the product of the amplitudes
dX1 and dX2 . The direction of the current depends on mi-
croscopic ~quantum! properties of the system, and need not
be known a priori from its macroscopic properties. As in the
case of the double-dot Coulomb blockade electron pump of
Ref. 2, the direction of the current in the single-dot paramet-

ric pump of Spivak et al.4 can be reversed by reversing the
phases of the parameters X1 and X2 . An important difference
between the two mechanisms is that a parametric electron
pump like the one in Ref. 4 does not require that the quantum
dot is in the regime of Coulomb blockade; it operates if the
dot is open, i.e., well coupled to the leads by means of bal-
listic point contacts. Experimentally, an electron pump in an
open quantum dot has been realized only very recently.12 A
measurement of the pumped current provides a promising
tool to study properties of open mesoscopic systems at zero
bias or at zero current.
In this paper we consider a parametric electron pump

through an open system in a scattering approach. Our main
result is a formula for the pumped current in terms of the
scattering matrix S(X1 ,X2). Such a formula is the analogue
of the Landauer formula, which relates the conductance G
5dI/dV of a mesoscopic system with two contacts to a sum
over the ~squares of! matrix elements Sab ,

dI5GdV5
2e2

h dV(
aP1

(
bP2

uSabu
2. ~1!

The indices a and b are summed over all channels in the left
and right contacts, respectively, and dV is the applied volt-
age. For the case of the parametric electron pump, where two
parameters X1 and X2 are varied periodically, dX1(t)
5dX1sin(vt) and dX2(t)5dX2sin(vt2f), we find that the
d.c. component of the current I depends on the derivatives
]Sab /]X ,

FIG. 1. ~a! A quantum dot with two parameters X1 and X2 that
describe a deformation of the shape of the quantum dot. As X1 and
X2 are varied periodically, a dc current I is generated. ~b! In one
period, the parameters X1(t) and X2(t) follow a closed path in
parameter space. The pumped current depends on the enclosed area
A in (X1 ,X2) parameter space.
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dI5
ve sinfdX1dX2

2p (
aP1

(
b
Im

]Sab*
]X1

]Sab

]X2
. ~2!

Like the Landauer formula, Eq. ~2! is valid for a phase co-
herent system at zero temperature and to ~bi!linear response
in the amplitudes dX1 and dX2 . @The nonlinear response is
given by Eq. ~8! below.# It captures both a classical contri-
bution to the current and the quantum interference correc-
tions. Quantum corrections can be important in the mesos-
copic regime, especially if there is no ‘‘classical’’
mechanism that dominates the pumping process.4,12 Equation
~2! is valid to first order in the frequency v . This is sufficient
if the period t52p/v is much larger than the time particles
spend inside the quantum dot. For such low frequencies, we
can assume that equilibrium is maintained throughout the
pumping process. The scattering matrix formula does not
capture effects of order v2 ~or higher! that rely on the exis-
tence of a nonequilibrium distribution inside the quantum
dot.4 The existence of a scattering approach to parametric
pumping allows us to borrow from the vast literature dealing
with scattering matrices of disordered and chaotic micro-
structures and their parameter dependence,13 and to directly
relate the pumped current to other transport properties like,
e.g., the conductance.
The system under consideration is shown schematically in

Fig. 1~a!. It consists of a quantum dot, coupled to two elec-
tron reservoirs by ballistic point contacts. The two electron
reservoirs are held at the same voltage. Two external param-
eters X1(t) and X2(t) of the dot are varied periodically, see
Fig. 1~a!. They can be, e.g., the voltage of a plunger gate,
parameters that characterize the shape, or a magnetic field.
The two point contacts, which have N channels at the Fermi
level EF , are labeled 1 and 2. The scattering matrix S of the
system has dimension 2N32N and is a function of the pa-
rameters X1 and X2 . Since the system is well coupled to the
leads, the charge is no longer quantized, the Coulomb block-
ade is lifted, and to a first approximation, we can use a pic-
ture of noninteracting electrons.14
The starting point of our theory is a formula due to Bütt-

iker, Thomas, and Prêtre15 for the current in the contacts 1
and 2 that results from an infinitesimal change of a param-
eter X: For a small and slow harmonic variation X(t)5X0
1dXveivt, the charge dQ(m) entering the cavity through
contact m (m51,2) reads as

dQ~m ,v!5e
dn~m !

dX dXv , ~3a!

dn~m !

dX 5
1
2p(

b
(

aPm
Im

]Sab

]X Sab* . ~3b!

The index a is summed from 1 to N for contact 1 and from
N11 to 2N for contact 2. The quantity dn(m)/dX is the
emissivity into contact m.15 Equation ~3! is valid to first order
in the frequency v and assumes that the scattering properties
follow the time-dependent potentials instantaneously. After
Fourier transformation one obtains

dQ~m ,t !5e
dn~m !

dX dX~ t !. ~4!

Similarly, for a simultaneous infinitesimal variation of two
parameters X1 and X2 , the emitted charge dQ(m ,t) through
contact m is (m51,2)

dQ~m ,t !5e
dn~m !

dX1
dX1~ t !1e

dn~m !

dX2
dX2~ t !. ~5!

Next, we consider a finite variation of both parameters X1
and X2 . The total charge emitted through contact m in one
period t52p/v is found from integration of Eq. ~5! to X1
and X2 , bearing in mind that the scattering matrix S and
hence the emissivities dn(m)/dX1 and dn(m)/dX2 are func-
tions of X1 and X2 ,

Q~m ,t!5eE
0

t
dtS

dn~m !

dX1
dX1
dt 1

dn~m !

dX2
dX2
dt D . ~6!

In one period, the pair of parameters X1(t) and X2(t) follows
a closed path in the (X1 ,X2) parameter space, see Fig. 1~b!.
The total charge expelled from the dot through contact m can
be rewritten as a surface integral over the area A enclosed by
the path in parameter space using Green’s theorem,

Q~m ,t!5eE
A
dX1dX2S

]

]X1
dn~m !

dX2
2

]

]X2
dn~m !

dX1
D .

Note that the surface area A, and hence the transported
charge, vanish, if the parameters X1 and X2 vary in phase, or
with a phase difference p . The surface area is maximal if
their phases differ by p/2. Substitution of Eq. ~3b! for the
emissivities yields

Q~m ,t!5
e
pEAdX1dX2(b (

aPm
Im

]Sab*
]X1

]Sab

]X2
. ~7!

Hence the d.c. current Im through contact m is given by

Im5
ive
4p2 (

aPm
E
A
dX1dX2@RX1,RX2#aa , ~8a!

RX52i
]S
]X S

†. ~8b!

One verifies that I152I2 , indicating that no charge is accu-
mulated. The response matrices RX1 and RX2 are hermitian
2N32N matrices. For the ~bi!linear response to the varia-
tions of the parameters X1 and X2 , Eq. ~8! simplifies to the
result ~2! above. Note that, since the parameters X1 and X2
are dimensionless, the current formula contains no factor h,
unlike the Landauer formula ~1!. Planck’s constant may
however appear in the typical scales for the parameter de-
pendence of the scattering matrix S(X1 ,X2).
Equation ~8! is the main result of this paper. It establishes

the link between the pumped current I and the parametric
derivatives of the scattering matrix S. Several qualitative ob-
servations can already be reached on the basis of Eq. ~8!.
First, for a phase coherent quantum system, the out-of-phase
variation of any pair of independent parameters will give rise
to a dc current to order v . Second, I is not quantized, unlike
in the case of the electron pumps that operate in the regime
of Coulomb blockade.2 Third, if the size of the variations
dX1(t)5dX1sin(vt) and dX2(t)5dX2sin(vt2f) is small
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possible applications of the PSCOF technol-
ogy to nonliquid crystalline areas. This tech-
nology should permit one to prepare sand-
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vice versa and self-supporting thin and flex-
ible displays. Fabrication of multilayer struc-
tures perpendicular to the substrate, for use in
switchable gratings and other diffractive op-
tics applications, is possible with the use of
masks during phase separation. Electrically
controllable LC microlenses, two-dimension-

al optical gratings, and other microstructures
have been prepared with the PSCOF method.
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An Adiabatic Quantum
Electron Pump

M. Switkes,1 C. M. Marcus,1* K. Campman,2 A. C. Gossard2

A quantum pumpingmechanism that produces dc current or voltage in response
to a cyclic deformation of the confining potential in an open quantum dot is
reported. The voltage produced at zero current bias is sinusoidal in the phase
difference between the two ac voltages deforming the potential and shows
random fluctuations in amplitude and direction with small changes in external
parameters such as magnetic field. The amplitude of the pumping response
increases linearly with the frequency of the deformation. Dependencies of
pumping on the strength of the deformations, temperature, and breaking of
time-reversal symmetry were also investigated.

Over the past decade, research into the elec-
trical transport properties of mesoscopic sys-
tems has provided insight into the quantum
mechanics of interacting electrons, the link
between quantum mechanics and classical
chaos, and the decoherence responsible for
the transition from quantum to classical phys-
ics (1, 2). Most of this research has focused
on transport driven directly by an externally
applied bias. We present measurements of an
adiabatic quantum electron pump, exploring
a class of transport in which the flow of
electrons is driven by cyclic changes in the
wave function of a mesoscopic system.

A deformation of the confining potential of
a mesoscopic system that is slow compared
with the relevant energy relaxation times
changes the wave function of the system while
maintaining an equilibrium distribution of elec-
tron energies. In systems connected to bulk
electron reservoirs by open leads supporting
one or more transverse quantum modes, the
wave function extends into the leads and these
adiabatic changes can transport charge to or
from the reservoirs. A periodic deformation that
depends on a single parameter cannot result in
net transport; any charge that flows during the
first half-period will flow back during the sec-
ond. On the other hand, deformations that de-

pend on two or more parameters changing in a
cyclic fashion can break this symmetry and, in
general, can provide net transport. This trans-
port mechanism was originally described by
Thouless (3) for isolated (or otherwise gapped)
systems at zero temperature. The theory has
been extended to open systems at finite temper-
ature (4–6). Here, we present an experimental
investigation of this phenomenon.

Before we characterize the adiabatic
quantum pump in the present experiment, it is
useful to recall other mechanisms that pro-
duce a dc response to an ac driving signal in
coherent electronic systems. One mechanism
relies on absorption of radiation to create a
nonequilibrium distribution of electron ener-
gies, which leads to photon-assisted tunnel-
ing (7) in systems with asymmetric tunneling
leads and a mesoscopic photovoltaic effect
(8) in open systems. A second mechanism,
the classical analog of the quantum pumping
measured in this experiment, has been ob-
served in single (9) and multiple (10) quan-
tum dots in which transport is dominated by
the Coulomb blockade (2). In this regime, the
capacitive energy needed to add a single elec-
tron to the system is greater than the temper-
ature and applied bias, blockading transport
through the dot. Electrons can be added one
by one by changing the potential of the iso-
lated dot relative to the reservoirs. Each cycle
begins by isolating the system from one elec-
tron reservoir—for example, by increasing
the height of one tunneling barrier—while
forcing one or more electrons to enter from

the other reservoir by changing the potential
in the system. The cycle is continued by
reversing the configuration to isolate the sys-
tem from the reservoir that supplied the elec-
trons and forcing the extra electrons out into
the other reservoir, yielding a net flow quan-
tized in units of the electron charge times the
frequency applied. This cycle requires two ac
control voltages with a phase difference be-
tween them. The magnitude and direction of
the pumping are determined by these volt-
ages; there are no random fluctuations due to
quantum effects. The control and quantiza-
tion of current provided by the Coulomb
blockade pump has motivated its develop-
ment for use as a precision current standard
[see, for example, (11)].

Adiabatic quantum pumping in open struc-
tures also requires two ac voltages and produces
a response that is linear in the ac frequency.
However, because the system is open to the
reservoirs, Coulomb blockade is absent and the
pumping response is not quantized. Quantum
pumping is driven not by cyclic changes to
barriers and potentials, but by shape changes in
the confining potential or other parameters that
affect the interference pattern of the coherent
electrons in the device.

Many aspects of adiabatic quantum pump-
ing can be understood in terms of the emis-
sivity, dn/dX, which characterizes the number
of electrons n entering or leaving the device
in response to a small change in some param-
eter !X, such as a distortion of the confining
potential (12). The change in the charge of
the dot is thus !Q " e¥!Xidn/dXi. Integrating
along the closed path in the i-dimensional
space of parameters Xi defined by the pump-
ing cycle then yields the total charge pumped
during each cycle (6). For the particular case
of pumping with two parameters (for exam-
ple, shape distortions at two locations on the
dot), the line integral can be written as an
integral over the surface enclosed by the path,
Q # $%&dX1dX2 (6), where & depends on the
emissivities at points in parameter space en-
closed by the path. Because changes in exter-
nal parameters rearrange the electron interfer-
ence pattern in the device, emissivities fluc-
tuate randomly as parameters are changed,
similar to the well-known mesoscopic fluctu-
ations of conductance in coherent samples.
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possible applications of the PSCOF technol-
ogy to nonliquid crystalline areas. This tech-
nology should permit one to prepare sand-
wiches of LCs between polymer films and
vice versa and self-supporting thin and flex-
ible displays. Fabrication of multilayer struc-
tures perpendicular to the substrate, for use in
switchable gratings and other diffractive op-
tics applications, is possible with the use of
masks during phase separation. Electrically
controllable LC microlenses, two-dimension-

al optical gratings, and other microstructures
have been prepared with the PSCOF method.
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A quantum pumpingmechanism that produces dc current or voltage in response
to a cyclic deformation of the confining potential in an open quantum dot is
reported. The voltage produced at zero current bias is sinusoidal in the phase
difference between the two ac voltages deforming the potential and shows
random fluctuations in amplitude and direction with small changes in external
parameters such as magnetic field. The amplitude of the pumping response
increases linearly with the frequency of the deformation. Dependencies of
pumping on the strength of the deformations, temperature, and breaking of
time-reversal symmetry were also investigated.

Over the past decade, research into the elec-
trical transport properties of mesoscopic sys-
tems has provided insight into the quantum
mechanics of interacting electrons, the link
between quantum mechanics and classical
chaos, and the decoherence responsible for
the transition from quantum to classical phys-
ics (1, 2). Most of this research has focused
on transport driven directly by an externally
applied bias. We present measurements of an
adiabatic quantum electron pump, exploring
a class of transport in which the flow of
electrons is driven by cyclic changes in the
wave function of a mesoscopic system.

A deformation of the confining potential of
a mesoscopic system that is slow compared
with the relevant energy relaxation times
changes the wave function of the system while
maintaining an equilibrium distribution of elec-
tron energies. In systems connected to bulk
electron reservoirs by open leads supporting
one or more transverse quantum modes, the
wave function extends into the leads and these
adiabatic changes can transport charge to or
from the reservoirs. A periodic deformation that
depends on a single parameter cannot result in
net transport; any charge that flows during the
first half-period will flow back during the sec-
ond. On the other hand, deformations that de-

pend on two or more parameters changing in a
cyclic fashion can break this symmetry and, in
general, can provide net transport. This trans-
port mechanism was originally described by
Thouless (3) for isolated (or otherwise gapped)
systems at zero temperature. The theory has
been extended to open systems at finite temper-
ature (4–6). Here, we present an experimental
investigation of this phenomenon.

Before we characterize the adiabatic
quantum pump in the present experiment, it is
useful to recall other mechanisms that pro-
duce a dc response to an ac driving signal in
coherent electronic systems. One mechanism
relies on absorption of radiation to create a
nonequilibrium distribution of electron ener-
gies, which leads to photon-assisted tunnel-
ing (7) in systems with asymmetric tunneling
leads and a mesoscopic photovoltaic effect
(8) in open systems. A second mechanism,
the classical analog of the quantum pumping
measured in this experiment, has been ob-
served in single (9) and multiple (10) quan-
tum dots in which transport is dominated by
the Coulomb blockade (2). In this regime, the
capacitive energy needed to add a single elec-
tron to the system is greater than the temper-
ature and applied bias, blockading transport
through the dot. Electrons can be added one
by one by changing the potential of the iso-
lated dot relative to the reservoirs. Each cycle
begins by isolating the system from one elec-
tron reservoir—for example, by increasing
the height of one tunneling barrier—while
forcing one or more electrons to enter from

the other reservoir by changing the potential
in the system. The cycle is continued by
reversing the configuration to isolate the sys-
tem from the reservoir that supplied the elec-
trons and forcing the extra electrons out into
the other reservoir, yielding a net flow quan-
tized in units of the electron charge times the
frequency applied. This cycle requires two ac
control voltages with a phase difference be-
tween them. The magnitude and direction of
the pumping are determined by these volt-
ages; there are no random fluctuations due to
quantum effects. The control and quantiza-
tion of current provided by the Coulomb
blockade pump has motivated its develop-
ment for use as a precision current standard
[see, for example, (11)].

Adiabatic quantum pumping in open struc-
tures also requires two ac voltages and produces
a response that is linear in the ac frequency.
However, because the system is open to the
reservoirs, Coulomb blockade is absent and the
pumping response is not quantized. Quantum
pumping is driven not by cyclic changes to
barriers and potentials, but by shape changes in
the confining potential or other parameters that
affect the interference pattern of the coherent
electrons in the device.

Many aspects of adiabatic quantum pump-
ing can be understood in terms of the emis-
sivity, dn/dX, which characterizes the number
of electrons n entering or leaving the device
in response to a small change in some param-
eter !X, such as a distortion of the confining
potential (12). The change in the charge of
the dot is thus !Q " e¥!Xidn/dXi. Integrating
along the closed path in the i-dimensional
space of parameters Xi defined by the pump-
ing cycle then yields the total charge pumped
during each cycle (6). For the particular case
of pumping with two parameters (for exam-
ple, shape distortions at two locations on the
dot), the line integral can be written as an
integral over the surface enclosed by the path,
Q # $%&dX1dX2 (6), where & depends on the
emissivities at points in parameter space en-
closed by the path. Because changes in exter-
nal parameters rearrange the electron interfer-
ence pattern in the device, emissivities fluc-
tuate randomly as parameters are changed,
similar to the well-known mesoscopic fluctu-
ations of conductance in coherent samples.
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When the pumping parameters vary by less
than the correlation length of the fluctuations
of emissivity, ! remains essentially constant
throughout the pumping cycle and the total
charge pumped per cycle depends only on the
area enclosed by the path in parameter space,
". These straightforward observations ex-
plain many of the qualitative features of our
data.

We made measurements of adiabatic quan-
tum pumping in three similar semiconductor
quantum dots defined by electrostatic gates pat-
terned on the surface of a GaAs-AlGaAs het-
erostructure using standard electron-beam li-
thography techniques. Negative voltages (#$1
V) applied to the gates formed the dot by
depleting the two-dimensional electron gas at
the heterointerface 56 nm (device 1) or 80 nm
(devices 2 and 3) below the surface. All three
dots had lithographic areas adot # 0.5 %m2,
giving an average single particle level spacing
& ' 2()2/m*adot # 13 %V (*150 mK), where
) is Planck’s constant (h) divided by 2( and m*
is the effective electron mass. The three devices
showed similar behavior, and most of the data
presented here are for device 3. In the micro-
graph of device 1 (Fig. 1C), the three gates
marked with red circles control the conductanc-
es of the point-contact leads that connect the dot

to electronic reservoirs. Voltages on these gates
were adjusted so that each lead transmitted N #
2 transverse modes, giving an average conduc-
tance through the dot g # 2e2/h. The remaining
two gates were used to create both periodic
shape distortions necessary for pumping and
static shape distortions that allow ensemble av-
eraging (13, 14).

Except where noted, measurements were
made at a pumping frequency f ' 10 MHz,
base temperature T ' 330 mK, dot conduc-
tance g # 2e2/h * (13 kilohm)$1, and ac gate
voltage Aac ' 80 mV peak-to-peak. For com-
parison, the gate voltage necessary to change
the electron number in the dot by one is #5
mV. Measurements were carried out over a
range of magnetic field, B, from 30 to 80 mT,
which allows several quanta of magnetic
flux, +0 ' h/e, to penetrate the dot (+0/adot #
10 mT) while keeping the classical cyclotron
radius much larger than the dot size (rcyc[%m]
# 80/B[mT]).

The general characteristics of quantum
pumping, including antisymmetry about phase
difference , ' (, sinusoidal dependence on ,
(for small amplitude pumping), and random
fluctuations of amplitude as a function of per-
pendicular magnetic field, are illustrated in Fig.
1. The pumping amplitude is quantified by the

values A0 and B0, which are extracted from fits
of the form Vdot(,) ' A0 sin , - B0 (shown as
dotted lines in Fig. 1B).

Because pumping fluctuations extend on
both sides of zero (pumping occurs in either
direction) with equal likelihood for a given ,,
.A0/ is small and the pumping amplitude is
instead characterized by 0(A0), the standard
deviation of A0. For example, the data in Fig.
2B yield .A0/ ' 0.01 %V and the standard
deviation 0(A0) ' 0.4 %V. Values of 0(A0)
(Figs. 2, 3, and 4) are based on 96 independent
configurations over B, Vg1, and Vg2 (Fig. 2B).

The dependence of the pumping ampli-
tude 0(A0) on pumping frequency is linear
(Fig. 2). For the above parameters, the linear
dependence has a slope of 40 nV/MHz. Be-
cause the dot has conductance g # 2e2/h, this
voltage compensates a pumped current of 3
pA/MHz, or about 20 electrons per pump
cycle. The dependence of 0(A0) on the pump-
ing strength Aac (Fig. 3) shows that for weak
pumping, Aac 1 80 mV, 0(A0) is proportional
to Aac

2 , as expected from the simple loop-area
argument described above. For stronger
pumping, 0(A0) increases more slowly than
Aac

2 , with a crossover from weak to strong

Fig. 1. (A) Pumped dc voltage Vdot as a function of
the phase difference , between two shape-dis-
torting ac voltages and magnetic field B. Note the
sinusoidal dependence on , and the symmetry
about B' 0 (dashed white line). (B) Plot of Vdot(,)
for several different magnetic fields (solid sym-
bols) along with fits of the form Vdot ' A0 sin , -
B0 (dashed curves). (C) Schematic of the measure-
ment set-up and micrograph of device 1. The bias
current is set to 0 for pumping measurements.

Fig. 2. (A) Standard deviation of the pumping
amplitude, 0(A0), as a function of ac pumping
frequency. The slope is #40 nV/MHz for both
device 2 (solid symbols) and 3 (open symbols).
Circular symbols represent a second set of data
taken for device 3. (B) A typical data set cor-
responding to one point in (A), along with fit
parameters A0 (open bars) and B0 (solid bars)
for each configuration.
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We develop the Floquet scattering theory for quantum-mechanical pumping in mesoscopic conductors. The
nonequilibrium distribution function, the dc charge, and heat currents are investigated at arbitrary pumping
amplitude and frequency. For mesoscopic samples with a discrete spectrum we predict a sign reversal of the
pumped current when the pump frequency is equal to the level spacing in the sample. This effect allows us to
measure the phase of the transmission coefficient through the mesoscopic sample. We discuss the necessary
symmetry conditions !both spatial and temporal" for pumping.

DOI: 10.1103/PhysRevB.66.205320 PACS number!s": 72.10.!d, 73.23.!b, 73.40.Ei

I. INTRODUCTION
Quantum charge pumping1–27 is currently of considerable

interest. An experiment by Switkes et al.1 demonstrated that
a phase coherent mesoscopic system subjected to a cyclic
two-parameter perturbation can produce a directed current.
Coherent quantum pumping is a consequence of the inter-

ference of energetically different traversal paths made pos-
sible by an oscillating scatterer. The ratio of the oscillation
frequency # to the inverse time taken for carriers to traverse
the sample, $T

!1 , defines the operational regime of a
pump.28–30 Brouwer2 gave an elegant formulation of adia-
batic (#"$T

!1) quantum pumping that is based on the scat-
tering matrix approach to low-frequency ac transport in
phase coherent mesoscopic systems developed by Büttiker,
Thomas, and Prêtre.3 This approach leads naturally to a geo-
metrical description of adiabatic quantum pumping.2,12–17
The theory predicts that the charge pumped during a cycle
depends on the area enclosed by the path in the scattering
matrix parameter space. A less formal but more physical pic-
ture of an adiabatic quantum pump appeals to both quantum-
mechanical interference and photon-assisted transport.18,23
The same processes are important for a nonadiabatic
(##$T

!1) pump.18,31–33 These discussions emphasize the en-
ergetics of the carrier traversal process.
It is the purpose of this work to develop a theory that

permits the description of both adiabatic and nonadiabatic
regimes on the same footing and allows a simple physical
interpretation. To this end we extend the approach of Ref. 23
to the case of large frequencies and large pumping ampli-
tudes. We apply the Floquet scattering theory,32–36 which
deals with the scattering matrix that is dependent on two
energies !incident and outgoing". This approach leads to ex-
pressions for the quantities of interest in terms of the side-
bands of particles exiting the pump. The sidebands29 corre-
spond to particles that have gained or lost one or several
modulation quanta %# . This approach is complementary to
discussions based on the scattering matrix that is dependent
on two times.15,24,25
The paper is organized as follows. In Sec. II the general

approach to the kinetics of quantum pumps based on the
Floquet scattering theory is presented. In Sec. III we apply
the general results to the adiabatic case. In Sec. IV we cal-

culate the Floquet scattering matrix for a particular
model—an oscillating double-barrier potential—and present
the results of numerical calculations of the pumped charge
and the heat currents in both adiabatic and nonadiabatic re-
gimes. We conclude in Sec.V.

II. GENERAL APPROACH

We consider scattering3,37,38 of an incoming flow of elec-
trons with energy E at a scatterer that oscillates in time with
frequency # . During the interaction with the oscillating
scatterer29 electrons can gain or lose energy quanta %# .
Hence the outgoing state is characterized by the set of ener-
gies En , n$0,%1,%2, . . . ,

En$E&n%# . !1"

This is a Floquet state.
According to the Floquet theorem the energy ladder, Eq.

!1", gives the full set of possible energies for outgoing par-
ticles !see e.g., Ref. 32 and 35". Thus to describe scattering
due to an oscillating scatterer we can use the Floquet scat-
tering matrix ŜF . The matrix element SF ,&'(En ,E) is the
quantum-mechanical amplitude for an electron with energy E
entering the scatterer through lead ' to leave the scatterer
through lead & having absorbed (n'0) or emitted (n(0)
energy quanta !n!%# . The Greek letters & ,' number the
leads connecting the sample to Nr reservoirs.
We note that the negative values En(0 correspond to

bound states near the oscillating scatterer. These states influ-
ence scattering into the propagating (En'0) states but they
do not directly contribute to the current.
Current conservation implies that the submatrix ŜF

(p) of
the Floquet scattering matrix !corresponding to propagating
modes only" is a unitary matrix:

ŜF
(p)†ŜF

(p)$ ŜF
(p)ŜF

(p)†$ Î . !2"

In particular, if a current with flux 1 and energy E enters the
scatterer through lead ' , then current conservation implies

(
&

(
En'0

!SF ,&'!En ,E "!2$1. !3"
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Tunneling revisited:  the scattering matrix

Slightly different way of formulating transmission problem.

Instead of M matrices relating amplitudes on different sides of 
sample, use S matrix - relates incoming amplitudes to outgoing
ones.
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Ω

E
En = E + nℏΩ

En = E + nℏΩ

Another useful condition follows from the fact that if all
incoming propagating (En!0) channels are full, then each
outgoing channel also has to be full:

!
"

!
En!0

!SF ,#"$E ,En%!2"1. $4%

Note that usually the Floquet energy E is determined within
the interval 0&E#'( . However, for our problem, it is con-
venient not to reduce the discrete set of En to this interval
and to keep E as the actual energy of incident $or outgoing%
particles.
Because of Eq. $2% we can express the annihilation opera-

tor b̂ for outgoing particles in the lead # in terms of annihi-
lation operators â for incoming particles in leads "
"1,2, . . . ,Nr as follows:23,38

b̂#$E %"!
"

!
En!0

SF ,#"$E ,En%â"$En%. $5%

The operators â#(E) obey the following anticommutation
relations:

) â#
† $E %, â"$E!%*"+#"+$E$E!%.

Using Eqs. $2% and $5% we see that the operators b̂#(E) obey
the same relations.
Note that above expressions correspond to single $trans-

verse% channel leads and spinless electrons. For the case of
many-channel leads each lead index (# , " , etc.% includes a
transverse channel index and any repeating lead index im-
plies implicitly a summation over all the transverse channels
in the lead. Similarly an electron spin can be taken into ac-
count.
Now we calculate the distribution function f (out)(E)#

",b̂#
† (E) b̂#(E)- for electrons leaving the scatterer through

the lead # . Here ,•••- means quantum-statistical averaging.
Taking into account Eq. $5% we obtain

f #
(out)$E %"!

"
!
En!0

!SF ,#"$E ,En%!2 f "
(in)$En%. $6%

Here f "
(in)(En)", â"

† (E) â"(E)- is the distribution function
for electrons entering the scatterer through lead " .

A. Directed charge currents

Using the distribution function f #
(out)(E) for outgoing par-

ticles and f #
(in)(E) for incoming ones we can find the directed

current I# in the lead # far from the scatterer,23

I#"
e
h"0

.

dE/ f #
(out)$E %$ f #

(in)$E %0. $7%

The current directed from the scatterer towards the reservoir
is positive by definition. Substituting Eq. $6% into the equa-
tion above, using Eq. $4%, and making the shift E→E
$n'( , we find

I#"
e
h"0

.

dE!
"

!
En!0

!SF ,#"$En ,E %!2) f "
(in)$E %$ f #

(in)$En%* .

$8%
Here !En!0 means a sum over those n $positive and nega-
tive% for which En"E%n'(!0.
Another useful representation for the directed current can

be obtained if we use Eq. $3% and make the shift E→E
$n'( in f #

(out)(E) in Eq. $7%. As a result we obtain

I#"
e
h"0

.

dE !
"1#

!
En!0

/!SF ,#"$En ,E %!2 f "
(in)$E %

$!SF ,"#$En ,E %!2 f #
(in)$E %0. $9%

From this expression for the directed current it follows that
only transmission #1" $not reflection #"") contributes to
the current. In addition Eq. $9% can help us to consider the
effect of time-reversal symmetry $TRS% on the pumped cur-
rent.
On the one hand, the time reversal t→$t $TR% inter-

changes incoming and outgoing channels

)SF ,#"$En ,E %* (TR)"SF ,"#$E ,En%.

Hence if the TRS is present, then Eq. $9% reads

I#
(TRS)"

e
h"0

.

dE f 0$E % !
"1#

!
En!0

) !SF ,#"$En ,E %!2

$!SF ,#"$E ,En%!2* . $10%

In the above equation $in accordance with the usual pump
setup% we suppose that incoming electrons in all the channels
are described by the same Fermi distribution function with
temperature T and electrochemical potential 2:

f #
(in)$E %" f 0$E %3

1

1%exp# E$2

kBT
$ .

Generally, the Floquet scattering matrix elements for
transmission with incident energy E to En is not equal to the
transmission from En to E,

SF ,#"$En ,E %1SF ,#"$E ,En%.

From this we can conclude that even a pump with TRS can
generate a directed current. If these two scattering ampli-
tudes are not equal, there exists the possibility of empty
states deep below the Fermi surface.39,40 In this case interac-
tion and inelastic effects11 can be expected to be especially
important.
However, if the scattering matrix is energy independent of

the scale of the order of '( ,

SF ,#"$En ,E %4SF ,#"$E %,

then the scatterer with TRS can not produce a dc current. The
last circumstance is especially important for the adiabatic
case (→0, since the adiabatic scattering matrix, Eq. $16%,
satisfies the above condition.
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We present the relation between the Floquet scattering matrix and the nonequilibrium Green’s function
formalisms to transport theory in noninteracting electronic systems in contact to reservoirs and driven by
time-periodic fields. We present a translation formula that expresses the Floquet scattering matrix in terms of
a Fourier transform of the retarded Green’s function. We prove that such representation satisfies the funda-
mental identities of transport theory. We also present the “adiabatic” approximation to the dc current in the
language of the Keldysh formalism.
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I. INTRODUCTION

Recently, there has been increasing theoretical and experi-
mental activity around quantum transport phenomena in-
duced by time-dependent fields. Pumping phenomena in me-
soscopic systems constitutes a very interesting case, where
periodic out-of-phase potentials deform the gates of semi-
conductor structures allowing for the generation of dc cur-
rents even in the absence of a static bias.1–14

The scattering matrix approach and Keldysh nonequilib-
rium Green’s function technique are the most powerful for-
malisms in the theory of quantum transport. Recently, the
generalization of the scattering !S" matrix theory to time-
periodic transport phenomena in an energy representation
has been formulated,15–17 while an alternative treatment in a
time representation has been proposed in Refs. 18–20.
Keldysh formalism as a theoretical tool to investigate time-
dependent transport phenomena in mesoscopic systems has
been introduced some time ago21,22 and has been employed
to study problems such as ac-transport through quantum
dots23 and superlattices,24 Josephson junctions,25,26 and quan-
tum pumps.27,28 Recently a practical formulation to treat
problems with harmonically time-dependent potentials has
been presented and used to investigate quantum transport in
a mesoscopic ring threaded by a time-dependent flux29 and
systems with ac potentials.30,31 Other formalisms to describe
quantum transport in the presence of time-periodic fields are
based in a modified transfer matrix approach32 and in the
Floquet representation of the Hamiltonian with the introduc-
tion of non-Hermitian dynamics for the wave function propa-
gation, in order to represent dissipative effects.33–37

The scattering matrix formalism is basically a single-
particle approach. Therefore, it cannot be directly applied to
systems described by Hamiltonians containing many-particle
interactions. The theoretical framework in which Keldysh
formalism is based is exactly the opposite one, namely, the
systematic treatment of many-particle interacting systems.
This formalism is, however, also adequate to investigate
transport phenomena through mesoscopic systems even in
the case that many-body interactions do not play a relevant
role. The reason is that the effect of the environment, in

particular, the leads and reservoirs to which the mesoscopic
system is connected, are suitably represented in terms of self-
energies. In the description of quantum transport in systems
of noninteracting electrons, the agreement between both for-
malisms is expected to be the rule. In the context of station-
ary transport, the equivalence between the two approaches
was pointed out by Fisher and Lee.38

An important experimental situation corresponds to the
case of slowly oscillating driving fields. The low frequency
regime is sometimes loosely referred to as “adiabatic.” This
word stems from the Greek word “a-diabatos,” which means
“not passable.” Traditionally, in theoretical physics, this term
is employed when an isolated or closed quantum mechanical
system is perturbed by a time-dependent Hamiltonian in such
a way that the eigenstates do not mix as time evolves. This
idea cannot be trivially exported to describe a quantum sys-
tem coupled to an environment where the spectrum is con-
tinuum and concepts such as energy levels are not well de-
fined. In the framework of open quantum systems, the term
“adiabatic” is sometimes understood as synonymous of low
frequency behavior while it is also sometimes employed to
define a description where the variable t in the time-
dependent piece of the Hamiltonian is considered as a frozen
parameter. An important number of works have been devoted
to investigate quantum transport in pumps within the low-
frequency regime. In particular, an adiabatic approximation
to the Floquet scattering matrix has been introduced5,6,13,15–17

which, in practice, allows for the evaluation of the contribu-
tion to the pumped dc current that behaves linearly in the
driving frequency.

The aim of this work is twofold. On one hand, we show
that, for noninteracting quantum systems driven by time-
periodic fields, in contact to static reservoirs with arbitrary
densities of states, or with oscillating reservoirs described by
smooth densities of states, it is possible to establish a trans-
parent and complete dictionary between the Floquet scatter-
ing matrix approach of Refs. 15–17 and the Keldysh Green’s
function treatment of Ref. 30. The second goal of this work
is to formulate an adiabatic approximation, analogous to the
one used in scattering matrix formalism, in the language of
nonequilibrium Green’s functions.
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Introduction.—Popular culture has long been fascinated
with microscopic and nanoscopic motors. Perhaps best
known is the contest announced by Richard Feynman,
who promised a $1000 prize to the developer of an engine
that fits a cube of sides 1=64’’ [1]. While this feat was
carried out shortly thereafter, in 1960, and did not produce
an intellectual breakthrough, Feynman’s contest has con-
tinued to provide tremendous inspiration to the field of
nanotechnology. A prototypical nanomotor was unveiled
in 2003, using tiny gold leaves mounted on multiwalled
carbon nanotubes, with the carbon layers themselves car-
rying out the motion [2]. The motor was driven through ac
actuation and basically relied on classical physics for its
operation. As the dimensions of motors are reduced, how-
ever, it is natural to expect that quantum mechanics could
be used to operate and to optimize nanomotors. In fact,
cold-atom-based ac-driven quantum motors have been
explored in Refs. [3,4].

Nanomotors can also be actuated by dc driving [5–7].
A general strategy toward realizing a dc nanoscale motor is
based on operating an electron pump in reverse. Consider
an electron pump in which the periodic variation of
parameters (such as shape, gate voltage, or tunneling
strength) originates from the adiabatic motion of, say, a
mechanical rotor degree of freedom. To operate this pump
as a motor, an applied bias voltage produces a charge
current through the pump which, in turn, exerts a force
on the mechanical rotor. The existence of quantum pumps
[8,9] suggests that by this operating principle, quantum
mechanics can be put to work in dc-driven nanomotors.
Here, we develop a theory of such adiabatic quantum
motors, expressing the work performed per cycle in terms
of characteristics of the pump on which the motor relies
and discussing the efficiency of quantum motors in general
terms.

Our theory relies on progress in the understanding of
adiabatic reaction (or current-induced) forces [6,10–13]

which applies when the mechanical motor degree of free-
dom is slow compared to electronic time scales and can
be treated as classical. Conventionally, adiabatic reaction
forces acting on the slow degree of freedom are considered
for closed quantum systems [14]. This has recently been
extended to situations where the fast degrees of freedom
constitute a quantum mechanical scattering problem and
thus to mesoscopic conductors [11–13]. The resulting
expressions for the reaction forces in terms of the scatter-
ing matrix of the mesoscopic conductor allow one to
explore the relations to quantum pumping in general terms.
Before embarking on a general discussion, we sketch

two conceptual examples of adiabatic quantum motors
in Fig. 1. One motor is based on a chaotic quantum dot
operated as a pump [8,9], as illustrated in Fig. 1(a). In
this motor, the time-dependent gate voltages varying the
shape of the quantum dot are provided by a periodic set
of charges situated around the rim of a wheel which
approach and modify the quantum dot in two locations.
A current flowing through the quantum dot will then
produce a rotation of the wheel. Alternatively, we could
base a quantum motor on a Thouless pump. A schematic of
such a motor is shown in Fig. 1(b). A single-channel
quantum wire is located next to a conveyor belt with

(a) (b)

FIG. 1. Generic adiabatic quantum motors building on (a) a
quantum pump based on a chaotic quantum dot and (b) a
Thouless pump. When a voltage is applied to the pump, the
current ‘‘turns the wheel’’ and makes the phase angle ! wind.
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Here, we develop a theory of such adiabatic quantum
motors, expressing the work performed per cycle in terms
of characteristics of the pump on which the motor relies
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expressions for the reaction forces in terms of the scatter-
ing matrix of the mesoscopic conductor allow one to
explore the relations to quantum pumping in general terms.
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operated as a pump [8,9], as illustrated in Fig. 1(a). In
this motor, the time-dependent gate voltages varying the
shape of the quantum dot are provided by a periodic set
of charges situated around the rim of a wheel which
approach and modify the quantum dot in two locations.
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Figure 1: (Color online) Schematic setup. A nanomagnet
with magnetic moment M couples to a Kramers pair of edge
states of a quantum spin Hall insulator. The effective spin
current produces a spin-transfer toque and the magnetic mo-
ment precesses.

Markus Büttiker developed Landauer’s vision of
quantum coherent transport as a scattering prob-
lem into a theoretical framework [10, 11] and ap-
plied this scattering theory of quantum transport
to an impressive variety of phenomena. These ap-
plications include Aharonov-Bohm oscillations [12],
shot noise and current correlations [11, 13, 14], as
well as edge-state transport in the integer Hall ef-
fect [15] and topological insulators [16]. Frequently,
Büttiker’s predictions based on scattering theory
provided reference points with which other theo-
ries – such as the Keldysh Green-function formal-
ism [17, 18, 19, 20] or master equations [21] – sought
to make contact.

In the present context, it is essential that scat-
tering theory also provides a natural framework to
study quantum coherent transport in systems un-
der time-dependent driving. For adiabatic driving,
Büttiker’s work with Thomas and Prêtre [22] was
instrumental in developing a description of adia-
batic quantum pumping [4] in terms of scattering
theory [23, 24, 25, 26] which provided a useful back-
drop for later experiments [27, 28, 29, 30, 31]. Be-
yond the adiabatic regime, Moskalets and Büttiker
combined the scattering approach with Floquet the-
ory to account for periodic driving [32]. These
works describe adiabatic quantum transport as a
limit of the more general problem of periodic driv-
ing and ultimately triggered numerous studies on
single-particle emitters and quantum capacitors (as
reviewed by Moskalets and Haack in this volume

[33]).
The basic idea of the adiabatic quantum mo-

tor [5] is easily introduced by analogy with the
Archimedes screw, a device consisting of a screw
inside a pipe. By turning the screw, water can be
pumped against gravity. This is a classical analog of
a quantum pump in which electrons are pumped be-
tween reservoirs by applying periodic potentials to
a central scattering region. Just as the Archimedes
pump can pump water against gravity, charge can
be quantum pumped against a voltage. In addi-
tion, the Archimedes screw has an inverse mode
of operation as a motor: Water pushed through the
device will cause the screw to rotate. The adiabatic
quantum motor is a quantum analog of this mode
of operation in which a transport current pushed
through a quantum coherent conductor induces uni-
directional motion of a classical degree of freedom
such as the rotations of a helical molecule.

The theory of adiabatic quantum motors [5, 34]
exploits the assumption that the motor degrees of
freedom – be they mechanical or magnetic – are
slow compared to the electronic degrees of freedom.
In this adiabatic regime, the typical time scale of
the mechanical dynamics is large compared to the
dwell time of the electrons in the interaction region
between motor and electrical degrees of freedom. In
this limit, the dynamics of the two degrees of free-
dom can be discussed in a mixed quantum-classical
description. The motor dynamics is described in
terms of a classical equation of motion, while a
fully quantum-coherent description is required for
the fast electronic degrees of freedom.

From the point of view of the electrons, the mo-
tor degrees of freedom act as ac potentials which
pump charge through the conductor. Conversely,
the backaction of the electronic degrees of freedom
enters through adiabatic reaction forces on the mo-
tor degrees of freedom [6, 7, 8, 9]. When there is
just a single (Cartesian) classical degree of freedom,
these reaction forces are necessarily conservative,
akin to the Born-Oppenheimer force in molecular
physics [35]. Motor action driven by transport cur-
rents can occur when there is more than one mo-
tor degree of freedom (or a single angle degree of
freedom). In this case, the adiabatic reaction force
need no longer be conservative when the electronic
conductor is subject to a bias voltage [6, 7, 8, 9].
In next order in the adiabatic approximation,

the electronic system also induces frictional and
Lorentz-like forces, both of which are linear in the
slow velocity of the motor degree of freedom. In-
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We present a general unified approach for the study of quantum thermal machines, including both heat engines
and refrigerators, operating under periodic adiabatic driving and in contact with thermal reservoirs kept at
different temperatures. We show that many observables characterizing this operating mode and the performance
of the machine are of geometric nature. Heat-work conversion mechanisms and dissipation of energy can be
described, respectively, by the antisymmetric and symmetric components of a thermal geometric tensor defined
in the space of time-dependent parameters generalized to include the temperature bias. The antisymmetric
component can be identified as a Berry curvature, while the symmetric component defines the metric of the
manifold. We show that the operation of adiabatic thermal machines, and consequently also their efficiency, are
intimately related to these geometric aspects. We illustrate these ideas by discussing two specific cases: a slowly
driven qubit asymmetrically coupled to two bosonic reservoirs kept at different temperatures, and a quantum dot
driven by a rotating magnetic field and strongly coupled to electron reservoirs with different polarizations. Both
examples are already amenable for experimental verification.
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I. INTRODUCTION

Thermodynamics in quantum nanoscale systems [1–8]
has been a rapidly growing research topic for some years
now, emerging at the intersection of statistical mechanics,
nanoscience, quantum information, as well as atomic and
molecular physics. A paradigmatic goal in this field is to
conceive of and realize thermal machines in the quantum
realm, which, like the classical thermodynamic cycles, trans-
form heat to useful work or use work to refrigerate [9–21].
The development of efficient thermal machines operating
in the quantum realm is, in fact, of paramount importance
also for quantum technologies. Numerous theoretical pro-
posals [22–32] stimulated experimental efforts on several
platforms [33–35], including solid-state electronics [36–39]
and nanomechanical systems [40–44], as well as cold atoms
and trapped ions [45–49].

In its most simplified version, a quantum thermal machine
is composed of a working substance (typically a few-level
quantum system) coupled to two or more thermal baths kept
at different temperatures (and possibly at different chemi-
cal potentials). Engines and refrigerators can operate under
steady-state conditions, as thermoelectric engines, or be con-
trolled by time-periodic perturbations which define a cycle, as
in conventional macroscopic thermal machines. An example
of the latter is the quantum Otto engine, which has been
investigated theoretically [10,15,46,50–67] and realized ex-
perimentally [33,46,49]. Understanding how to discriminate
and characterize useful work, heat, and dissipated energy in

these systems is a fundamental step towards the realization
of nanomachines. In fact, unlike the ideal classical thermo-
dynamic cycles, quantum thermal machines typically operate
out of equilibrium [68,69], which necessarily implies en-
tropy production and dissipation. In addition to its impact
on emerging technologies, the study of quantum heat engines
and refrigerators is also of fundamental importance to deepen
our understanding of how energy flows and transforms at the
nanoscale [30,54,70–74].

In the present work, we will consider adiabatically driven
thermal machines. Their cycle is controlled by time-periodic
changes of a set of parameters which are slow compared to
the typical time scales associated with the (quantum) working
substance (see for example Refs. [75,76]). The modulation
can be associated with parameters of the baths (temperature,
chemical potential, . . . ) or the working medium (external
fields, coupling constants, . . . ), see Fig. 1. We will refer to
these quantum machines as geometric thermal machines. In
this regime and for small amplitude of the thermal bias, the
operation has a purely geometric description. At the heart of
this description is the thermal geometric tensor introduced
in Sec. III. Within the adiabatic linear response regime, the
process of heat-work conversion is related to the antisymmetric
component of the thermal geometric tensor, while the dissi-
pation and entropy production are related to the symmetric
component of the same tensor. Importantly, the antisymmet-
ric component has the structure of a Berry curvature, which
depends only on the geometry of the cycle in parameter

2469-9950/2020/102(15)/155407(24) 155407-1 ©2020 American Physical Society
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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TABLE I. Notation used in the text.

N Number of slowly varying coupling parameters
N + 1 Number of slowly varying coupling parameters

including thermal bias
!v Arrows denote N-dimensional vectors
v Bold fonts denote (N + 1)-dimensional vectors
! , !′ Labels of elements of N-dimensional vectors

or matrices
µ , ν Labels of elements of (N + 1)-dimensional

vectors or matrices
←→
M N × N matrix

M (N + 1) × (N + 1) matrix

Let us start with the simple observation that the thermal
bias, without the action of the ac driving, induces a net heat
flow from the hot to the cold reservoir. On the other hand, it is
useful to consider an analogy with the operation of classical
machines and notice that the modulation of the parameters
!X (t ) is introduced by some mechanism, which is akin to a
weight moving a wheel in the classical case. By the combined
effects of thermal bias and ac driving forces, it is possible to
realize heat-work conversion, which constitutes the key for
the operation of the device as a thermal machine. Two main
operational modes are possible. (i) In the heat engine mode,
part of the heat flowing in the direction of the thermal bias
is transformed into work performed against the mechanisms
ruling the dynamics of !X (t ). (ii) In the refrigerator mode, part
of the work induced by the action of the ac parameters can
be used to extract heat from the cold reservoir, against the
action of the thermal bias. In the latter case, the thermal bias
plays the role of the weight. In the operation of the thermal
machines, these processes come along with dissipation of
energy leading to entropy production. The efficiency of the
thermal machine relies on the appropriate balance between the
heat-work conversion mechanism and dissipation.

A. Heat, work, and operational modes

As we are interested in the dynamics for slow driving and
small temperature biases, it is convenient to define the N + 1-
dimensional vector of “velocities,”

Ẋ(t ) = { !̇X (t ),#T (t )/T }. (1)

These two types of vector notation (arrow and bold character)
appear in several places throughout the paper. For later refer-
ence, the Table I summarizes the different symbols used in the
text.

A temperature bias as well as time-dependent system and
bath parameters generally induce net heat transport between
the reservoirs. At the same time, any driving mechanism gen-
erates heat that is dissipated into the reservoirs. Hence, the
total heat current entering a given reservoir has a component
resulting from the net transport between the two reservoirs
and a component originated in the dissipation because of the
action of the driving forces. The net heat current JQ

α , averaged
over one cycle of period 2π/&, satisfies [109],

JQ
L + JQ

R = P, (2)

where P is the total dissipative power generated by the driving
forces, also averaged over one period. Identifying the compo-
nent due to transport and that due to dissipation in JQ

α is a non
trivial task in general. The transport component satisfies

JQ
tr,R = −JQ

tr,L ≡ JQ
tr , (3)

and we notice that only the total dissipative heat contributes to
Eq. (2). In the next section, we exactly calculate JQ

α to linear
order in Ẋ(t ) and we show that it satisfies Eq. (3). Hence, we
identify it with the leading term of the transport current.

The net heat transported per cycle between the two reser-
voirs is

Qtr = &

2π
JQ

tr . (4)

This component is defined such that Qtr > 0 when heat flows
in the direction of the thermal bias (hot to cold). We also
define the net work W performed on the system by the ac
forces during one cycle. We take W > 0 when the ac forces
exert work on the system. The balance between Qtr and W
is the key to the performance of the thermal machine, which
may operate as a heat engine by transforming heat into work
against the time-dependent driving or as a refrigerator, by
using the work performed by the ac driving to pump heat
from the cold to the hot reservoir. In the absence of heat-
work conversion, one finds that both Qtr ! 0 and W ! 0. In
the heat-engine mode, the heat–work conversion mechanism
operates against the ac forces and consequently W < 0. In
the refrigerator mode, the heat–work conversion mechanism
operates by using part of the work done by the ac forces to
pump heat against the thermal bias, so that Qtr < 0.

It is straightforward to generalize our considerations to
multi-terminal devices or to include additional macroscopic
variables beyond temperature such as an electrochemical po-
tential difference between reservoirs.

B. Adiabatic linear response

To analyze the performance of the adiabatic thermal ma-
chines, we need to compute the currents. This can be done
by conventional many-body techniques, such as the nonequi-
librium Green’s function formalism, scattering matrix theory
(for systems without many-body interactions), or master equa-
tions (for weak coupling between system and reservoirs).
Although we use these techniques to solve specific examples,
we employ a Hamiltonian representation for the temperature
difference and a Kubo linear response framework for small
#T to derive general results. This enables us to analyze the
energy dynamics induced by the thermal driving on the same
footing with that induced by the time-dependent driving. Here
we follow Luttinger’s approach [110] to thermal transport
which introduces a “gravitational” potential whose gradients
induce energy flows akin to the electrical currents induced
by gradients of the electrochemical potential. Details of this
approach are given in Appendix A.

We then introduce the Hamiltonian H governing the sys-
tem of Fig. 1, which can be expressed as

H(t ) = HS (t ) + Hbaths + Hc + Hth(t ). (5)

The first term HS (t ) is the Hamiltonian of the quantum sys-
tem. It depends on time through the N slowly and periodically
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
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is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
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is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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TABLE I. Notation used in the text.

N Number of slowly varying coupling parameters
N + 1 Number of slowly varying coupling parameters

including thermal bias
!v Arrows denote N-dimensional vectors
v Bold fonts denote (N + 1)-dimensional vectors
! , !′ Labels of elements of N-dimensional vectors

or matrices
µ , ν Labels of elements of (N + 1)-dimensional

vectors or matrices
←→
M N × N matrix

M (N + 1) × (N + 1) matrix

Let us start with the simple observation that the thermal
bias, without the action of the ac driving, induces a net heat
flow from the hot to the cold reservoir. On the other hand, it is
useful to consider an analogy with the operation of classical
machines and notice that the modulation of the parameters
!X (t ) is introduced by some mechanism, which is akin to a
weight moving a wheel in the classical case. By the combined
effects of thermal bias and ac driving forces, it is possible to
realize heat-work conversion, which constitutes the key for
the operation of the device as a thermal machine. Two main
operational modes are possible. (i) In the heat engine mode,
part of the heat flowing in the direction of the thermal bias
is transformed into work performed against the mechanisms
ruling the dynamics of !X (t ). (ii) In the refrigerator mode, part
of the work induced by the action of the ac parameters can
be used to extract heat from the cold reservoir, against the
action of the thermal bias. In the latter case, the thermal bias
plays the role of the weight. In the operation of the thermal
machines, these processes come along with dissipation of
energy leading to entropy production. The efficiency of the
thermal machine relies on the appropriate balance between the
heat-work conversion mechanism and dissipation.

A. Heat, work, and operational modes

As we are interested in the dynamics for slow driving and
small temperature biases, it is convenient to define the N + 1-
dimensional vector of “velocities,”

Ẋ(t ) = { !̇X (t ),#T (t )/T }. (1)

These two types of vector notation (arrow and bold character)
appear in several places throughout the paper. For later refer-
ence, the Table I summarizes the different symbols used in the
text.

A temperature bias as well as time-dependent system and
bath parameters generally induce net heat transport between
the reservoirs. At the same time, any driving mechanism gen-
erates heat that is dissipated into the reservoirs. Hence, the
total heat current entering a given reservoir has a component
resulting from the net transport between the two reservoirs
and a component originated in the dissipation because of the
action of the driving forces. The net heat current JQ

α , averaged
over one cycle of period 2π/&, satisfies [109],

JQ
L + JQ

R = P, (2)

where P is the total dissipative power generated by the driving
forces, also averaged over one period. Identifying the compo-
nent due to transport and that due to dissipation in JQ

α is a non
trivial task in general. The transport component satisfies

JQ
tr,R = −JQ

tr,L ≡ JQ
tr , (3)

and we notice that only the total dissipative heat contributes to
Eq. (2). In the next section, we exactly calculate JQ

α to linear
order in Ẋ(t ) and we show that it satisfies Eq. (3). Hence, we
identify it with the leading term of the transport current.

The net heat transported per cycle between the two reser-
voirs is

Qtr = &

2π
JQ

tr . (4)

This component is defined such that Qtr > 0 when heat flows
in the direction of the thermal bias (hot to cold). We also
define the net work W performed on the system by the ac
forces during one cycle. We take W > 0 when the ac forces
exert work on the system. The balance between Qtr and W
is the key to the performance of the thermal machine, which
may operate as a heat engine by transforming heat into work
against the time-dependent driving or as a refrigerator, by
using the work performed by the ac driving to pump heat
from the cold to the hot reservoir. In the absence of heat-
work conversion, one finds that both Qtr ! 0 and W ! 0. In
the heat-engine mode, the heat–work conversion mechanism
operates against the ac forces and consequently W < 0. In
the refrigerator mode, the heat–work conversion mechanism
operates by using part of the work done by the ac forces to
pump heat against the thermal bias, so that Qtr < 0.

It is straightforward to generalize our considerations to
multi-terminal devices or to include additional macroscopic
variables beyond temperature such as an electrochemical po-
tential difference between reservoirs.

B. Adiabatic linear response

To analyze the performance of the adiabatic thermal ma-
chines, we need to compute the currents. This can be done
by conventional many-body techniques, such as the nonequi-
librium Green’s function formalism, scattering matrix theory
(for systems without many-body interactions), or master equa-
tions (for weak coupling between system and reservoirs).
Although we use these techniques to solve specific examples,
we employ a Hamiltonian representation for the temperature
difference and a Kubo linear response framework for small
#T to derive general results. This enables us to analyze the
energy dynamics induced by the thermal driving on the same
footing with that induced by the time-dependent driving. Here
we follow Luttinger’s approach [110] to thermal transport
which introduces a “gravitational” potential whose gradients
induce energy flows akin to the electrical currents induced
by gradients of the electrochemical potential. Details of this
approach are given in Appendix A.

We then introduce the Hamiltonian H governing the sys-
tem of Fig. 1, which can be expressed as

H(t ) = HS (t ) + Hbaths + Hc + Hth(t ). (5)

The first term HS (t ) is the Hamiltonian of the quantum sys-
tem. It depends on time through the N slowly and periodically
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Let us start with the simple observation that the thermal
bias, without the action of the ac driving, induces a net heat
flow from the hot to the cold reservoir. On the other hand, it is
useful to consider an analogy with the operation of classical
machines and notice that the modulation of the parameters
!X (t ) is introduced by some mechanism, which is akin to a
weight moving a wheel in the classical case. By the combined
effects of thermal bias and ac driving forces, it is possible to
realize heat-work conversion, which constitutes the key for
the operation of the device as a thermal machine. Two main
operational modes are possible. (i) In the heat engine mode,
part of the heat flowing in the direction of the thermal bias
is transformed into work performed against the mechanisms
ruling the dynamics of !X (t ). (ii) In the refrigerator mode, part
of the work induced by the action of the ac parameters can
be used to extract heat from the cold reservoir, against the
action of the thermal bias. In the latter case, the thermal bias
plays the role of the weight. In the operation of the thermal
machines, these processes come along with dissipation of
energy leading to entropy production. The efficiency of the
thermal machine relies on the appropriate balance between the
heat-work conversion mechanism and dissipation.

A. Heat, work, and operational modes

As we are interested in the dynamics for slow driving and
small temperature biases, it is convenient to define the N + 1-
dimensional vector of “velocities,”

Ẋ(t ) = { !̇X (t ),#T (t )/T }. (1)

These two types of vector notation (arrow and bold character)
appear in several places throughout the paper. For later refer-
ence, the Table I summarizes the different symbols used in the
text.

A temperature bias as well as time-dependent system and
bath parameters generally induce net heat transport between
the reservoirs. At the same time, any driving mechanism gen-
erates heat that is dissipated into the reservoirs. Hence, the
total heat current entering a given reservoir has a component
resulting from the net transport between the two reservoirs
and a component originated in the dissipation because of the
action of the driving forces. The net heat current JQ

α , averaged
over one cycle of period 2π/&, satisfies [109],

JQ
L + JQ

R = P, (2)

where P is the total dissipative power generated by the driving
forces, also averaged over one period. Identifying the compo-
nent due to transport and that due to dissipation in JQ

α is a non
trivial task in general. The transport component satisfies

JQ
tr,R = −JQ

tr,L ≡ JQ
tr , (3)

and we notice that only the total dissipative heat contributes to
Eq. (2). In the next section, we exactly calculate JQ

α to linear
order in Ẋ(t ) and we show that it satisfies Eq. (3). Hence, we
identify it with the leading term of the transport current.

The net heat transported per cycle between the two reser-
voirs is

Qtr = &

2π
JQ

tr . (4)

This component is defined such that Qtr > 0 when heat flows
in the direction of the thermal bias (hot to cold). We also
define the net work W performed on the system by the ac
forces during one cycle. We take W > 0 when the ac forces
exert work on the system. The balance between Qtr and W
is the key to the performance of the thermal machine, which
may operate as a heat engine by transforming heat into work
against the time-dependent driving or as a refrigerator, by
using the work performed by the ac driving to pump heat
from the cold to the hot reservoir. In the absence of heat-
work conversion, one finds that both Qtr ! 0 and W ! 0. In
the heat-engine mode, the heat–work conversion mechanism
operates against the ac forces and consequently W < 0. In
the refrigerator mode, the heat–work conversion mechanism
operates by using part of the work done by the ac forces to
pump heat against the thermal bias, so that Qtr < 0.

It is straightforward to generalize our considerations to
multi-terminal devices or to include additional macroscopic
variables beyond temperature such as an electrochemical po-
tential difference between reservoirs.

B. Adiabatic linear response

To analyze the performance of the adiabatic thermal ma-
chines, we need to compute the currents. This can be done
by conventional many-body techniques, such as the nonequi-
librium Green’s function formalism, scattering matrix theory
(for systems without many-body interactions), or master equa-
tions (for weak coupling between system and reservoirs).
Although we use these techniques to solve specific examples,
we employ a Hamiltonian representation for the temperature
difference and a Kubo linear response framework for small
#T to derive general results. This enables us to analyze the
energy dynamics induced by the thermal driving on the same
footing with that induced by the time-dependent driving. Here
we follow Luttinger’s approach [110] to thermal transport
which introduces a “gravitational” potential whose gradients
induce energy flows akin to the electrical currents induced
by gradients of the electrochemical potential. Details of this
approach are given in Appendix A.

We then introduce the Hamiltonian H governing the sys-
tem of Fig. 1, which can be expressed as

H(t ) = HS (t ) + Hbaths + Hc + Hth(t ). (5)

The first term HS (t ) is the Hamiltonian of the quantum sys-
tem. It depends on time through the N slowly and periodically
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Let us start with the simple observation that the thermal
bias, without the action of the ac driving, induces a net heat
flow from the hot to the cold reservoir. On the other hand, it is
useful to consider an analogy with the operation of classical
machines and notice that the modulation of the parameters
!X (t ) is introduced by some mechanism, which is akin to a
weight moving a wheel in the classical case. By the combined
effects of thermal bias and ac driving forces, it is possible to
realize heat-work conversion, which constitutes the key for
the operation of the device as a thermal machine. Two main
operational modes are possible. (i) In the heat engine mode,
part of the heat flowing in the direction of the thermal bias
is transformed into work performed against the mechanisms
ruling the dynamics of !X (t ). (ii) In the refrigerator mode, part
of the work induced by the action of the ac parameters can
be used to extract heat from the cold reservoir, against the
action of the thermal bias. In the latter case, the thermal bias
plays the role of the weight. In the operation of the thermal
machines, these processes come along with dissipation of
energy leading to entropy production. The efficiency of the
thermal machine relies on the appropriate balance between the
heat-work conversion mechanism and dissipation.

A. Heat, work, and operational modes

As we are interested in the dynamics for slow driving and
small temperature biases, it is convenient to define the N + 1-
dimensional vector of “velocities,”

Ẋ(t ) = { !̇X (t ),#T (t )/T }. (1)

These two types of vector notation (arrow and bold character)
appear in several places throughout the paper. For later refer-
ence, the Table I summarizes the different symbols used in the
text.

A temperature bias as well as time-dependent system and
bath parameters generally induce net heat transport between
the reservoirs. At the same time, any driving mechanism gen-
erates heat that is dissipated into the reservoirs. Hence, the
total heat current entering a given reservoir has a component
resulting from the net transport between the two reservoirs
and a component originated in the dissipation because of the
action of the driving forces. The net heat current JQ

α , averaged
over one cycle of period 2π/&, satisfies [109],

JQ
L + JQ

R = P, (2)

where P is the total dissipative power generated by the driving
forces, also averaged over one period. Identifying the compo-
nent due to transport and that due to dissipation in JQ

α is a non
trivial task in general. The transport component satisfies

JQ
tr,R = −JQ

tr,L ≡ JQ
tr , (3)

and we notice that only the total dissipative heat contributes to
Eq. (2). In the next section, we exactly calculate JQ

α to linear
order in Ẋ(t ) and we show that it satisfies Eq. (3). Hence, we
identify it with the leading term of the transport current.

The net heat transported per cycle between the two reser-
voirs is

Qtr = &

2π
JQ

tr . (4)

This component is defined such that Qtr > 0 when heat flows
in the direction of the thermal bias (hot to cold). We also
define the net work W performed on the system by the ac
forces during one cycle. We take W > 0 when the ac forces
exert work on the system. The balance between Qtr and W
is the key to the performance of the thermal machine, which
may operate as a heat engine by transforming heat into work
against the time-dependent driving or as a refrigerator, by
using the work performed by the ac driving to pump heat
from the cold to the hot reservoir. In the absence of heat-
work conversion, one finds that both Qtr ! 0 and W ! 0. In
the heat-engine mode, the heat–work conversion mechanism
operates against the ac forces and consequently W < 0. In
the refrigerator mode, the heat–work conversion mechanism
operates by using part of the work done by the ac forces to
pump heat against the thermal bias, so that Qtr < 0.

It is straightforward to generalize our considerations to
multi-terminal devices or to include additional macroscopic
variables beyond temperature such as an electrochemical po-
tential difference between reservoirs.

B. Adiabatic linear response

To analyze the performance of the adiabatic thermal ma-
chines, we need to compute the currents. This can be done
by conventional many-body techniques, such as the nonequi-
librium Green’s function formalism, scattering matrix theory
(for systems without many-body interactions), or master equa-
tions (for weak coupling between system and reservoirs).
Although we use these techniques to solve specific examples,
we employ a Hamiltonian representation for the temperature
difference and a Kubo linear response framework for small
#T to derive general results. This enables us to analyze the
energy dynamics induced by the thermal driving on the same
footing with that induced by the time-dependent driving. Here
we follow Luttinger’s approach [110] to thermal transport
which introduces a “gravitational” potential whose gradients
induce energy flows akin to the electrical currents induced
by gradients of the electrochemical potential. Details of this
approach are given in Appendix A.

We then introduce the Hamiltonian H governing the sys-
tem of Fig. 1, which can be expressed as

H(t ) = HS (t ) + Hbaths + Hc + Hth(t ). (5)

The first term HS (t ) is the Hamiltonian of the quantum sys-
tem. It depends on time through the N slowly and periodically
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,

JQ
α = &

2π

∫ 2π/&

0
dt

〈
J E

α (t )
〉
. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

!=1

χ ad
t [O,F!]Ẋ!(t )

+
∑

α=L,R

χ ad
t

[
O,J E

α

]
ξ̇α (t ). (10)

Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E

R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
J E

α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,

JQ
α = &

2π

∫ 2π/&

0
dt

〈
J E

α (t )
〉
. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

!=1

χ ad
t [O,F!]Ẋ!(t )

+
∑

α=L,R

χ ad
t

[
O,J E

α

]
ξ̇α (t ). (10)

Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E
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)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
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]
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Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,
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The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
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driving implies that the driving frequency & is small com-
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temperature bias as sufficiently small so that the currents can
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previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
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convenient to define the N + 1-dimensional force vector

F =
( !F,J E

R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)
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Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
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!B explicit here, but will suppress it in the following unless
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potential µL = µR = µ and should be described by the grand-
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system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
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ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
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trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
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m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
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We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E
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)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
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t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t
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α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑
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J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by
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α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,
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The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula
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+
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Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form
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∫ t
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dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E
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)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
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α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E
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leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E
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canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
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system and reservoirs, such as tunneling of particles and/or
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bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
J E

α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),

155407-4

BIBEK BHANDARI et al. PHYSICAL REVIEW B 102, 155407 (2020)

[104] M. Tomka, T. Souza, S. Rosenberg, and A. Polkovnikov,
Geodesic paths for quantum many-body systems,
arXiv:1606.05890.

[105] P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S.
Vajna, and M. Kolodrubetz, Adiabatic perturbation theory and
geometry of periodically-driven systems, Phys. Rep. 688, 1
(2017).

[106] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classifying
and measuring geometry of a quantum ground state manifold,
Phys. Rev. B 88, 064304 (2013).

[107] J. C. Budich and S. Diehl, Topology of density matrices, Phys.
Rev. B 91, 165140 (2015).

[108] Charles-Edouard Bardyn, L. Wawer, A. Altland, M.
Fleischhauer, and S. Diehl, Probing the Topology of
Density Matrices, Phys. Rev. X 8, 011035 (2018).

[109] L. Arrachea, M. Moskalets, and L. Martin-Moreno, Heat pro-
duction and energy balance in nanoscale engines driven by
time-dependent fields, Phys. Rev. B 75, 245420 (2007).

[110] J. M. Luttinger, Theory of thermal transport coefficients, Phys.
Rev. 135, A1505 (1964).

[111] M. F. Ludovico, F. Battista, F. von Oppen, and L. Arrachea,
Adiabatic response and quantum thermoelectrics for ac-driven
quantum systems, Phys. Rev. B 93, 075136 (2016).

[112] G. Tatara, Thermal Vector Potential Theory of Transport
Induced by a Temperature Gradient, Phys. Rev. Lett. 114,
196601 (2015).

[113] D. Cohen, Quantum pumping in closed systems, adiabatic
transport, and the Kubo formula, Phys. Rev. B 68, 155303
(2003).

[114] D. J. Thouless, Quantization of particle transport, Phys. Rev.
B 27, 6083 (1983).

[115] J. Avron, D. Osadchy, and R. Seiler, A topological look at the
quantum Hall effect, Phys. Today 56(8), 38 (2003).

[116] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[117] M. Moskalets and M. Büttiker, Floquet scattering theory for
current and heat noise in large amplitude adiabatic pumps,
Phys. Rev. B 70, 245305 (2004).

[118] R. Bustos-Marún, G. Refael, and F. von Oppen, Adiabatic
Quantum Motors, Phys. Rev. Lett. 111, 060802 (2013).

[119] L. Arrachea and F. von Oppen, Nanomagnet coupled to quan-
tum spin hall edge: An adiabatic quantum motor, Physica E
74, 596 (2015).

[120] L. J. Fernández-Alcázar, H. M. Pastawski, and R. A. Bustos-
Marún, Dynamics and decoherence in nonideal thouless
quantum motors, Phys. Rev. B 95, 155410 (2017).

[121] M. F. Ludovico and M. Capone, Enhanced performance of a
quantum-dot-based nanomotor due to coulomb interactions,
Phys. Rev. B 98, 235409 (2018).

[122] A. Bruch, S. V. Kusminskiy, G. Refael, and F. von Oppen,
Interacting adiabatic quantum motor, Phys. Rev. B 97, 195411
(2018).

[123] A. O. Caldeira and A. J. Leggett, Quantum tunneling in a
dissipative system, Ann. Phys. 149, 374 (1983).

[124] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[125] R. S. Whitney and Y. Gefen, Berry Phase in a Nonisolated
System, Phys. Rev. Lett. 90, 190402 (2003).

[126] R. S. Whitney, Y. Makhlin, A. Shnirman, and Y. Gefen, Ge-
ometric Nature of the Environment-Induced Berry Phase and
Geometric Dephasing, Phys. Rev. Lett. 94, 070407 (2005).

[127] G. De Chiara and G. M. Palma, Berry Phase for a Spin 1/2
Particle in a Classical Fluctuating Field, Phys. Rev. Lett. 91,
090404 (2003).

[128] D. Segal and A. Nitzan, Spin-Boson Thermal Rectifier, Phys.
Rev. Lett. 94, 034301 (2005).

[129] D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E
73, 026109 (2006).

[130] F. C. Lombardo and P. I. Villar, Correction to the ge-
ometric phase by structured environments: The onset of
non-markovian effects, Phys. Rev. A 91, 042111 (2015).

[131] R. Schmidt, M. F. Carusela, J. P. Pekola, S. Suomela, and J.
Ankerhold, Work and heat for two-level systems in dissipative
environments: Strong driving and non-markovian dynamics,
Phys. Rev. B 91, 224303 (2015).

[132] J. Liu, H. Xu, B. Li, and C. Wu, Energy transfer in the nonequi-
librium spin-boson model: From weak to strong coupling,
Phys. Rev. E 96, 012135 (2017).

[133] C. Wang, X.-M. Chen, K.-W. Sun, and J. Ren, Heat am-
plification and negative differential thermal conductance in
a strongly coupled nonequilibrium spin-boson system, Phys.
Rev. A 97, 052112 (2018).

[134] T. Yamamoto, M. Kato, T. Kato, and K. Saito, Heat transport
via a local two-state system near thermal equilibrium, New J.
Phys. 20, 093014 (2018).

[135] D. Newman, F. Mintert, and A. Nazir, Quantum limit
to nonequilibrium heat-engine performance imposed by
strong system-reservoir coupling, Phys. Rev. E 101, 052129
(2020).

[136] R. P. Riwar and J. Splettstoesser, Charge and spin pumping
through a double quantum dot, Phys. Rev. B 82, 205308
(2010).

[137] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Fractional charge and
quantized current in the quantum spin hall state, Nat. Phys. 4,
273 (2008).

[138] N. Bode, L. Arrachea, G. S. Lozano, T. S. Nunner, and F.
von Oppen, Current-induced switching in transport through
anisotropic magnetic molecules, Phys. Rev. B 85, 115440
(2012).

[139] Q. Meng, S. Vishveshwara, and T. L. Hughes, Spin-transfer
torque and electric current in helical edge states in quantum
spin hall devices, Phys. Rev. B 90, 205403 (2014).

[140] M. F. Ludovico, M. Moskalets, D. Sánchez, and L. Arrachea,
Dynamics of energy transport and entropy production in ac-
driven quantum electron systems, Phys. Rev. B 94, 035436
(2016).

[141] R. Balian, From Microphysics to Macrophysics (Springer-
Verlag, Berlin, Heidelberg, 1982), Vol. I, Chap. 5.

[142] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Dis-
sipation: The Phase-Space Perspective, Phys. Rev. Lett. 98,
080602 (2007).

[143] J. Horowitz and C. Jarzynski, Illustrative example of the rela-
tionship between dissipation and relative entropy, Phys. Rev.
E 79, 021106 (2009).

[144] M. Esposito, K. Lindenberg, and C. V. D. Broeck, Entropy
production as correlation between system and reservoir, New
J. Phys. 12, 013013 (2010).

155407-24

BIBEK BHANDARI et al. PHYSICAL REVIEW B 102, 155407 (2020)

[104] M. Tomka, T. Souza, S. Rosenberg, and A. Polkovnikov,
Geodesic paths for quantum many-body systems,
arXiv:1606.05890.

[105] P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S.
Vajna, and M. Kolodrubetz, Adiabatic perturbation theory and
geometry of periodically-driven systems, Phys. Rep. 688, 1
(2017).

[106] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classifying
and measuring geometry of a quantum ground state manifold,
Phys. Rev. B 88, 064304 (2013).

[107] J. C. Budich and S. Diehl, Topology of density matrices, Phys.
Rev. B 91, 165140 (2015).

[108] Charles-Edouard Bardyn, L. Wawer, A. Altland, M.
Fleischhauer, and S. Diehl, Probing the Topology of
Density Matrices, Phys. Rev. X 8, 011035 (2018).

[109] L. Arrachea, M. Moskalets, and L. Martin-Moreno, Heat pro-
duction and energy balance in nanoscale engines driven by
time-dependent fields, Phys. Rev. B 75, 245420 (2007).

[110] J. M. Luttinger, Theory of thermal transport coefficients, Phys.
Rev. 135, A1505 (1964).

[111] M. F. Ludovico, F. Battista, F. von Oppen, and L. Arrachea,
Adiabatic response and quantum thermoelectrics for ac-driven
quantum systems, Phys. Rev. B 93, 075136 (2016).

[112] G. Tatara, Thermal Vector Potential Theory of Transport
Induced by a Temperature Gradient, Phys. Rev. Lett. 114,
196601 (2015).

[113] D. Cohen, Quantum pumping in closed systems, adiabatic
transport, and the Kubo formula, Phys. Rev. B 68, 155303
(2003).

[114] D. J. Thouless, Quantization of particle transport, Phys. Rev.
B 27, 6083 (1983).

[115] J. Avron, D. Osadchy, and R. Seiler, A topological look at the
quantum Hall effect, Phys. Today 56(8), 38 (2003).

[116] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[117] M. Moskalets and M. Büttiker, Floquet scattering theory for
current and heat noise in large amplitude adiabatic pumps,
Phys. Rev. B 70, 245305 (2004).

[118] R. Bustos-Marún, G. Refael, and F. von Oppen, Adiabatic
Quantum Motors, Phys. Rev. Lett. 111, 060802 (2013).

[119] L. Arrachea and F. von Oppen, Nanomagnet coupled to quan-
tum spin hall edge: An adiabatic quantum motor, Physica E
74, 596 (2015).

[120] L. J. Fernández-Alcázar, H. M. Pastawski, and R. A. Bustos-
Marún, Dynamics and decoherence in nonideal thouless
quantum motors, Phys. Rev. B 95, 155410 (2017).

[121] M. F. Ludovico and M. Capone, Enhanced performance of a
quantum-dot-based nanomotor due to coulomb interactions,
Phys. Rev. B 98, 235409 (2018).

[122] A. Bruch, S. V. Kusminskiy, G. Refael, and F. von Oppen,
Interacting adiabatic quantum motor, Phys. Rev. B 97, 195411
(2018).

[123] A. O. Caldeira and A. J. Leggett, Quantum tunneling in a
dissipative system, Ann. Phys. 149, 374 (1983).

[124] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[125] R. S. Whitney and Y. Gefen, Berry Phase in a Nonisolated
System, Phys. Rev. Lett. 90, 190402 (2003).

[126] R. S. Whitney, Y. Makhlin, A. Shnirman, and Y. Gefen, Ge-
ometric Nature of the Environment-Induced Berry Phase and
Geometric Dephasing, Phys. Rev. Lett. 94, 070407 (2005).

[127] G. De Chiara and G. M. Palma, Berry Phase for a Spin 1/2
Particle in a Classical Fluctuating Field, Phys. Rev. Lett. 91,
090404 (2003).

[128] D. Segal and A. Nitzan, Spin-Boson Thermal Rectifier, Phys.
Rev. Lett. 94, 034301 (2005).

[129] D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E
73, 026109 (2006).

[130] F. C. Lombardo and P. I. Villar, Correction to the ge-
ometric phase by structured environments: The onset of
non-markovian effects, Phys. Rev. A 91, 042111 (2015).

[131] R. Schmidt, M. F. Carusela, J. P. Pekola, S. Suomela, and J.
Ankerhold, Work and heat for two-level systems in dissipative
environments: Strong driving and non-markovian dynamics,
Phys. Rev. B 91, 224303 (2015).

[132] J. Liu, H. Xu, B. Li, and C. Wu, Energy transfer in the nonequi-
librium spin-boson model: From weak to strong coupling,
Phys. Rev. E 96, 012135 (2017).

[133] C. Wang, X.-M. Chen, K.-W. Sun, and J. Ren, Heat am-
plification and negative differential thermal conductance in
a strongly coupled nonequilibrium spin-boson system, Phys.
Rev. A 97, 052112 (2018).

[134] T. Yamamoto, M. Kato, T. Kato, and K. Saito, Heat transport
via a local two-state system near thermal equilibrium, New J.
Phys. 20, 093014 (2018).

[135] D. Newman, F. Mintert, and A. Nazir, Quantum limit
to nonequilibrium heat-engine performance imposed by
strong system-reservoir coupling, Phys. Rev. E 101, 052129
(2020).

[136] R. P. Riwar and J. Splettstoesser, Charge and spin pumping
through a double quantum dot, Phys. Rev. B 82, 205308
(2010).

[137] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Fractional charge and
quantized current in the quantum spin hall state, Nat. Phys. 4,
273 (2008).

[138] N. Bode, L. Arrachea, G. S. Lozano, T. S. Nunner, and F.
von Oppen, Current-induced switching in transport through
anisotropic magnetic molecules, Phys. Rev. B 85, 115440
(2012).

[139] Q. Meng, S. Vishveshwara, and T. L. Hughes, Spin-transfer
torque and electric current in helical edge states in quantum
spin hall devices, Phys. Rev. B 90, 205403 (2014).

[140] M. F. Ludovico, M. Moskalets, D. Sánchez, and L. Arrachea,
Dynamics of energy transport and entropy production in ac-
driven quantum electron systems, Phys. Rev. B 94, 035436
(2016).

[141] R. Balian, From Microphysics to Macrophysics (Springer-
Verlag, Berlin, Heidelberg, 1982), Vol. I, Chap. 5.

[142] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Dis-
sipation: The Phase-Space Perspective, Phys. Rev. Lett. 98,
080602 (2007).

[143] J. Horowitz and C. Jarzynski, Illustrative example of the rela-
tionship between dissipation and relative entropy, Phys. Rev.
E 79, 021106 (2009).

[144] M. Esposito, K. Lindenberg, and C. V. D. Broeck, Entropy
production as correlation between system and reservoir, New
J. Phys. 12, 013013 (2010).

155407-24

BIBEK BHANDARI et al. PHYSICAL REVIEW B 102, 155407 (2020)

[104] M. Tomka, T. Souza, S. Rosenberg, and A. Polkovnikov,
Geodesic paths for quantum many-body systems,
arXiv:1606.05890.

[105] P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S.
Vajna, and M. Kolodrubetz, Adiabatic perturbation theory and
geometry of periodically-driven systems, Phys. Rep. 688, 1
(2017).

[106] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classifying
and measuring geometry of a quantum ground state manifold,
Phys. Rev. B 88, 064304 (2013).

[107] J. C. Budich and S. Diehl, Topology of density matrices, Phys.
Rev. B 91, 165140 (2015).

[108] Charles-Edouard Bardyn, L. Wawer, A. Altland, M.
Fleischhauer, and S. Diehl, Probing the Topology of
Density Matrices, Phys. Rev. X 8, 011035 (2018).

[109] L. Arrachea, M. Moskalets, and L. Martin-Moreno, Heat pro-
duction and energy balance in nanoscale engines driven by
time-dependent fields, Phys. Rev. B 75, 245420 (2007).

[110] J. M. Luttinger, Theory of thermal transport coefficients, Phys.
Rev. 135, A1505 (1964).

[111] M. F. Ludovico, F. Battista, F. von Oppen, and L. Arrachea,
Adiabatic response and quantum thermoelectrics for ac-driven
quantum systems, Phys. Rev. B 93, 075136 (2016).

[112] G. Tatara, Thermal Vector Potential Theory of Transport
Induced by a Temperature Gradient, Phys. Rev. Lett. 114,
196601 (2015).

[113] D. Cohen, Quantum pumping in closed systems, adiabatic
transport, and the Kubo formula, Phys. Rev. B 68, 155303
(2003).

[114] D. J. Thouless, Quantization of particle transport, Phys. Rev.
B 27, 6083 (1983).

[115] J. Avron, D. Osadchy, and R. Seiler, A topological look at the
quantum Hall effect, Phys. Today 56(8), 38 (2003).

[116] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[117] M. Moskalets and M. Büttiker, Floquet scattering theory for
current and heat noise in large amplitude adiabatic pumps,
Phys. Rev. B 70, 245305 (2004).

[118] R. Bustos-Marún, G. Refael, and F. von Oppen, Adiabatic
Quantum Motors, Phys. Rev. Lett. 111, 060802 (2013).

[119] L. Arrachea and F. von Oppen, Nanomagnet coupled to quan-
tum spin hall edge: An adiabatic quantum motor, Physica E
74, 596 (2015).

[120] L. J. Fernández-Alcázar, H. M. Pastawski, and R. A. Bustos-
Marún, Dynamics and decoherence in nonideal thouless
quantum motors, Phys. Rev. B 95, 155410 (2017).

[121] M. F. Ludovico and M. Capone, Enhanced performance of a
quantum-dot-based nanomotor due to coulomb interactions,
Phys. Rev. B 98, 235409 (2018).

[122] A. Bruch, S. V. Kusminskiy, G. Refael, and F. von Oppen,
Interacting adiabatic quantum motor, Phys. Rev. B 97, 195411
(2018).

[123] A. O. Caldeira and A. J. Leggett, Quantum tunneling in a
dissipative system, Ann. Phys. 149, 374 (1983).

[124] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[125] R. S. Whitney and Y. Gefen, Berry Phase in a Nonisolated
System, Phys. Rev. Lett. 90, 190402 (2003).

[126] R. S. Whitney, Y. Makhlin, A. Shnirman, and Y. Gefen, Ge-
ometric Nature of the Environment-Induced Berry Phase and
Geometric Dephasing, Phys. Rev. Lett. 94, 070407 (2005).

[127] G. De Chiara and G. M. Palma, Berry Phase for a Spin 1/2
Particle in a Classical Fluctuating Field, Phys. Rev. Lett. 91,
090404 (2003).

[128] D. Segal and A. Nitzan, Spin-Boson Thermal Rectifier, Phys.
Rev. Lett. 94, 034301 (2005).

[129] D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E
73, 026109 (2006).

[130] F. C. Lombardo and P. I. Villar, Correction to the ge-
ometric phase by structured environments: The onset of
non-markovian effects, Phys. Rev. A 91, 042111 (2015).

[131] R. Schmidt, M. F. Carusela, J. P. Pekola, S. Suomela, and J.
Ankerhold, Work and heat for two-level systems in dissipative
environments: Strong driving and non-markovian dynamics,
Phys. Rev. B 91, 224303 (2015).

[132] J. Liu, H. Xu, B. Li, and C. Wu, Energy transfer in the nonequi-
librium spin-boson model: From weak to strong coupling,
Phys. Rev. E 96, 012135 (2017).

[133] C. Wang, X.-M. Chen, K.-W. Sun, and J. Ren, Heat am-
plification and negative differential thermal conductance in
a strongly coupled nonequilibrium spin-boson system, Phys.
Rev. A 97, 052112 (2018).

[134] T. Yamamoto, M. Kato, T. Kato, and K. Saito, Heat transport
via a local two-state system near thermal equilibrium, New J.
Phys. 20, 093014 (2018).

[135] D. Newman, F. Mintert, and A. Nazir, Quantum limit
to nonequilibrium heat-engine performance imposed by
strong system-reservoir coupling, Phys. Rev. E 101, 052129
(2020).

[136] R. P. Riwar and J. Splettstoesser, Charge and spin pumping
through a double quantum dot, Phys. Rev. B 82, 205308
(2010).

[137] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Fractional charge and
quantized current in the quantum spin hall state, Nat. Phys. 4,
273 (2008).

[138] N. Bode, L. Arrachea, G. S. Lozano, T. S. Nunner, and F.
von Oppen, Current-induced switching in transport through
anisotropic magnetic molecules, Phys. Rev. B 85, 115440
(2012).

[139] Q. Meng, S. Vishveshwara, and T. L. Hughes, Spin-transfer
torque and electric current in helical edge states in quantum
spin hall devices, Phys. Rev. B 90, 205403 (2014).

[140] M. F. Ludovico, M. Moskalets, D. Sánchez, and L. Arrachea,
Dynamics of energy transport and entropy production in ac-
driven quantum electron systems, Phys. Rev. B 94, 035436
(2016).

[141] R. Balian, From Microphysics to Macrophysics (Springer-
Verlag, Berlin, Heidelberg, 1982), Vol. I, Chap. 5.

[142] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Dis-
sipation: The Phase-Space Perspective, Phys. Rev. Lett. 98,
080602 (2007).

[143] J. Horowitz and C. Jarzynski, Illustrative example of the rela-
tionship between dissipation and relative entropy, Phys. Rev.
E 79, 021106 (2009).

[144] M. Esposito, K. Lindenberg, and C. V. D. Broeck, Entropy
production as correlation between system and reservoir, New
J. Phys. 12, 013013 (2010).

155407-24

BIBEK BHANDARI et al. PHYSICAL REVIEW B 102, 155407 (2020)

[104] M. Tomka, T. Souza, S. Rosenberg, and A. Polkovnikov,
Geodesic paths for quantum many-body systems,
arXiv:1606.05890.

[105] P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S.
Vajna, and M. Kolodrubetz, Adiabatic perturbation theory and
geometry of periodically-driven systems, Phys. Rep. 688, 1
(2017).

[106] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classifying
and measuring geometry of a quantum ground state manifold,
Phys. Rev. B 88, 064304 (2013).

[107] J. C. Budich and S. Diehl, Topology of density matrices, Phys.
Rev. B 91, 165140 (2015).

[108] Charles-Edouard Bardyn, L. Wawer, A. Altland, M.
Fleischhauer, and S. Diehl, Probing the Topology of
Density Matrices, Phys. Rev. X 8, 011035 (2018).

[109] L. Arrachea, M. Moskalets, and L. Martin-Moreno, Heat pro-
duction and energy balance in nanoscale engines driven by
time-dependent fields, Phys. Rev. B 75, 245420 (2007).

[110] J. M. Luttinger, Theory of thermal transport coefficients, Phys.
Rev. 135, A1505 (1964).

[111] M. F. Ludovico, F. Battista, F. von Oppen, and L. Arrachea,
Adiabatic response and quantum thermoelectrics for ac-driven
quantum systems, Phys. Rev. B 93, 075136 (2016).

[112] G. Tatara, Thermal Vector Potential Theory of Transport
Induced by a Temperature Gradient, Phys. Rev. Lett. 114,
196601 (2015).

[113] D. Cohen, Quantum pumping in closed systems, adiabatic
transport, and the Kubo formula, Phys. Rev. B 68, 155303
(2003).

[114] D. J. Thouless, Quantization of particle transport, Phys. Rev.
B 27, 6083 (1983).

[115] J. Avron, D. Osadchy, and R. Seiler, A topological look at the
quantum Hall effect, Phys. Today 56(8), 38 (2003).

[116] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[117] M. Moskalets and M. Büttiker, Floquet scattering theory for
current and heat noise in large amplitude adiabatic pumps,
Phys. Rev. B 70, 245305 (2004).

[118] R. Bustos-Marún, G. Refael, and F. von Oppen, Adiabatic
Quantum Motors, Phys. Rev. Lett. 111, 060802 (2013).

[119] L. Arrachea and F. von Oppen, Nanomagnet coupled to quan-
tum spin hall edge: An adiabatic quantum motor, Physica E
74, 596 (2015).

[120] L. J. Fernández-Alcázar, H. M. Pastawski, and R. A. Bustos-
Marún, Dynamics and decoherence in nonideal thouless
quantum motors, Phys. Rev. B 95, 155410 (2017).

[121] M. F. Ludovico and M. Capone, Enhanced performance of a
quantum-dot-based nanomotor due to coulomb interactions,
Phys. Rev. B 98, 235409 (2018).

[122] A. Bruch, S. V. Kusminskiy, G. Refael, and F. von Oppen,
Interacting adiabatic quantum motor, Phys. Rev. B 97, 195411
(2018).

[123] A. O. Caldeira and A. J. Leggett, Quantum tunneling in a
dissipative system, Ann. Phys. 149, 374 (1983).

[124] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[125] R. S. Whitney and Y. Gefen, Berry Phase in a Nonisolated
System, Phys. Rev. Lett. 90, 190402 (2003).

[126] R. S. Whitney, Y. Makhlin, A. Shnirman, and Y. Gefen, Ge-
ometric Nature of the Environment-Induced Berry Phase and
Geometric Dephasing, Phys. Rev. Lett. 94, 070407 (2005).

[127] G. De Chiara and G. M. Palma, Berry Phase for a Spin 1/2
Particle in a Classical Fluctuating Field, Phys. Rev. Lett. 91,
090404 (2003).

[128] D. Segal and A. Nitzan, Spin-Boson Thermal Rectifier, Phys.
Rev. Lett. 94, 034301 (2005).

[129] D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E
73, 026109 (2006).

[130] F. C. Lombardo and P. I. Villar, Correction to the ge-
ometric phase by structured environments: The onset of
non-markovian effects, Phys. Rev. A 91, 042111 (2015).

[131] R. Schmidt, M. F. Carusela, J. P. Pekola, S. Suomela, and J.
Ankerhold, Work and heat for two-level systems in dissipative
environments: Strong driving and non-markovian dynamics,
Phys. Rev. B 91, 224303 (2015).

[132] J. Liu, H. Xu, B. Li, and C. Wu, Energy transfer in the nonequi-
librium spin-boson model: From weak to strong coupling,
Phys. Rev. E 96, 012135 (2017).

[133] C. Wang, X.-M. Chen, K.-W. Sun, and J. Ren, Heat am-
plification and negative differential thermal conductance in
a strongly coupled nonequilibrium spin-boson system, Phys.
Rev. A 97, 052112 (2018).

[134] T. Yamamoto, M. Kato, T. Kato, and K. Saito, Heat transport
via a local two-state system near thermal equilibrium, New J.
Phys. 20, 093014 (2018).

[135] D. Newman, F. Mintert, and A. Nazir, Quantum limit
to nonequilibrium heat-engine performance imposed by
strong system-reservoir coupling, Phys. Rev. E 101, 052129
(2020).

[136] R. P. Riwar and J. Splettstoesser, Charge and spin pumping
through a double quantum dot, Phys. Rev. B 82, 205308
(2010).

[137] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Fractional charge and
quantized current in the quantum spin hall state, Nat. Phys. 4,
273 (2008).

[138] N. Bode, L. Arrachea, G. S. Lozano, T. S. Nunner, and F.
von Oppen, Current-induced switching in transport through
anisotropic magnetic molecules, Phys. Rev. B 85, 115440
(2012).

[139] Q. Meng, S. Vishveshwara, and T. L. Hughes, Spin-transfer
torque and electric current in helical edge states in quantum
spin hall devices, Phys. Rev. B 90, 205403 (2014).

[140] M. F. Ludovico, M. Moskalets, D. Sánchez, and L. Arrachea,
Dynamics of energy transport and entropy production in ac-
driven quantum electron systems, Phys. Rev. B 94, 035436
(2016).

[141] R. Balian, From Microphysics to Macrophysics (Springer-
Verlag, Berlin, Heidelberg, 1982), Vol. I, Chap. 5.

[142] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Dis-
sipation: The Phase-Space Perspective, Phys. Rev. Lett. 98,
080602 (2007).

[143] J. Horowitz and C. Jarzynski, Illustrative example of the rela-
tionship between dissipation and relative entropy, Phys. Rev.
E 79, 021106 (2009).

[144] M. Esposito, K. Lindenberg, and C. V. D. Broeck, Entropy
production as correlation between system and reservoir, New
J. Phys. 12, 013013 (2010).

155407-24

BIBEK BHANDARI et al. PHYSICAL REVIEW B 102, 155407 (2020)

[104] M. Tomka, T. Souza, S. Rosenberg, and A. Polkovnikov,
Geodesic paths for quantum many-body systems,
arXiv:1606.05890.

[105] P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S.
Vajna, and M. Kolodrubetz, Adiabatic perturbation theory and
geometry of periodically-driven systems, Phys. Rep. 688, 1
(2017).

[106] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classifying
and measuring geometry of a quantum ground state manifold,
Phys. Rev. B 88, 064304 (2013).

[107] J. C. Budich and S. Diehl, Topology of density matrices, Phys.
Rev. B 91, 165140 (2015).

[108] Charles-Edouard Bardyn, L. Wawer, A. Altland, M.
Fleischhauer, and S. Diehl, Probing the Topology of
Density Matrices, Phys. Rev. X 8, 011035 (2018).

[109] L. Arrachea, M. Moskalets, and L. Martin-Moreno, Heat pro-
duction and energy balance in nanoscale engines driven by
time-dependent fields, Phys. Rev. B 75, 245420 (2007).

[110] J. M. Luttinger, Theory of thermal transport coefficients, Phys.
Rev. 135, A1505 (1964).

[111] M. F. Ludovico, F. Battista, F. von Oppen, and L. Arrachea,
Adiabatic response and quantum thermoelectrics for ac-driven
quantum systems, Phys. Rev. B 93, 075136 (2016).

[112] G. Tatara, Thermal Vector Potential Theory of Transport
Induced by a Temperature Gradient, Phys. Rev. Lett. 114,
196601 (2015).

[113] D. Cohen, Quantum pumping in closed systems, adiabatic
transport, and the Kubo formula, Phys. Rev. B 68, 155303
(2003).

[114] D. J. Thouless, Quantization of particle transport, Phys. Rev.
B 27, 6083 (1983).

[115] J. Avron, D. Osadchy, and R. Seiler, A topological look at the
quantum Hall effect, Phys. Today 56(8), 38 (2003).

[116] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[117] M. Moskalets and M. Büttiker, Floquet scattering theory for
current and heat noise in large amplitude adiabatic pumps,
Phys. Rev. B 70, 245305 (2004).

[118] R. Bustos-Marún, G. Refael, and F. von Oppen, Adiabatic
Quantum Motors, Phys. Rev. Lett. 111, 060802 (2013).

[119] L. Arrachea and F. von Oppen, Nanomagnet coupled to quan-
tum spin hall edge: An adiabatic quantum motor, Physica E
74, 596 (2015).

[120] L. J. Fernández-Alcázar, H. M. Pastawski, and R. A. Bustos-
Marún, Dynamics and decoherence in nonideal thouless
quantum motors, Phys. Rev. B 95, 155410 (2017).

[121] M. F. Ludovico and M. Capone, Enhanced performance of a
quantum-dot-based nanomotor due to coulomb interactions,
Phys. Rev. B 98, 235409 (2018).

[122] A. Bruch, S. V. Kusminskiy, G. Refael, and F. von Oppen,
Interacting adiabatic quantum motor, Phys. Rev. B 97, 195411
(2018).

[123] A. O. Caldeira and A. J. Leggett, Quantum tunneling in a
dissipative system, Ann. Phys. 149, 374 (1983).

[124] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[125] R. S. Whitney and Y. Gefen, Berry Phase in a Nonisolated
System, Phys. Rev. Lett. 90, 190402 (2003).

[126] R. S. Whitney, Y. Makhlin, A. Shnirman, and Y. Gefen, Ge-
ometric Nature of the Environment-Induced Berry Phase and
Geometric Dephasing, Phys. Rev. Lett. 94, 070407 (2005).

[127] G. De Chiara and G. M. Palma, Berry Phase for a Spin 1/2
Particle in a Classical Fluctuating Field, Phys. Rev. Lett. 91,
090404 (2003).

[128] D. Segal and A. Nitzan, Spin-Boson Thermal Rectifier, Phys.
Rev. Lett. 94, 034301 (2005).

[129] D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E
73, 026109 (2006).

[130] F. C. Lombardo and P. I. Villar, Correction to the ge-
ometric phase by structured environments: The onset of
non-markovian effects, Phys. Rev. A 91, 042111 (2015).

[131] R. Schmidt, M. F. Carusela, J. P. Pekola, S. Suomela, and J.
Ankerhold, Work and heat for two-level systems in dissipative
environments: Strong driving and non-markovian dynamics,
Phys. Rev. B 91, 224303 (2015).

[132] J. Liu, H. Xu, B. Li, and C. Wu, Energy transfer in the nonequi-
librium spin-boson model: From weak to strong coupling,
Phys. Rev. E 96, 012135 (2017).

[133] C. Wang, X.-M. Chen, K.-W. Sun, and J. Ren, Heat am-
plification and negative differential thermal conductance in
a strongly coupled nonequilibrium spin-boson system, Phys.
Rev. A 97, 052112 (2018).

[134] T. Yamamoto, M. Kato, T. Kato, and K. Saito, Heat transport
via a local two-state system near thermal equilibrium, New J.
Phys. 20, 093014 (2018).

[135] D. Newman, F. Mintert, and A. Nazir, Quantum limit
to nonequilibrium heat-engine performance imposed by
strong system-reservoir coupling, Phys. Rev. E 101, 052129
(2020).

[136] R. P. Riwar and J. Splettstoesser, Charge and spin pumping
through a double quantum dot, Phys. Rev. B 82, 205308
(2010).

[137] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Fractional charge and
quantized current in the quantum spin hall state, Nat. Phys. 4,
273 (2008).

[138] N. Bode, L. Arrachea, G. S. Lozano, T. S. Nunner, and F.
von Oppen, Current-induced switching in transport through
anisotropic magnetic molecules, Phys. Rev. B 85, 115440
(2012).

[139] Q. Meng, S. Vishveshwara, and T. L. Hughes, Spin-transfer
torque and electric current in helical edge states in quantum
spin hall devices, Phys. Rev. B 90, 205403 (2014).

[140] M. F. Ludovico, M. Moskalets, D. Sánchez, and L. Arrachea,
Dynamics of energy transport and entropy production in ac-
driven quantum electron systems, Phys. Rev. B 94, 035436
(2016).

[141] R. Balian, From Microphysics to Macrophysics (Springer-
Verlag, Berlin, Heidelberg, 1982), Vol. I, Chap. 5.

[142] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Dis-
sipation: The Phase-Space Perspective, Phys. Rev. Lett. 98,
080602 (2007).

[143] J. Horowitz and C. Jarzynski, Illustrative example of the rela-
tionship between dissipation and relative entropy, Phys. Rev.
E 79, 021106 (2009).

[144] M. Esposito, K. Lindenberg, and C. V. D. Broeck, Entropy
production as correlation between system and reservoir, New
J. Phys. 12, 013013 (2010).

155407-24

BIBEK BHANDARI et al. PHYSICAL REVIEW B 102, 155407 (2020)

[104] M. Tomka, T. Souza, S. Rosenberg, and A. Polkovnikov,
Geodesic paths for quantum many-body systems,
arXiv:1606.05890.

[105] P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S.
Vajna, and M. Kolodrubetz, Adiabatic perturbation theory and
geometry of periodically-driven systems, Phys. Rep. 688, 1
(2017).

[106] M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classifying
and measuring geometry of a quantum ground state manifold,
Phys. Rev. B 88, 064304 (2013).

[107] J. C. Budich and S. Diehl, Topology of density matrices, Phys.
Rev. B 91, 165140 (2015).

[108] Charles-Edouard Bardyn, L. Wawer, A. Altland, M.
Fleischhauer, and S. Diehl, Probing the Topology of
Density Matrices, Phys. Rev. X 8, 011035 (2018).

[109] L. Arrachea, M. Moskalets, and L. Martin-Moreno, Heat pro-
duction and energy balance in nanoscale engines driven by
time-dependent fields, Phys. Rev. B 75, 245420 (2007).

[110] J. M. Luttinger, Theory of thermal transport coefficients, Phys.
Rev. 135, A1505 (1964).

[111] M. F. Ludovico, F. Battista, F. von Oppen, and L. Arrachea,
Adiabatic response and quantum thermoelectrics for ac-driven
quantum systems, Phys. Rev. B 93, 075136 (2016).

[112] G. Tatara, Thermal Vector Potential Theory of Transport
Induced by a Temperature Gradient, Phys. Rev. Lett. 114,
196601 (2015).

[113] D. Cohen, Quantum pumping in closed systems, adiabatic
transport, and the Kubo formula, Phys. Rev. B 68, 155303
(2003).

[114] D. J. Thouless, Quantization of particle transport, Phys. Rev.
B 27, 6083 (1983).

[115] J. Avron, D. Osadchy, and R. Seiler, A topological look at the
quantum Hall effect, Phys. Today 56(8), 38 (2003).

[116] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[117] M. Moskalets and M. Büttiker, Floquet scattering theory for
current and heat noise in large amplitude adiabatic pumps,
Phys. Rev. B 70, 245305 (2004).

[118] R. Bustos-Marún, G. Refael, and F. von Oppen, Adiabatic
Quantum Motors, Phys. Rev. Lett. 111, 060802 (2013).

[119] L. Arrachea and F. von Oppen, Nanomagnet coupled to quan-
tum spin hall edge: An adiabatic quantum motor, Physica E
74, 596 (2015).

[120] L. J. Fernández-Alcázar, H. M. Pastawski, and R. A. Bustos-
Marún, Dynamics and decoherence in nonideal thouless
quantum motors, Phys. Rev. B 95, 155410 (2017).

[121] M. F. Ludovico and M. Capone, Enhanced performance of a
quantum-dot-based nanomotor due to coulomb interactions,
Phys. Rev. B 98, 235409 (2018).

[122] A. Bruch, S. V. Kusminskiy, G. Refael, and F. von Oppen,
Interacting adiabatic quantum motor, Phys. Rev. B 97, 195411
(2018).

[123] A. O. Caldeira and A. J. Leggett, Quantum tunneling in a
dissipative system, Ann. Phys. 149, 374 (1983).

[124] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[125] R. S. Whitney and Y. Gefen, Berry Phase in a Nonisolated
System, Phys. Rev. Lett. 90, 190402 (2003).

[126] R. S. Whitney, Y. Makhlin, A. Shnirman, and Y. Gefen, Ge-
ometric Nature of the Environment-Induced Berry Phase and
Geometric Dephasing, Phys. Rev. Lett. 94, 070407 (2005).

[127] G. De Chiara and G. M. Palma, Berry Phase for a Spin 1/2
Particle in a Classical Fluctuating Field, Phys. Rev. Lett. 91,
090404 (2003).

[128] D. Segal and A. Nitzan, Spin-Boson Thermal Rectifier, Phys.
Rev. Lett. 94, 034301 (2005).

[129] D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E
73, 026109 (2006).

[130] F. C. Lombardo and P. I. Villar, Correction to the ge-
ometric phase by structured environments: The onset of
non-markovian effects, Phys. Rev. A 91, 042111 (2015).

[131] R. Schmidt, M. F. Carusela, J. P. Pekola, S. Suomela, and J.
Ankerhold, Work and heat for two-level systems in dissipative
environments: Strong driving and non-markovian dynamics,
Phys. Rev. B 91, 224303 (2015).

[132] J. Liu, H. Xu, B. Li, and C. Wu, Energy transfer in the nonequi-
librium spin-boson model: From weak to strong coupling,
Phys. Rev. E 96, 012135 (2017).

[133] C. Wang, X.-M. Chen, K.-W. Sun, and J. Ren, Heat am-
plification and negative differential thermal conductance in
a strongly coupled nonequilibrium spin-boson system, Phys.
Rev. A 97, 052112 (2018).

[134] T. Yamamoto, M. Kato, T. Kato, and K. Saito, Heat transport
via a local two-state system near thermal equilibrium, New J.
Phys. 20, 093014 (2018).

[135] D. Newman, F. Mintert, and A. Nazir, Quantum limit
to nonequilibrium heat-engine performance imposed by
strong system-reservoir coupling, Phys. Rev. E 101, 052129
(2020).

[136] R. P. Riwar and J. Splettstoesser, Charge and spin pumping
through a double quantum dot, Phys. Rev. B 82, 205308
(2010).

[137] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Fractional charge and
quantized current in the quantum spin hall state, Nat. Phys. 4,
273 (2008).

[138] N. Bode, L. Arrachea, G. S. Lozano, T. S. Nunner, and F.
von Oppen, Current-induced switching in transport through
anisotropic magnetic molecules, Phys. Rev. B 85, 115440
(2012).

[139] Q. Meng, S. Vishveshwara, and T. L. Hughes, Spin-transfer
torque and electric current in helical edge states in quantum
spin hall devices, Phys. Rev. B 90, 205403 (2014).

[140] M. F. Ludovico, M. Moskalets, D. Sánchez, and L. Arrachea,
Dynamics of energy transport and entropy production in ac-
driven quantum electron systems, Phys. Rev. B 94, 035436
(2016).

[141] R. Balian, From Microphysics to Macrophysics (Springer-
Verlag, Berlin, Heidelberg, 1982), Vol. I, Chap. 5.

[142] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Dis-
sipation: The Phase-Space Perspective, Phys. Rev. Lett. 98,
080602 (2007).

[143] J. Horowitz and C. Jarzynski, Illustrative example of the rela-
tionship between dissipation and relative entropy, Phys. Rev.
E 79, 021106 (2009).

[144] M. Esposito, K. Lindenberg, and C. V. D. Broeck, Entropy
production as correlation between system and reservoir, New
J. Phys. 12, 013013 (2010).

155407-24

Thermal vector 
potential

Leads to proper results for heat 

and thermoelectric current in linear response

(Kubo) formalism upon carefully treating the 
“diamagnetic” term.



Energy Flux and force operators 

BIBEK BHANDARI et al. PHYSICAL REVIEW B 102, 155407 (2020)

varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,

JQ
α = &

2π

∫ 2π/&

0
dt

〈
J E

α (t )
〉
. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

!=1

χ ad
t [O,F!]Ẋ!(t )

+
∑

α=L,R

χ ad
t

[
O,J E

α

]
ξ̇α (t ). (10)

Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E

R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
J E

α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,

JQ
α = &

2π

∫ 2π/&

0
dt

〈
J E

α (t )
〉
. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

!=1

χ ad
t [O,F!]Ẋ!(t )

+
∑

α=L,R

χ ad
t

[
O,J E

α

]
ξ̇α (t ). (10)

Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E

R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
J E

α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,

JQ
α = &
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∫ 2π/&

0
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J E

α (t )
〉
. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
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!=1

χ ad
t [O,F!]Ẋ!(t )

+
∑

α=L,R

χ ad
t

[
O,J E

α

]
ξ̇α (t ). (10)
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We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E
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)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
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α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E
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! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,
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The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

!=1

χ ad
t [O,F!]Ẋ!(t )

+
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O,J E

α

]
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Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E

R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
J E

α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,

JQ
α = &

2π

∫ 2π/&

0
dt

〈
J E

α (t )
〉
. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

!=1

χ ad
t [O,F!]Ẋ!(t )

+
∑

α=L,R

χ ad
t

[
O,J E

α

]
ξ̇α (t ). (10)

Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E

R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
J E

α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,
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α = &
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0
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. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
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an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,
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m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
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, with ! = 1, . . . , N, (11)
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at t0 = −∞.
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the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
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Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
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]
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Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,
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α = &

2π

∫ 2π/&

0
dt

〈
J E

α (t )
〉
. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

!=1

χ ad
t [O,F!]Ẋ!(t )

+
∑

α=L,R
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t

[
O,J E

α

]
ξ̇α (t ). (10)

Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E

R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
J E

α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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potential µL = µR = µ and should be described by the grand-
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the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
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voir α is given by
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Here, Hα is the Hamiltonian of reservoir α. When the chem-
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t , which would lead to
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tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
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where sν = ± for operators Fν which are even/odd under time
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we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
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describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
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J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by
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Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
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The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
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Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form
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dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E
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)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as
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{
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t [Fµ,Fν] µ ! N
∑
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α ,Fν

]
µ = N + 1
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Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
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describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑
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J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by
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α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,
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The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
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an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,
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Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator
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which has the interpretation of a force induced by the driving.
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Within this framework, we can evaluate the adiabatic evo-
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the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
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F =
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Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as
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Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
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where sν = ± for operators Fν which are even/odd under time
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we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
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production over a cycle
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t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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ΔT
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N

∑
ℓ′￼=1
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ΔT
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defines the transported heat flux within the adiabatic linear
response formalism. In fact, evaluating this current with the
adiabatic expansion of Eq. (10) and using the identities of
Eqs. (B7) and (B8), we can see that the average over one
period is identical in magnitude and opposite in signs at the
two reservoirs. Hence, we eliminate the label α and write

JQ
tr = "

2π

∫ 2π/"

0
dt

N+1∑

ν=1

%N+1,ν ( !X )Ẋν (t ). (17)

The term corresponding to the sum ν = 1, . . . , N is the pump-
ing contribution to the heat current. The literature on pumping
of charge and heat, starting with the seminal paper by Thou-
less [114], is so vast that it would be impossible to give a
proper account of it. A brief overview can be found in the
reviews [115,116]. One of the key results of the present paper
is to show how pumping affects the operation of a quantum
thermal machine, thus paving the way to observe geometric
effects in the operating mode of these systems. The last term
of Eq. (17), corresponding to ν = N + 1, is the heat current
flowing in response to a finite temperature bias across the
device.

For a single driving parameter and &T = 0, it is straight-
forward to show that the pumped heat current vanishes. At
least two parameters are necessary for pumping. This was
originally noticed in the framework of scattering matrix theory
for driven electron systems [79,81]. Moreover, a spatially
symmetric system has χ ad

t [J E
L ,F(] = −χ ad

t [J E
R ,F(], so that

these quantities should be zero in view of Eq. (B8). Hence,
breaking of spatial symmetry is another necessary condition
for a nonvanishing pumping contribution to the heat current
[109,117].

The net generated power has components associated to the
time-dependent driving forces as well as to the thermal bias,

P = "

2π

∫ 2π/"

0
dt

(
N∑

(=1

〈F(〉Ẋ((t ) +
∑

α,β=L,R

〈J E
α 〉(t )ξ̇α (t )

)

= "

2π

∫ 2π/"

0
dt Ẋ · !( !X ) · Ẋ. (18)

The response matrix on the right-hand side of Eq. (18) was
introduced through the definition of forces and the energy
current in Eq. (14). While Eqs. (17) for the fluxes are linear
in Ẋ, Eq. (18) is bilinear in these parameters. This reflects
the fact that the dissipated heat, defined in Eq. (3) is at least
second order in these quantities–equivalent to being O("2)
[109,117]. The cross terms proportional to the thermal bias
and ac driving usually have opposite signs and cancel one
another when evaluating the total power. This happens, in
particular, in the absence of a magnetic field with driving
forces symmetric under time reversal, as a consequence of the
Onsager relations (16).

From Eq. (2) for the total dissipated heat flux, we have the
following expression for the entropy production rate:

T Ṡ = JQ
L + JQ

R = P. (19)

Substituting Eq. (18), we get

Ṡ = "

2πT

∫ 2π/"

0
dt Ẋ(t ) · !( !X ) · Ẋ(t ). (20)

We present an alternative derivation for the above expression
in Appendix C.

The forces 〈F(〉(t ) enter the work performed by the thermal
machine, as will be discussed in more detail in Sec. III B
below. We also find it useful to introduce average of the force
over one period,

F( = "

2π

∫ 2π/"

0
dt〈F(〉(t ) = F(,BO + F(,ar, (,= 1, . . . , N.

(21)

The first term of Eq. (21) corresponds to the instantaneous
equilibrium (Born-Oppenheimer) description given by the
first term of Eq. (14), while the second term is the first order
adiabatic reaction force defined in Ref. [86].

III. GEOMETRIC CHARACTERIZATION

A. Thermal geometric tensor

It is instructive to decompose the tensor %µ,ν ( !X ) into its
symmetric and antisymmetric parts,

%S,A
µ,ν = 1

2 (%µ,ν ± %ν,µ). (22)

Equation (20) for the entropy production implies that the sym-
metric component %S

µ,ν controls dissipation. Since the rate of
entropy production Ṡ is non-negative, the symmetric part %S

µ,ν

can be viewed as a metric tensor on the space of thermody-
namic states [98,99,101]. Then, geodesics with respect to this
metric correspond to adiabatic trajectories which minimize
dissipation [98,99,101]. This contribution to %µ,ν ( !X ) has also
been referred to as geometric friction [95,96,99].

We can obtain an explicit expression for %µ,ν from the
Lehmann representation (see details in Appendix D). The
result for the symmetric component is

%S
µ,ν ( !X ) = h̄π lim

ω→0

∑

n,m

pm
(εn − εm)2

ω
Re[〈∂µm|n〉〈n|∂νm〉]

× [δ(ω − (εm − εn)) − δ(ω − (εn − εm))]. (23)

Here, |m〉 and εm denote the instantaneous eigenstates and
eigenenergies of Ht and pm is the corresponding thermal
weight, with the same definitions as in Eq. (10). Similarly,
the antisymmetric component can be expressed as

%A
µ,ν ( !X ) = 2h̄

∑

m

pm Im[〈∂µm|∂νm〉]. (24)

In the limit of zero temperature, the sum over m is domi-
nated by the ground state and %A

µ,ν ( !X ) reduces to its Berry
curvature. For &T = 0, this component can be viewed as a
velocity-dependent force, akin to a Lorentz force, which does
not contribute to the net entropy production. This contribution
has been referred to as geometric magnetism [85,88–90,95].

It is interesting to compare %µ,ν to the quantum geometric
tensor for the instantaneous ground state |ψ〉 of a closed
system as a function of parameters X( [105,106],

g(,(′ = 〈∂(ψ |∂(′ψ 〉 − 〈∂(ψ |ψ〉〈ψ |∂(′ψ 〉. (25)

Analogous to %µ,ν , the symmetric part of g(,(′ defines a metric
on the manifold of ground states and the antisymmetric part
equals the Berry curvature. The crucial difference between the
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Onsager relations

Λμν( ⃗X , B) = ± Λνμ( ⃗X , − B)

In many examples

Λℓ,ℓ′￼
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Notation

Λℓ,ℓ′￼
( ⃗X ), ℓ, ℓ′￼ = 1,…, N, Λ( ⃗X )

⃗Λ( ⃗X ) = (ΛN+1,1( ⃗X ), …, ΛN+1,N( ⃗X ))

κ = ΛN+1,N+1( ⃗X )
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters !X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define #T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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of Berry) which are responsible for deviations from the Carnot
efficiency. Indeed, a finite heat conductance diminishes the
efficiency of the heat engine, as do frictional losses described
by the first term on the right-hand side of Eq. (28). Note that
the contribution of the heat conductance to the transferred heat
is proportional to the period of the cycle. This implies that this
term is less detrimental to the efficiency as the frequency at
which the machine operates increases. Conversely, by increas-
ing the frequency, the effect of the frictional losses becomes
larger.

While the overall efficiency is fundamentally limited to
the Carnot limit, there is no fundamental limit to reducing
the detrimental effects of the nongeometric contributions.
While the frictional forces become arbitrarily small as one ap-
proaches the truly adiabatic limit, the limit of a negligible heat
conductance !N+1,N+1 ! 0 can be realized in a topological
quantum pump. In such pumps, the ground state is separated
from the excited states by a gap. Consequently, the symmet-
ric contributions to !µ,ν–including the heat conductance–are
strongly suppressed.

2. Refrigerator

A refrigerator uses work W performed on the system to re-
move heat from a cold to a hot reservoir. Thus we can define a
corresponding efficiency or coefficient of performance (COP)
as

η(fr) = −Qtr

W
. (36)

Again focusing on a time-reversal invariant system with con-
stant $T/T , this efficiency approaches the Carnot limit ηfr =
T/$T for zero heat conductance. The efficiency is reduced
by a finite heat conductance since, for a refrigerator, its con-
tribution to the numerator has the opposite sign compared to
the pumped heat.

3. Heat pump

Of course, the device can also be used as an adiabatic
heat pump in the absence of a thermal bias $T/T . Heat is
transported from left to right or vice versa due to the variation
of #X . According to Eq. (28), we need to exert work W associ-
ated with dissipation, even if there is no temperature bias. We
can then define a corresponding efficiency of heat pumping
through

η(pump) = |Qtr,ac|
W

. (37)

The denominator in this expression is proportional to %, so
that the efficiency of the heat pump grows as it becomes more
adiabatic.

IV. EXAMPLES

We now illustrate the general formalism introduced in the
previous sections by two driven systems coupled to thermals
baths. One example is referred to as a driven qubit and consists
of a generic two-level system with time-dependent energies
and inter-level transition matrix elements, coupled to baths of
bosonic excitations. This problem will be solved in the limit
of weak coupling to the reservoirs. The second example is a

driven quantum dot, which consists of a confined structure
with two single-electron levels—one per spin orientation—
driven by a rotating magnetic field. This problem is solved for
weak as well as for strong coupling to spin-polarized electron
reservoirs.

A. Driven qubit

We consider a generalization of the celebrated spin-boson
model, which was introduced in Refs. [123,124]. As in
those works, we express the Hamiltonian in terms of the
Pauli matrices #̂σ = (σ̂x, σ̂y, σ̂z ) and a magnetic field #B(t ) =
(Bx(t ), By(t ), Bz(t )). In our case, the latter varies periodically
in time. The ensuing Hamiltonian reads

HS (t ) = #B(t ) · #̂σ. (38)

The reservoirs are represented by the Hamiltonians

Hα =
∑

k

εkαb†
kαbkα, α = L, R, (39)

with bkα and b†
kα being the annihilation and creation operators

of a bosonic excitation.
The coupling is described by the Hamiltonian Hc =

Hc,L + Hc,R. Our generalization with respect to previous
works is to consider different types of couplings to the L and R
reservoirs. This is motivated by the fact that spatial inversion
symmetry has to be broken in order to obtain pumping, as
mentioned in Sec. II C. Concretely, the Hamiltonians read

Hc,α =
∑

k

Vkατ̂α (bkα + b†
kα ), (40)

with τ̂L = σ̂x and τ̂R = σ̂z. Hence, the q-bit couples to the L or
R reservoir if it is in a state with a nonvanishing projection on
the eigenstates |x,±〉 of σ̂x or |z,±〉 of σ̂z, respectively. Any
other combination of two Pauli matrices with τ̂L %= τ̂R would
also be appropriate, as we will discuss in Sec. IV A 3. Previous
works related to heat engines based on q-bits considered the
same type of coupling to the two reservoirs and nonadiabatic
driving [62,85,125–135].

The Hamiltonian for the system of Eq. (38) can be
transformed to the basis of instantaneous eigenstates | j〉,
such that HS (t )| j〉 = Ej (t )| j〉, j = 1, 2, with E1,2(t ) =
∓| #B|. The resulting transformed Hamiltonian reads H̃S (t ) =
Û −1(t )HS (t )Û (t ) with Û (t ) being a unitary transformation
and

H̃S (t ) = E1(t )|1〉〈1| + E2(t )|2〉〈2|. (41)

Accordingly, the contact Hamiltonian can be also expressed
in this basis as

H̃c,α (t ) =
∑

k

∑

i j

Vkαvα,i j (t )ρ̂i j (t )(bkα + b†
kα ), (42)

with vα,i j (t ) = [Û −1(t )τ̂αÛ (t )]i j , Û (t ) being the unitary
transformation which diagonalizes the Hamiltonian (38), and
ρ̂i j = |i〉〈 j|.

Before proceeding to explicit calculations, we can gather
some intuition on how the driven q-bit may work as a thermal
machine by using the sketch of Fig. 2. As a consequence of the
driving, the energy of the two levels as well as the coupling to
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of Berry) which are responsible for deviations from the Carnot
efficiency. Indeed, a finite heat conductance diminishes the
efficiency of the heat engine, as do frictional losses described
by the first term on the right-hand side of Eq. (28). Note that
the contribution of the heat conductance to the transferred heat
is proportional to the period of the cycle. This implies that this
term is less detrimental to the efficiency as the frequency at
which the machine operates increases. Conversely, by increas-
ing the frequency, the effect of the frictional losses becomes
larger.

While the overall efficiency is fundamentally limited to
the Carnot limit, there is no fundamental limit to reducing
the detrimental effects of the nongeometric contributions.
While the frictional forces become arbitrarily small as one ap-
proaches the truly adiabatic limit, the limit of a negligible heat
conductance !N+1,N+1 ! 0 can be realized in a topological
quantum pump. In such pumps, the ground state is separated
from the excited states by a gap. Consequently, the symmet-
ric contributions to !µ,ν–including the heat conductance–are
strongly suppressed.

2. Refrigerator

A refrigerator uses work W performed on the system to re-
move heat from a cold to a hot reservoir. Thus we can define a
corresponding efficiency or coefficient of performance (COP)
as

η(fr) = −Qtr

W
. (36)

Again focusing on a time-reversal invariant system with con-
stant $T/T , this efficiency approaches the Carnot limit ηfr =
T/$T for zero heat conductance. The efficiency is reduced
by a finite heat conductance since, for a refrigerator, its con-
tribution to the numerator has the opposite sign compared to
the pumped heat.

3. Heat pump

Of course, the device can also be used as an adiabatic
heat pump in the absence of a thermal bias $T/T . Heat is
transported from left to right or vice versa due to the variation
of #X . According to Eq. (28), we need to exert work W associ-
ated with dissipation, even if there is no temperature bias. We
can then define a corresponding efficiency of heat pumping
through

η(pump) = |Qtr,ac|
W

. (37)

The denominator in this expression is proportional to %, so
that the efficiency of the heat pump grows as it becomes more
adiabatic.

IV. EXAMPLES

We now illustrate the general formalism introduced in the
previous sections by two driven systems coupled to thermals
baths. One example is referred to as a driven qubit and consists
of a generic two-level system with time-dependent energies
and inter-level transition matrix elements, coupled to baths of
bosonic excitations. This problem will be solved in the limit
of weak coupling to the reservoirs. The second example is a

driven quantum dot, which consists of a confined structure
with two single-electron levels—one per spin orientation—
driven by a rotating magnetic field. This problem is solved for
weak as well as for strong coupling to spin-polarized electron
reservoirs.

A. Driven qubit

We consider a generalization of the celebrated spin-boson
model, which was introduced in Refs. [123,124]. As in
those works, we express the Hamiltonian in terms of the
Pauli matrices #̂σ = (σ̂x, σ̂y, σ̂z ) and a magnetic field #B(t ) =
(Bx(t ), By(t ), Bz(t )). In our case, the latter varies periodically
in time. The ensuing Hamiltonian reads

HS (t ) = #B(t ) · #̂σ. (38)

The reservoirs are represented by the Hamiltonians

Hα =
∑

k

εkαb†
kαbkα, α = L, R, (39)

with bkα and b†
kα being the annihilation and creation operators

of a bosonic excitation.
The coupling is described by the Hamiltonian Hc =

Hc,L + Hc,R. Our generalization with respect to previous
works is to consider different types of couplings to the L and R
reservoirs. This is motivated by the fact that spatial inversion
symmetry has to be broken in order to obtain pumping, as
mentioned in Sec. II C. Concretely, the Hamiltonians read

Hc,α =
∑

k

Vkατ̂α (bkα + b†
kα ), (40)

with τ̂L = σ̂x and τ̂R = σ̂z. Hence, the q-bit couples to the L or
R reservoir if it is in a state with a nonvanishing projection on
the eigenstates |x,±〉 of σ̂x or |z,±〉 of σ̂z, respectively. Any
other combination of two Pauli matrices with τ̂L %= τ̂R would
also be appropriate, as we will discuss in Sec. IV A 3. Previous
works related to heat engines based on q-bits considered the
same type of coupling to the two reservoirs and nonadiabatic
driving [62,85,125–135].

The Hamiltonian for the system of Eq. (38) can be
transformed to the basis of instantaneous eigenstates | j〉,
such that HS (t )| j〉 = Ej (t )| j〉, j = 1, 2, with E1,2(t ) =
∓| #B|. The resulting transformed Hamiltonian reads H̃S (t ) =
Û −1(t )HS (t )Û (t ) with Û (t ) being a unitary transformation
and

H̃S (t ) = E1(t )|1〉〈1| + E2(t )|2〉〈2|. (41)

Accordingly, the contact Hamiltonian can be also expressed
in this basis as

H̃c,α (t ) =
∑

k

∑

i j

Vkαvα,i j (t )ρ̂i j (t )(bkα + b†
kα ), (42)

with vα,i j (t ) = [Û −1(t )τ̂αÛ (t )]i j , Û (t ) being the unitary
transformation which diagonalizes the Hamiltonian (38), and
ρ̂i j = |i〉〈 j|.

Before proceeding to explicit calculations, we can gather
some intuition on how the driven q-bit may work as a thermal
machine by using the sketch of Fig. 2. As a consequence of the
driving, the energy of the two levels as well as the coupling to
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of Berry) which are responsible for deviations from the Carnot
efficiency. Indeed, a finite heat conductance diminishes the
efficiency of the heat engine, as do frictional losses described
by the first term on the right-hand side of Eq. (28). Note that
the contribution of the heat conductance to the transferred heat
is proportional to the period of the cycle. This implies that this
term is less detrimental to the efficiency as the frequency at
which the machine operates increases. Conversely, by increas-
ing the frequency, the effect of the frictional losses becomes
larger.

While the overall efficiency is fundamentally limited to
the Carnot limit, there is no fundamental limit to reducing
the detrimental effects of the nongeometric contributions.
While the frictional forces become arbitrarily small as one ap-
proaches the truly adiabatic limit, the limit of a negligible heat
conductance !N+1,N+1 ! 0 can be realized in a topological
quantum pump. In such pumps, the ground state is separated
from the excited states by a gap. Consequently, the symmet-
ric contributions to !µ,ν–including the heat conductance–are
strongly suppressed.

2. Refrigerator

A refrigerator uses work W performed on the system to re-
move heat from a cold to a hot reservoir. Thus we can define a
corresponding efficiency or coefficient of performance (COP)
as

η(fr) = −Qtr

W
. (36)

Again focusing on a time-reversal invariant system with con-
stant $T/T , this efficiency approaches the Carnot limit ηfr =
T/$T for zero heat conductance. The efficiency is reduced
by a finite heat conductance since, for a refrigerator, its con-
tribution to the numerator has the opposite sign compared to
the pumped heat.

3. Heat pump

Of course, the device can also be used as an adiabatic
heat pump in the absence of a thermal bias $T/T . Heat is
transported from left to right or vice versa due to the variation
of #X . According to Eq. (28), we need to exert work W associ-
ated with dissipation, even if there is no temperature bias. We
can then define a corresponding efficiency of heat pumping
through

η(pump) = |Qtr,ac|
W

. (37)

The denominator in this expression is proportional to %, so
that the efficiency of the heat pump grows as it becomes more
adiabatic.

IV. EXAMPLES

We now illustrate the general formalism introduced in the
previous sections by two driven systems coupled to thermals
baths. One example is referred to as a driven qubit and consists
of a generic two-level system with time-dependent energies
and inter-level transition matrix elements, coupled to baths of
bosonic excitations. This problem will be solved in the limit
of weak coupling to the reservoirs. The second example is a

driven quantum dot, which consists of a confined structure
with two single-electron levels—one per spin orientation—
driven by a rotating magnetic field. This problem is solved for
weak as well as for strong coupling to spin-polarized electron
reservoirs.

A. Driven qubit

We consider a generalization of the celebrated spin-boson
model, which was introduced in Refs. [123,124]. As in
those works, we express the Hamiltonian in terms of the
Pauli matrices #̂σ = (σ̂x, σ̂y, σ̂z ) and a magnetic field #B(t ) =
(Bx(t ), By(t ), Bz(t )). In our case, the latter varies periodically
in time. The ensuing Hamiltonian reads

HS (t ) = #B(t ) · #̂σ. (38)

The reservoirs are represented by the Hamiltonians

Hα =
∑

k

εkαb†
kαbkα, α = L, R, (39)

with bkα and b†
kα being the annihilation and creation operators

of a bosonic excitation.
The coupling is described by the Hamiltonian Hc =

Hc,L + Hc,R. Our generalization with respect to previous
works is to consider different types of couplings to the L and R
reservoirs. This is motivated by the fact that spatial inversion
symmetry has to be broken in order to obtain pumping, as
mentioned in Sec. II C. Concretely, the Hamiltonians read

Hc,α =
∑

k

Vkατ̂α (bkα + b†
kα ), (40)

with τ̂L = σ̂x and τ̂R = σ̂z. Hence, the q-bit couples to the L or
R reservoir if it is in a state with a nonvanishing projection on
the eigenstates |x,±〉 of σ̂x or |z,±〉 of σ̂z, respectively. Any
other combination of two Pauli matrices with τ̂L %= τ̂R would
also be appropriate, as we will discuss in Sec. IV A 3. Previous
works related to heat engines based on q-bits considered the
same type of coupling to the two reservoirs and nonadiabatic
driving [62,85,125–135].

The Hamiltonian for the system of Eq. (38) can be
transformed to the basis of instantaneous eigenstates | j〉,
such that HS (t )| j〉 = Ej (t )| j〉, j = 1, 2, with E1,2(t ) =
∓| #B|. The resulting transformed Hamiltonian reads H̃S (t ) =
Û −1(t )HS (t )Û (t ) with Û (t ) being a unitary transformation
and

H̃S (t ) = E1(t )|1〉〈1| + E2(t )|2〉〈2|. (41)

Accordingly, the contact Hamiltonian can be also expressed
in this basis as

H̃c,α (t ) =
∑

k

∑

i j

Vkαvα,i j (t )ρ̂i j (t )(bkα + b†
kα ), (42)

with vα,i j (t ) = [Û −1(t )τ̂αÛ (t )]i j , Û (t ) being the unitary
transformation which diagonalizes the Hamiltonian (38), and
ρ̂i j = |i〉〈 j|.

Before proceeding to explicit calculations, we can gather
some intuition on how the driven q-bit may work as a thermal
machine by using the sketch of Fig. 2. As a consequence of the
driving, the energy of the two levels as well as the coupling to
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of Berry) which are responsible for deviations from the Carnot
efficiency. Indeed, a finite heat conductance diminishes the
efficiency of the heat engine, as do frictional losses described
by the first term on the right-hand side of Eq. (28). Note that
the contribution of the heat conductance to the transferred heat
is proportional to the period of the cycle. This implies that this
term is less detrimental to the efficiency as the frequency at
which the machine operates increases. Conversely, by increas-
ing the frequency, the effect of the frictional losses becomes
larger.

While the overall efficiency is fundamentally limited to
the Carnot limit, there is no fundamental limit to reducing
the detrimental effects of the nongeometric contributions.
While the frictional forces become arbitrarily small as one ap-
proaches the truly adiabatic limit, the limit of a negligible heat
conductance !N+1,N+1 ! 0 can be realized in a topological
quantum pump. In such pumps, the ground state is separated
from the excited states by a gap. Consequently, the symmet-
ric contributions to !µ,ν–including the heat conductance–are
strongly suppressed.

2. Refrigerator

A refrigerator uses work W performed on the system to re-
move heat from a cold to a hot reservoir. Thus we can define a
corresponding efficiency or coefficient of performance (COP)
as

η(fr) = −Qtr

W
. (36)

Again focusing on a time-reversal invariant system with con-
stant $T/T , this efficiency approaches the Carnot limit ηfr =
T/$T for zero heat conductance. The efficiency is reduced
by a finite heat conductance since, for a refrigerator, its con-
tribution to the numerator has the opposite sign compared to
the pumped heat.

3. Heat pump

Of course, the device can also be used as an adiabatic
heat pump in the absence of a thermal bias $T/T . Heat is
transported from left to right or vice versa due to the variation
of #X . According to Eq. (28), we need to exert work W associ-
ated with dissipation, even if there is no temperature bias. We
can then define a corresponding efficiency of heat pumping
through

η(pump) = |Qtr,ac|
W

. (37)

The denominator in this expression is proportional to %, so
that the efficiency of the heat pump grows as it becomes more
adiabatic.

IV. EXAMPLES

We now illustrate the general formalism introduced in the
previous sections by two driven systems coupled to thermals
baths. One example is referred to as a driven qubit and consists
of a generic two-level system with time-dependent energies
and inter-level transition matrix elements, coupled to baths of
bosonic excitations. This problem will be solved in the limit
of weak coupling to the reservoirs. The second example is a

driven quantum dot, which consists of a confined structure
with two single-electron levels—one per spin orientation—
driven by a rotating magnetic field. This problem is solved for
weak as well as for strong coupling to spin-polarized electron
reservoirs.

A. Driven qubit

We consider a generalization of the celebrated spin-boson
model, which was introduced in Refs. [123,124]. As in
those works, we express the Hamiltonian in terms of the
Pauli matrices #̂σ = (σ̂x, σ̂y, σ̂z ) and a magnetic field #B(t ) =
(Bx(t ), By(t ), Bz(t )). In our case, the latter varies periodically
in time. The ensuing Hamiltonian reads

HS (t ) = #B(t ) · #̂σ. (38)

The reservoirs are represented by the Hamiltonians

Hα =
∑

k

εkαb†
kαbkα, α = L, R, (39)

with bkα and b†
kα being the annihilation and creation operators

of a bosonic excitation.
The coupling is described by the Hamiltonian Hc =

Hc,L + Hc,R. Our generalization with respect to previous
works is to consider different types of couplings to the L and R
reservoirs. This is motivated by the fact that spatial inversion
symmetry has to be broken in order to obtain pumping, as
mentioned in Sec. II C. Concretely, the Hamiltonians read

Hc,α =
∑

k

Vkατ̂α (bkα + b†
kα ), (40)

with τ̂L = σ̂x and τ̂R = σ̂z. Hence, the q-bit couples to the L or
R reservoir if it is in a state with a nonvanishing projection on
the eigenstates |x,±〉 of σ̂x or |z,±〉 of σ̂z, respectively. Any
other combination of two Pauli matrices with τ̂L %= τ̂R would
also be appropriate, as we will discuss in Sec. IV A 3. Previous
works related to heat engines based on q-bits considered the
same type of coupling to the two reservoirs and nonadiabatic
driving [62,85,125–135].

The Hamiltonian for the system of Eq. (38) can be
transformed to the basis of instantaneous eigenstates | j〉,
such that HS (t )| j〉 = Ej (t )| j〉, j = 1, 2, with E1,2(t ) =
∓| #B|. The resulting transformed Hamiltonian reads H̃S (t ) =
Û −1(t )HS (t )Û (t ) with Û (t ) being a unitary transformation
and

H̃S (t ) = E1(t )|1〉〈1| + E2(t )|2〉〈2|. (41)

Accordingly, the contact Hamiltonian can be also expressed
in this basis as

H̃c,α (t ) =
∑

k

∑

i j

Vkαvα,i j (t )ρ̂i j (t )(bkα + b†
kα ), (42)

with vα,i j (t ) = [Û −1(t )τ̂αÛ (t )]i j , Û (t ) being the unitary
transformation which diagonalizes the Hamiltonian (38), and
ρ̂i j = |i〉〈 j|.

Before proceeding to explicit calculations, we can gather
some intuition on how the driven q-bit may work as a thermal
machine by using the sketch of Fig. 2. As a consequence of the
driving, the energy of the two levels as well as the coupling to
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FIG. 2. Illustration of the q-bit coupled to two bosonic reservoirs
by the Hamiltonian of Eq. (40) with τ̂L = σ̂x and τ̂R = σ̂z, operating
as a heat engine. (a) The q-bit is in one of the states |x, ±〉 and
couples to the reservoir L. (b) The q-bit is in one of the states |z,±〉
and couples only to the reservoir R. The driving changes the energy
difference between the two levels.

the L and R reservoirs change in time according to Eqs. (41)
and (42), respectively. Panel (a) represents a situation where
the q-bit at a given time t1 is in one of the eigenstates of
σ̂x, hence, it couples to the L reservoir and it is completely
decoupled from R. Panel (b) illustrates the situation where the
q-bit is in an eigenstate of σ̂z at a different time t2, therefore
it is coupled to R and decoupled from L. In an evolution from
t1 to t2 the energy difference δE (t ) = E2(t ) − E1(t ) changes.
A cycle can be realized when the protocol returns the q-bit
to the state of the step (a). The paradigmatic Otto cycle cor-
responds to the extreme situation, where the q-bit is allowed
to thermalize with L at the step (a) and with R at the step
(b), while it evolves decoupled from the two reservoirs at
intermediate times [62,66]. For the case of adiabatic driving,
the changes take place smoothly and the q-bit is coupled to the
two reservoirs at all times. For suitable protocols, the setup
may anyway operate as a heat engine or refrigerator, as well
as a heat pump.

We will analyze in detail protocols with two time-
dependent parameters of the form #B(t ) = (Bx(t ), 0, Bz(t )),
with

Bx(t ) = Bx,0 + Bx,1 cos($t + φ),

Bz(t ) = Bz,0 + Bz,1 cos($t ). (43)

These two components of #B(t ) are identified with the time-
dependent parameters of Eq. (5) as follows:

#X (t ) = (X1(t ), X2(t )) ≡ (Bz(t ), Bx (t )). (44)

In addition, we will consider a constant difference of tem-
perature &T , which defines Ẋ3 = &T/T . We will solve the
problem in the limit of very weak coupling between the qubit
and the reservoirs (small Vkα).

1. Master equation approach

We follow the procedure of Refs. [25,82,136], which
consists in solving the time-dependent master equation by
performing an adiabatic expansion along the lines of the gen-
eral formalism of Sec. II B. The basic idea is to describe the
evolution of the population probabilities of the eigenstates
of H̃S (t ), represented by the vector p(t ) = (p1(t ), p2(t )), in
terms of a master equation where the effect of the coupling
to the reservoirs is treated at the lowest order of perturbation
theory (first order in |Vkα|2). The master equation reads

d
dt

p(t ) =
∑

α

Mα ( #B) · p(t ), (45)

where Mα ( #B) is a 2 × 2 matrix representing the instantaneous
transition rates corresponding to the reservoir α, which is
given by

Mα ( #B) =
[
−(α

1→2( #B) (α
2→1( #B)

(α
1→2( #B) −(α

2→1( #B)

]

. (46)

Here we stress that the instantaneous rates depend on time
through the parameters #B, as indicated in Eq. (44). We have
introduced the following definitions:

(α
1→2( #B) = λα ( #B)[γα (δE ( #B)) + γ̃α (−δE ( #B))],

(47)
(α

2→1( #B) = λα ( #B)[γ̃α (δE ( #B)) + γα (−δE ( #B))],

with

γα (ε) = nα (ε)(α (ε)/h̄,
(48)

γ̃α (ε) = [1 + nα (ε)](α (ε)/h̄,

while δE ( #B) = E2( #B) − E1( #B) and λα ( #B) = vα,12( #B)vα,21( #B).
For τ̂L = σ̂x and τ̂R = σ̂z, we have

λL( #B) = B2
x (t )

B2
z (t ) + B2

x (t )
, λR( #B) =

B2
z (t )

B2
z (t ) + B2

x (t )
. (49)

nα (ε) is the Bose-Einstein distribution for bath α and (α (ε)
is the corresponding spectral density, which we assume to be
Ohmic

(α (ε) = (α ε e−ε/εC , with ε > 0, (50)

εC being the cutoff frequency. Since, according to Eq. (50),
there are no negative-energy states in the bath, we set
γα[−δE ( #B)] = γ̃α[−δE ( #B)] = 0 (notice that δE ( #B) is posi-
tive by definition).

Following Refs. [25,136], the population can be expanded
in different orders of the driving frequency $. Here we keep
only the zeroth-order (instantaneous) term p(i), and first-order
(adiabatic) term p(a) such that

p(t ) = p(i)(t ) + p(a)(t ). (51)

The solution of the master equation (45) order by order in $,
leads to

∑

α

Mα ( #B) · p(i)(t ) = 0 (52)
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FIG. 1. Schematic configuration of the setup. A working substance
WS is in contact with two reservoirs at di↵erent temperatures, Tc and
Th. The state ⇢̂ of the system changes at slow but finite speed along
a closed path defined by the Hamiltonian H(~B(t)) in a quasistatic
process.

e�ciency in a wide range of parameters.
The paper is structured as follows. In Sec. II, we introduce
the set-up and define the relevant thermodynamic quantities to
characterize the cycle. In Sec. III, we describe the underlying
geometry of the system. In Sec. IV we describe the heat en-
gine and refrigeration modes of the machine, and perform the
optimization with respect to the driving time. In Sec. V, we
develop the full optimization of the machine. We then com-
pute in detail all the relevant quantities in a model of one of
the most paradigmatic and simplest quantum engines, namely
a driven qubit system (see Refs. [12, 15, 62]).

II. THE SETUP AND ITS THERMODYNAMICS

We focus on the usual configuration where the WS operates
in contact to two reservoirs at di↵erent temperatures Th (hot)
and Tc (cold), with Th = T + �T and Tc ⌘ T . A particular
example, which will be studied in detail in forthcoming sec-
tions is sketched in Fig. 1. The full system is described by the
Hamiltonian

H(t) =
X

↵=c,h

�
H↵ +Hcont,↵

�
+HWS(t). (1)

The Hamiltonian for the WS depends on time through a set
of control parameters Bj(t), j = 1,N, which we enclose
in a vector ~B(t) = (B1(t), . . . , BN(t)). Hence, HWS(t) =
HWS(~B(t)). We are interested in cycles, so that we consider
time-dependent protocols satisfying ~B(t + ⌧) = ~B(t), being ⌧
the period of the cycle. The reservoirs are represented by the
Hamiltonian

H↵ =
X

k

"k↵b†k↵bk↵, ↵ = c, h, (2)

with bk↵ and b†k↵ being the annihilation and creation operators
of a bosonic excitation. The coupling is represented by

Hcont,↵ =
X

k

Vk↵⇡̂↵
⇣
bk↵ + b†k↵

⌘
, (3)

where ⇡̂↵ is a matrix with the dimension of the Hilbert space
of the WS.
The crucial concepts that characterize the operation of the
thermal machine are the work performed and the net heat ex-
changed between the two reservoirs during the cycle. The op-
eration of the driven quantum system as a thermal machine in
the presence of a temperature bias relies on the mechanism of
heat–work conversion. In the present case we make two main
assumptions: (i) slow driving, characterized by a small rate
of change of the driving parameters with time, dt~B, as well as
(ii) a small temperature bias �T between the two reservoirs.
This enables us to work in the linear-response regime with
respect to dt~B and �T .
A natural theoretical framework in this context is the adiabatic
linear response theory proposed in Ref. [63] in the geometric
perspective of Ref. [15]. This formalism applies to the regime
where the period of the cycle is much larger than the longest
time-scale characterizing the WS coupled to the reservoirs. In
most of the cases, such time scale is determined by the re-
laxation time ⌧rel of the WS with the reservoirs. Hence, this
approach is useful when ⌧ � ⌧rel. We also consider small
temperature bias, such that �T/T ⌧ 1. This description
leads to a linear relation between the relevant energy fluxes
operating the cycle and the components of the N + 1 vector
Ẋ = (dt~B,�T/T ). In particular, the net output work and trans-
ferred heat between the hot and cold reservoirs per period ⌧
are, respectively, expressed as follows,

W =
�T
T

Z ⌧

0
dt ~⇤ · dt~B �

Z ⌧

0
dt dt~B · ⇤ · dt~B , (4)

Q =
Z ⌧

0
dt ~⇤ · dt~B +

�T
T

Z ⌧

0
dt  . (5)

These expressions can be derived in the adiabatic linear-
response regime as from Ref. [15] and we defer the reader to
that paper for further details. For the moment it is enough to
stress that {⇤, ~⇤, } are all local functions of ~B, while they also
depend on the coupling parameters, the density of states of the
thermal baths and T . All these coe�cients define the thermal
geometric tensor⇤µ,⌫, µ, ⌫ = 1, . . . ,N,N+1 of which the sub-
tensor ⇤ is composed of the elements i, j = 1, . . .N, while the
vector ~⇤ is composed of the elements ⇤N+1, j = �⇤ j,N+1, j =
1,N and  = ⇤N+1,N+1 is proportional to the thermal conduc-
tance. In Eq. (4), the first term represents the mechanism
of heat–work conversion and the second one corresponds to
finite-time dissipation developed by the time-dependent con-
trols. On the other hand, the transferred heat Q also contains
two terms associated to two di↵erent physical processes. The
first one describes the heat exchange between the reservoirs
related to the driving while the second one is the heat trans-
port as a response to the temperature bias. Notice that the
fundamental component for the thermal machine to operate is
the heat–work conversion term

R ⌧
0 dt ~⇤ · dt~B. In fact, without

this component, the only surviving processes are the dissipa-
tion of the energy supplied by the driving forces and the trivial
conduction of heat as a response to the thermal bias.
The di↵erent terms in Eqs. (4) and (5) can be reinterpreted ge-
ometrically, as explained in the following Sec. III. This allows
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corresponds to the first non-equilibrium correction to the quasi-static evolution, which

is proportional to the rate of change (velocity) of the time-dependent parameters or,

equivalently, to the driving period in the case of cyclic protocols[55, 75, 76, 77].

In order to provide a more precise meaning of the adiabatic evolution, we summarize

in what follows how to describe this regime in the general framework of the adiabatic

linear-response formalism of Refs. [78, 79], assuming one or more reservoirs at the same

temperature. This procedure is similar to Kubo formalism [80], but implementing the

perturbation with respect to the frozen Hamiltonian. The adiabatic evolution in time

of the expectation values of any observable O is expressed as follows

O(t) = hOit +
NX

`=1

�ad
t
[O,F`] Ẋ`(t), (10)

where h·it indicates that the mean value is taken with respect to the thermal distribution

⇢t corresponding to the Hamiltonian frozen at the time t. This contribution is similar

to the so called Born-Oppenheimer approximation and it e↵ectively describes a quasi-

static evolution where the system is in equilibrium time by time. The other terms are

the non-equilibrium adiabatic corrections, which depend on the adiabatic susceptibilities

�ad
t
[O,F`] = �

i

h̄

Z
t

1
dt0(t � t0)h[O(t),F`(t

0)]it. (11)

In the context of closed systems, an equivalent scheme was implemented with focus on

the evolution of the quantum states [81, 82].

In this framework it is simple to identify the structure of Eqs. (7) when the energy

fluxes in the reservoirs and the forces are evaluated following the previous procedure.

The first term of Eq. (10) leads to the quasi-static and conservative components defined

in Eq. (8), while the non-equilibrium and non-conservative components read

P (non�cons)
`

(t) = Ẋ`(t)
X

`0

⇤`,`0Ẋ`0 (t),

J (non�eq)
↵

(t) =
X

`

⇤↵,`Ẋ`(t), (12)

being ⇤`,`0 = ��ad
t
[F`,F`0 ] and ⇤↵,` = ��ad

t
[J↵,F`].

To calculate explicitly these quantities in the weak-coupling regime by recourse to

quantum master equation, we can follow the procedure of Refs. [75, 83, 84], which

is based on expanding the matrix elements of ⇢̂S(t) into a frozen and an adiabatic

component. Symbolically, ⇢̂S(t) = ⇢(f)(t) + ⇢(a)(t), where the upperscript f indicates

that we are considering the Hamiltonian frozen at a given time tf . The frozen

component is the solution of the quantum master equation (9) corresponding to the

frozen Hamiltonian, which can be expressed as follows

d⇢(f)

dt
= �

i

h̄

⇥
HS, ⇢̂

(f)
⇤
+

X

↵

L↵

⇥
⇢̂(f)

⇤
. (13)
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The adiabatic component is the correction / ~̇X(t) and can be calculated from

d⇢(f)

d ~X
· ~̇X(t) =

X

↵

L↵

⇥
⇢̂(a)

⇤
, (14)

including also the normalization of the matrix elements of ⇢̂(a). Similarly, the frozen

and adiabatic component of the energy current can be calculated from

Jf/a

↵
(t) = Tr

h
HS( ~X)L↵

⇥
⇢̂(f/a)

⇤i
. (15)

2.3. Floquet regime: fast periodic dynamics

The opposite limit to the quasi-static and adiabatic regimes, corresponds to very fast

driving. In the regime of strong driving, the notion of a reservoir with a well define

temperature with which the few-level quantum system is contacted is not necessarily

useful and the mechanism of thermalization is still under debate [85].

A common situation corresponds to periodic driving with one or more

commensurate frequencies and the appropriate framework to describe these problems

is Floquet theory [86] which is the time analog of Bloch theory for spatially periodic

systems. This type of driving received significant attention recently for the potential to

generate novel collective behavior in quantum systems, which may lead to novel states

of the matter [85]. The realization of some of these exotic phases has been recently

experimentally realized in a quantum processor of superconducting qubits [87].

In the case of a single frequency !, the Hamiltonian satisfies H(t+ ⌧) = H(t), with

⌧ = 2⇡/!. This operator can be expanded in Fourier series as

H(t) =
X

k

eik!tHk. (16)

The Floquet eigenstates are defined as to have a structure consistent with this

periodicity,

| (t)i = ei"/h̄t
+1X

n=�1
e�in!t

| mi. (17)

Hence, when substituted in the Schrödinger and using Eq. (16) we find

("+ h̄!n) | ni =
+1X

m=�1
Hm| n+mi, (18)

which defines a problem with a tight-binding structure in the synthetic Floquet lattice.

The structure of this Eq. also reveals the exchange of ”Floquet quanta” h̄! underlying

this dynamics and e↵ectively provides and environment for the driven system.

This formulation can be generalized for the case of M commensurate frequencies, in

which case it is convenient to define ~! = (!1, . . . ,!M) and also collect the corresponding

Floquet indices in a vector ~n, in which case Eq. (18) is generalized to

("+ h̄~! · ~n) | ~ni =
X

~m

H~m| ~n+~mi. (19)
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Adiabatic correction

Reduced density matrix:

Frozen:

Adiabatic:

Energy current:
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We have highlighted the antisymmetric and symmetric char-
acter in each case. Notice that, according to the analysis of
Secs. II C and III, the symmetric component contributes
purely to dissipation of energy and entropy production, while
the antisymmetric one is related to useful work.

In order to characterize the performance of the heat engine
and refrigerator as in Eqs. (35) and (36), we also need the heat
transported in one period as a response to the thermal bias. It
reads

Qtr,!T =
∫ 2π/#

0
dt J (th)

R (t ) (69)

with J (th)
R (t ) defined in Eq. (55). This component is not geo-

metric and we recall that the total transported heat is Qtr =
Qtr,ac + Qtr,!T.

According to our conventions, the contribution to the con-
tour integral of the first component of Eq. (34) is always
positive and is the portion related to the net dissipated power
and entropy production due to the ac driving. Instead, the
second one, also defining Qtr,ac in Eq. (33), can have any
sign. In the case of a heat engine, Qtr,ac and Qtr,!T have the
same sign, i.e., the pumped heat flows in the same direction as
the component induced by the temperature bias. As a conse-
quence, it generates useful work that can be absorbed by the ac
sources. Notice that in such a case, the second term of Eq. (34)
has an opposite sign to the first. In the refrigerator, it is the
opposite. Irrespectively of the sign of Qtr,ac, which determines
that the system operates as a heat engine or a refrigerator, the
crucial quantity to optimize is the integral of !AA( !B) over a
suitable chosen closed path in the parameter space.

3. Results

We present some results for specific parameters of the
driving protocol defined in Eq. (44).

We start by analyzing the case with !T = 0 and showing
that a necessary condition for the heat currents to be finite is
that the coupling to the left and right reservoirs are different,
i.e., τ̂L "= τ̂R. In fact, let us notice that these couplings deter-
mine the functions λL( !B) and λR( !B). If we assume symmetric
couplings, we have λL( !B) = λR( !B) and &L = &R. Therefore
we get ML( !B) = MR( !B) in Eq. (46). After replacing the latter
matrices in Eq. (55), we get J (a)

L (t ) = J (a)
R (t ) at every time.

This implies that the currents obtained by averaging over
one period, i.e., JQ

tr,L and JQ
tr,R ≡ JQ

tr,ac, must be equal to zero
in order to agree with Eq. (3). Interestingly, one can check
by means of the explicit calculations that the adiabatically
pumped current in one period JQ

tr,ac is zero even if one allows
&L and &R to be different. Moreover, we verified that the
magnitude of the pumped heat current depends on the chosen
combinations of Pauli matrices (see Appendix E). The maxi-
mum pumping for the protocol of Eq. (44) corresponds to Hc,α
containing τ̂L = σ̂x and τ̂R = σ̂z, as in Eq. (40). As a matter
of fact, in the other two combinations (τ̂L = σ̂x, τ̂R = σ̂y, and
τ̂L = σ̂y, τ̂R = σ̂z) one obtains half the magnitude.

We now turn to analyze the geometric properties, which
can be fully characterized by the vector potentials !AA( !B) and
!̃AS ( !B), entering Eqs. (34) and (33). These vectors are rep-
resented with arrows in the parameters space in Fig. 3. In
the same figure, we show several paths, which are plotted in
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FIG. 3. Vectors !AA and !̃A
S
. Black and red arrows represent the

vector !AA
3 ( !B) ≡ ()A

3,1( !B),)A
3,2( !B)) in the parameter space, while

the green arrows represent the vector !̃A
S

defined in Eq. (32). The
blue line is the closed path corresponding to the driving protocol
in Eq. (44) with Bx,0 = Bz,0 = 0.2kBT , Bx,1 = Bz,1 = 0.1kBT . The
other parameters are &L = &R = 0.2 and εC = 100kBT and define
the spectral properties of the bosonic bath as indicated in Eq. (50).

blue, corresponding to the protocol of Eq. (44) with different
relative phases φ. This provides a visual representation of the
magnitude of Qtr,ac and the two types of geometric compo-
nents of W . In all the cases, we represent with red arrows the
vector !AA( !B) along the path while the green arrows represent
the vector potential !̃AS ( !B) along the same protocol (note that
!̃AS ( !B) is inherently associated with the protocol and cannot
be defined outside it). The latter vectors follow the circula-
tion of the path. Thus they lead to a positive nonvanishing
contribution to W for all the values of φ. Instead, the vectors
!AA( !B) are in general opposite to the circulation of the path
along some pieces. In particular, for trajectories like the ones
corresponding to φ = nπ , they are parallel to the circulation
along half of the path and antiparallel in the other half, leading
to a vanishing result of the integral.

In Fig. 4, we plot the adiabatically pumped heat current
Qtr,ac, black curve, as a function of the phase lag φ in the weak
pumping limit. The latter corresponds to considering values
of Bx,1 and Bz,1 small enough so that

∮ !AA
3 · d !B in Eqs. (34)

and (33) is proportional to the area, in the parameter space,
enclosed by the closed contour defining the protocol. Indeed,
using the Green’s theorem, these integrals can be written as
a surface integral of the derivatives of !AA

3 with respect to !B.
When Bx,1 and Bz,1 are small, such derivatives do not depend
on !B and can be factorized outside the integral. Accordingly,
as shown in Fig. 4, the pumped heat current (black curve)
behaves as a sine function of φ, which vanishes at φ = 0.
In particular, we note that a heat current is extracted from
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FIG. 2. Illustration of the q-bit coupled to two bosonic reservoirs
by the Hamiltonian of Eq. (40) with τ̂L = σ̂x and τ̂R = σ̂z, operating
as a heat engine. (a) The q-bit is in one of the states |x, ±〉 and
couples to the reservoir L. (b) The q-bit is in one of the states |z,±〉
and couples only to the reservoir R. The driving changes the energy
difference between the two levels.

the L and R reservoirs change in time according to Eqs. (41)
and (42), respectively. Panel (a) represents a situation where
the q-bit at a given time t1 is in one of the eigenstates of
σ̂x, hence, it couples to the L reservoir and it is completely
decoupled from R. Panel (b) illustrates the situation where the
q-bit is in an eigenstate of σ̂z at a different time t2, therefore
it is coupled to R and decoupled from L. In an evolution from
t1 to t2 the energy difference δE (t ) = E2(t ) − E1(t ) changes.
A cycle can be realized when the protocol returns the q-bit
to the state of the step (a). The paradigmatic Otto cycle cor-
responds to the extreme situation, where the q-bit is allowed
to thermalize with L at the step (a) and with R at the step
(b), while it evolves decoupled from the two reservoirs at
intermediate times [62,66]. For the case of adiabatic driving,
the changes take place smoothly and the q-bit is coupled to the
two reservoirs at all times. For suitable protocols, the setup
may anyway operate as a heat engine or refrigerator, as well
as a heat pump.

We will analyze in detail protocols with two time-
dependent parameters of the form #B(t ) = (Bx(t ), 0, Bz(t )),
with

Bx(t ) = Bx,0 + Bx,1 cos($t + φ),

Bz(t ) = Bz,0 + Bz,1 cos($t ). (43)

These two components of #B(t ) are identified with the time-
dependent parameters of Eq. (5) as follows:

#X (t ) = (X1(t ), X2(t )) ≡ (Bz(t ), Bx (t )). (44)

In addition, we will consider a constant difference of tem-
perature &T , which defines Ẋ3 = &T/T . We will solve the
problem in the limit of very weak coupling between the qubit
and the reservoirs (small Vkα).

1. Master equation approach

We follow the procedure of Refs. [25,82,136], which
consists in solving the time-dependent master equation by
performing an adiabatic expansion along the lines of the gen-
eral formalism of Sec. II B. The basic idea is to describe the
evolution of the population probabilities of the eigenstates
of H̃S (t ), represented by the vector p(t ) = (p1(t ), p2(t )), in
terms of a master equation where the effect of the coupling
to the reservoirs is treated at the lowest order of perturbation
theory (first order in |Vkα|2). The master equation reads

d
dt

p(t ) =
∑

α

Mα ( #B) · p(t ), (45)

where Mα ( #B) is a 2 × 2 matrix representing the instantaneous
transition rates corresponding to the reservoir α, which is
given by

Mα ( #B) =
[
−(α

1→2( #B) (α
2→1( #B)

(α
1→2( #B) −(α

2→1( #B)

]

. (46)

Here we stress that the instantaneous rates depend on time
through the parameters #B, as indicated in Eq. (44). We have
introduced the following definitions:

(α
1→2( #B) = λα ( #B)[γα (δE ( #B)) + γ̃α (−δE ( #B))],

(47)
(α

2→1( #B) = λα ( #B)[γ̃α (δE ( #B)) + γα (−δE ( #B))],

with

γα (ε) = nα (ε)(α (ε)/h̄,
(48)

γ̃α (ε) = [1 + nα (ε)](α (ε)/h̄,

while δE ( #B) = E2( #B) − E1( #B) and λα ( #B) = vα,12( #B)vα,21( #B).
For τ̂L = σ̂x and τ̂R = σ̂z, we have

λL( #B) = B2
x (t )

B2
z (t ) + B2

x (t )
, λR( #B) =

B2
z (t )

B2
z (t ) + B2

x (t )
. (49)

nα (ε) is the Bose-Einstein distribution for bath α and (α (ε)
is the corresponding spectral density, which we assume to be
Ohmic

(α (ε) = (α ε e−ε/εC , with ε > 0, (50)

εC being the cutoff frequency. Since, according to Eq. (50),
there are no negative-energy states in the bath, we set
γα[−δE ( #B)] = γ̃α[−δE ( #B)] = 0 (notice that δE ( #B) is posi-
tive by definition).

Following Refs. [25,136], the population can be expanded
in different orders of the driving frequency $. Here we keep
only the zeroth-order (instantaneous) term p(i), and first-order
(adiabatic) term p(a) such that

p(t ) = p(i)(t ) + p(a)(t ). (51)

The solution of the master equation (45) order by order in $,
leads to

∑

α

Mα ( #B) · p(i)(t ) = 0 (52)
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FIG. 4. Adiabatically pumped heat Qac and total work W vs the
phase lag φ in the weak pumping limit for "T = 0. Same parameters
as in Fig. 3.

the reservoir R when φ is between 0 and π and injected for
π < φ < 2π . The dependence of the total work W developed
by the ac sources with respect to the phase lag φ is is also
plotted in Fig. 4 (red curve) using the same parameters as for
the heat current. We notice that W is finite in the whole range
of values of φ, behaving like a cosine function with a vertical
offset, hence, it is nonvanishing in any case.

In what follows, we show some results for the strong pump-
ing regime corresponding to larger amplitudes of Bx,1 and Bz,1.
In the top panel of Fig. 5, we plot the heat pumped and the
work performed in a period by the ac source as functions of
the phase lag φ. As in the case of weak pumping previously
analyzed, the pumped heat as well as the work performed by
the ac sources are equal to zero at φ = 0 and π , since the
contour has no area (see Fig. 3). For other parameters, it is
difficult to make a simple argument to explain in which direc-
tion is the heat pumped. In fact, we see that Qtr,ac changes sign
many times between φ = 0 and φ = 2π , whereas W shows
multiple positive peaks. In the bottom panel of Fig. 5, we plot
the pumped heat in the absence of thermal bias as a function
of temperature. For a suitable choice of parameters (relative
to the solid curves), the direction of the flow of adiabatic
heat can be reversed just by increasing the temperature of
the reservoirs. In Fig. 6, we plot the variation of the heat
pumped and the work performed by the ac source, namely
Qtr,ac and W , as a function of the temperature T . We note
that W is always positive, as expected, and is non monotonous
(displaying a maximum). Qtr,ac are the same data as in Fig. 5
bottom, but plotted in a larger range of temperatures. Qtr,ac is
non monotonous too and changes sign, going from negative
values for small T to positive values at around kBT = 0.02εC.
The inset of Fig. 6 shows the efficiency η(pump), defined in
Eq. (37), of the system operated as a heat pump as a function
of T . The nonmonotonic behavior simply reflects the fact that,
in the strong pumping regime, the heat currents change sign at
around kBT = 0.02εC, as shown in Fig. 5.
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FIG. 5. (Top) Pumped heat and work vs the phase difference
between adiabatically-driven system parameters for kBT = 0.01εC.
(Bottom) Normalized pumped heat currents flowing in the left
and right lead for φ = π/2. We have used the following parame-
ters: &L = &R = 1/5, Bz,0 = 0.06εC (Bz,0 = 0.04εC for the dashed
lines in the bottom panel), Bx,0 = 0.03εC, Bx,1 = Bz,1 = 0.07εC, and
"T = 0.

Finally, in Fig. 7, we assess the performance of the driven
q-bit as a refrigerator which removes heat from the cold reser-
voir (R) even in the presence of a positive thermal bias "T ,
i.e., for TR < TL. Given this temperature bias, we focus on a
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(Inset) Efficiency of a heat pump for "T = 0 as a function of kBT .
Same parameters as in Fig. 5 for the solid curves.
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⃗X = (Bx(t), Bz(t))

diss,ac

Qpump = ∮ ⃗Λ( ⃗X ) ⋅ d ⃗X

⃗Λ( ⃗X ) = (ΛN+1,1( ⃗X ), …, ΛN+1,N( ⃗X ))
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2ICFO—Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
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We adopt a geometric approach to describe the performance of adiabatic quantum machines, operating under
slow time-dependent driving and in contact to two reservoirs with a temperature bias during all the cycle. We
show that the problem of optimizing the power generation of a heat engine and the e�ciency of both the heat
engine and refrigerator operational modes is reduced to an isoperimetric problem with non-trivial underlying
metrics and curvature. This corresponds to the maximization of the ratio between the area enclosed by a closed
curve and its corresponding length. We illustrate this procedure in a qubit coupled to two reservoirs operating
as a thermal machine by means of an adiabatic protocol.

I. INTRODUCTION

The development and implementation of thermodynamic pro-
cesses in few-level quantum systems is currently a very ac-
tive area of research. Thermodynamic cycles conceived for
macroscopic working substances (WS), such as the Otto or
Carnot cycle, are now realized in single atoms [1–6] and large
theoretical e↵orts are devoted to its characterization and op-
timization at the microscopic scale [7–15]. In these stan-
dard thermodynamic cycles, the WS operates in four steps,
of which two are in contact to reservoirs at di↵erent tempera-
tures connected one at a time, while the other two steps consist
in an evolution decoupled from the reservoirs. It is however
typically hard to fully isolate a quantum WS from the envi-
ronment, which is required to emulate ideal classical cycles.
This motivates the study of non-equilibrium systems, where
the driven WS is permanently in contact with two or more
reservoirs. Unlike standard thermodynamic cycles, these mi-
croscopic machines operate away from equilibrium during all
the cycle. Thermoelectric devices [16] as well as autonomous
refrigerators [17–19] are seminal examples of this type of op-
eration.
When the WS is connected at the same time to two or more
thermal reservoirs, it is permanently thread by a heat flux.
Hence, the very operation as a machine relies on the mecha-
nism of heat–work conversion in order to overcome this e↵ect
as well as the dissipation generated by the driving sources.
The optimal machine is the one leading to the optimal bal-
ance between these two processes. In quantum systems, the
operation under a small temperature bias and “adiabatic driv-
ing” through parameters which slowly vary on time is of
paramount relevance, since this is an appealing scenario to
control the non-equilibrium mechanisms. In this regime, the
period of the cycle is larger than any characteristic time of the
quantum system, including the relaxation time between sys-
tem and reservoirs [20–26].

⇤ These two authors contributed equally.

Recently, it was proposed that the dissipation and the heat–
work conversion mechanisms are respectively described by
di↵erent components of the thermal geometric tensor. Fur-
thermore, the heat–work conversion component can be ex-
pressed in terms of a Berry-type phase [15], which has an
associated Berry-type curvature [27], and similar ideas were
followed in [28, 29]. Hence, a length and an area in the pa-
rameter space can be defined. On the other hand, it is well
known that dissipation and entropy production admit a geo-
metric description in terms of the concept of thermodynamic
length [30–39]. This geometric approach has proven useful to
optimize finite-time thermodynamic processes (examples can
be found in [9, 40–42] for classical and [12, 43, 44] for quan-
tum systems), including the finite-time Carnot cycle [11, 12]
and slowly driven engines [45–49].

The aim of the present work is to combine the geometrical
description of the two competing mechanisms of the non-
equilibrium thermal machine (namely heat-work conversion
and dissipation) in order to find optimal protocols for max-
imizing power generation of the heat-engine operation and
the e�ciency of the heat engine and refrigerator operational
modes. We show that the problem of finding such optimal
protocols reduces to an isoperimetric problem [50] (also stud-
ied as Cheeger Problem [51, 52]), that is the task of finding
the shape which maximizes the ratio between area and length.
This is one of the oldest geometric problems in history, and
was solved already by the ancient Greeks in the standard 2-
dimensional Euclidean plane [53]. Nevertheless, when the un-
derlying area density or length metrics are nontrivial [54–57],
no general solution is known.

We illustrate these ideas in a prominent quantum system
playing the role of the WS: a qubit driven by two parame-
ters slowly changing in time and asymmetrically coupled to
two thermal reservoirs at di↵erent temperature (see Fig. 1).
We show analytically that the limiting value for the area
in the parameter space is given by the celebrated Landauer
bound [58, 59], which has been the motivation of many stud-
ies including several experiments (see e.g. [60, 61]). We also
find that, operating as a heat engine, the qubit thermal ma-
chine o↵ers a very good ratio between generated power and
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for the optimization of the thermodynamic protocols in terms
of clear geometrical quantities.
It is important to notice that the second terms of Eqs. (4)
and (5) have a defined sign. In our convention, ⇤ is posi-
tive definite since it is directly related to the entropy produc-
tion rate [15], which means that it is detrimental for the work
output. Similarly,  can be seen to be positive, as a conse-
quence of the fact that this component of the transferred heat
describes the flux from the hottest to the coldest reservoir.
These are direct consequences of the second law of thermo-
dynamics. Instead, the line integral

R ⌧
0 dt ~⇤ · dt~B may have

any sign, depending on the driving protocol and it is enough
to time-reverse the function ~B(t) to flip the sign. As mentioned
before, this term describes the heat–work conversion process
and its sign defines the type of operation of the machine. In
fact, when it is negative, the contribution of the first term of
Eq. (5) may overcome the heat flowing into the coldest reser-
voir and enable the operation of the machine as a refrigera-
tor. This has an associated cost, described by the first term
of Eq. (4), which must be developed by the driving sources.
In the opposite situation where

R ⌧
0 dt ~⇤ · dt~B � 0, the first

term of Eq. (4) may overcome the second one, enabling the
mechanism of work output. This has an associated extra heat
transfer from the hot to the cold reservoirs, which is accounted
for the first term of Eq. (5). This operation corresponds to a
heat engine.

III. GEOMETRY OF THE PROBLEM

We now elaborate on the geometrical interpretation of the
quantities presented in the previous section.
First, we factorize the total duration ⌧ in the expressions
Eqs. (4) and (5), such to decouple the time-rescaling from the
geometrical contribution to the di↵erent quantities. Indeed by
considering an adimensional time unit ✓ such that

~B(t) = ~B(✓⌧) , ✓ 2 [0, 1] , (6)

we can define (identifying from now on the adimensional time
derivative ~̇B ⌘ @~B/@✓ = ⌧dt~B )

A =
Z 1

0
d✓ ~⇤ · ~̇B , (7)

L2 =

Z 1

0
d✓ ~̇B · ⇤ · ~̇B , (8)

hi =

Z 1

0
d✓  . (9)

Accordingly, Eqs. (4) and (5) can be expressed as follows,

W =
�T
T

A �
L2

⌧
(10)

Q = A +
�T
T
⌧hi. (11)

The names A and L2 are related the geometrical meaning of
the quantities above, as we discuss below. The representation

of Eq. (7) highlights the fact that A corresponds to a Berry-
type phase in the parameter space as discussed in Ref. [15].
Notice, that, in order to have a non-vanishing value of A, at
least two time-dependent parameters are necessary. This is
basically the same argument widely discussed in the literature
of adiabatic charge pumping [21, 23, 64, 65]. In addition, it
is necessary to break some symmetries in the system to have a
finite value of this closed integral [15], as discussed below. On
the other hand, given that ~B(✓) represents a closed trajectory
in space, we can use Stokes’ theorem to re-express the line-
integral defining A

A =
Z

@⌃

~⇤ · d~B =
Z

⌃

(~rB ^ ~⇤) · d~⌃ , (12)

where ⌃ is a surface in the ~B space, with boundary @⌃ coin-
ciding with the control trajectory. In this representation, A is
the flux of the vector ~rB ^ ~⇤ through the area enclosed by the
control trajectory, and can be also interpreted as the integral
over this area weighted by the Berry curvature [27]. We can
therefore think of A as the area of the surface defined by the
control trajectory (with local weight depending on the Berry
curvature). Note that this geometrical translation clarifies as
well that A depends only on the geometry of the trajectory
~B(✓): that is, not only A is independent of ⌧, but it is also in-
variant under any reparametrization ✓0(✓) which might change
the local speed and time spent on di↵erent points of the tra-
jectory.
Concerning L2, it can be interpreted as a length of the control
trajectory ~B(✓), as it is clear from (8) that it represents the in-
tegral of a quadratic form that defines a metric in the ~B space.
At the same time, given the presence of two time derivatives,
L2 can depend in general on reparametrizations ✓0(✓). How-
ever, L2 represents losses due to dissipation in the driving –
see Eq. (4) – and we are therefore interested in its minimum
value, which can be obtained through a Cauchy-Schwarz in-
equality

L2
�

 Z 1

0
d✓

q
~̇B · ⇤ · ~̇B

!2

=

 Z

@⌃

q
d~B · ⇤ · d~B

!2

⌘ L
2 .

(13)

The lower bound L is fully geometric (it depends solely
on @⌃) and it is always achievable by choosing the time-
parametrization ✓0 such that ~̇B · ⇤ · ~̇B is constant. L is a nat-
ural extension of the standard thermodynamic length [9, 30–
37, 42, 44, 66] to non-equilibrium set-ups where the WS is
simultaneously interacting with several baths.
Finally, it is apparent that hi Eq.(9) represents the simple av-
erage of a scalar number (the heat conductance) along the tra-
jectory. In general it clearly also depends on reparametriza-
tions of the adimensional time ✓0(✓), as the average can be
arbitrarily close to the maximum value max of the trajectoy,
in case ✓0 is such to spend almost all the time close to max.
Similarly hi can be arbitrarily close to the minimum value
along the trajectory min.

3
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control trajectory (with local weight depending on the Berry
curvature). Note that this geometrical translation clarifies as
well that A depends only on the geometry of the trajectory
~B(✓): that is, not only A is independent of ⌧, but it is also in-
variant under any reparametrization ✓0(✓) which might change
the local speed and time spent on di↵erent points of the tra-
jectory.
Concerning L2, it can be interpreted as a length of the control
trajectory ~B(✓), as it is clear from (8) that it represents the in-
tegral of a quadratic form that defines a metric in the ~B space.
At the same time, given the presence of two time derivatives,
L2 can depend in general on reparametrizations ✓0(✓). How-
ever, L2 represents losses due to dissipation in the driving –
see Eq. (4) – and we are therefore interested in its minimum
value, which can be obtained through a Cauchy-Schwarz in-
equality
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The lower bound L is fully geometric (it depends solely
on @⌃) and it is always achievable by choosing the time-
parametrization ✓0 such that ~̇B · ⇤ · ~̇B is constant. L is a nat-
ural extension of the standard thermodynamic length [9, 30–
37, 42, 44, 66] to non-equilibrium set-ups where the WS is
simultaneously interacting with several baths.
Finally, it is apparent that hi Eq.(9) represents the simple av-
erage of a scalar number (the heat conductance) along the tra-
jectory. In general it clearly also depends on reparametriza-
tions of the adimensional time ✓0(✓), as the average can be
arbitrarily close to the maximum value max of the trajectoy,
in case ✓0 is such to spend almost all the time close to max.
Similarly hi can be arbitrarily close to the minimum value
along the trajectory min.

3

for the optimization of the thermodynamic protocols in terms
of clear geometrical quantities.
It is important to notice that the second terms of Eqs. (4)
and (5) have a defined sign. In our convention, ⇤ is posi-
tive definite since it is directly related to the entropy produc-
tion rate [15], which means that it is detrimental for the work
output. Similarly,  can be seen to be positive, as a conse-
quence of the fact that this component of the transferred heat
describes the flux from the hottest to the coldest reservoir.
These are direct consequences of the second law of thermo-
dynamics. Instead, the line integral

R ⌧
0 dt ~⇤ · dt~B may have

any sign, depending on the driving protocol and it is enough
to time-reverse the function ~B(t) to flip the sign. As mentioned
before, this term describes the heat–work conversion process
and its sign defines the type of operation of the machine. In
fact, when it is negative, the contribution of the first term of
Eq. (5) may overcome the heat flowing into the coldest reser-
voir and enable the operation of the machine as a refrigera-
tor. This has an associated cost, described by the first term
of Eq. (4), which must be developed by the driving sources.
In the opposite situation where

R ⌧
0 dt ~⇤ · dt~B � 0, the first

term of Eq. (4) may overcome the second one, enabling the
mechanism of work output. This has an associated extra heat
transfer from the hot to the cold reservoirs, which is accounted
for the first term of Eq. (5). This operation corresponds to a
heat engine.

III. GEOMETRY OF THE PROBLEM

We now elaborate on the geometrical interpretation of the
quantities presented in the previous section.
First, we factorize the total duration ⌧ in the expressions
Eqs. (4) and (5), such to decouple the time-rescaling from the
geometrical contribution to the di↵erent quantities. Indeed by
considering an adimensional time unit ✓ such that

~B(t) = ~B(✓⌧) , ✓ 2 [0, 1] , (6)

we can define (identifying from now on the adimensional time
derivative ~̇B ⌘ @~B/@✓ = ⌧dt~B )
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Accordingly, Eqs. (4) and (5) can be expressed as follows,
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The names A and L2 are related the geometrical meaning of
the quantities above, as we discuss below. The representation

of Eq. (7) highlights the fact that A corresponds to a Berry-
type phase in the parameter space as discussed in Ref. [15].
Notice, that, in order to have a non-vanishing value of A, at
least two time-dependent parameters are necessary. This is
basically the same argument widely discussed in the literature
of adiabatic charge pumping [21, 23, 64, 65]. In addition, it
is necessary to break some symmetries in the system to have a
finite value of this closed integral [15], as discussed below. On
the other hand, given that ~B(✓) represents a closed trajectory
in space, we can use Stokes’ theorem to re-express the line-
integral defining A
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parametrization ✓0 such that ~̇B · ⇤ · ~̇B is constant. L is a nat-
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37, 42, 44, 66] to non-equilibrium set-ups where the WS is
simultaneously interacting with several baths.
Finally, it is apparent that hi Eq.(9) represents the simple av-
erage of a scalar number (the heat conductance) along the tra-
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The lower bound L is fully geometric (it depends solely
on @⌃) and it is always achievable by choosing the time-
parametrization ✓0 such that ~̇B · ⇤ · ~̇B is constant. L is a nat-
ural extension of the standard thermodynamic length [9, 30–
37, 42, 44, 66] to non-equilibrium set-ups where the WS is
simultaneously interacting with several baths.
Finally, it is apparent that hi Eq.(9) represents the simple av-
erage of a scalar number (the heat conductance) along the tra-
jectory. In general it clearly also depends on reparametriza-
tions of the adimensional time ✓0(✓), as the average can be
arbitrarily close to the maximum value max of the trajectoy,
in case ✓0 is such to spend almost all the time close to max.
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L2 =
∫ 1

0
dθ !̇B · " · !̇B, (10)

〈κ〉 =
∫ 1

0
dθκ . (11)

Accordingly, Eqs. (6) and (7) can be expressed as
follows:

W = $T
T

A − L2

τ
, (12)

Q = A + $T
T

τ 〈κ〉. (13)

The names A and L2 are related the geometrical meaning
of the quantities above, as we discuss below. The repre-
sentation of Eq. (9) highlights the fact that A corresponds
to a Berry-type phase in the parameter space as discussed
in Ref. [15]. Notice, that, in order to have a nonvanish-
ing value of A, at least two time-dependent parameters
are necessary. This is basically the same argument widely
discussed in the literature of adiabatic charge pumping
[21,23,65,66]. In addition, it is necessary to break some
symmetries in the system to have a finite value of this
closed integral [15], as discussed below.

Given that !B(θ) represents a closed trajectory in space,
we can use Stokes’ theorem—in a three-dimensional
space or its corresponding generalization in higher dimen-
sions—to re-express the line integral defining A

A =
∫

∂'

!" · d !B =
∫

'

( !∇B ∧ !") · d !', (14)

where ' is a surface in the !B space, with boundary ∂'
coinciding with the control trajectory. In the case of hav-
ing four or more parameters, Eq. (14) should be replaced
by the generalized Stokes’ theorem applied to differential
forms in the appropriate dimension [67]. In this represen-
tation, A is the flux of the vector !∇B ∧ !" through the area
enclosed by the control trajectory, and can be also inter-
preted as the integral over this area weighted by the Berry
curvature [27]. We can therefore think of A as the area of
the surface defined by the control trajectory (with local
weight depending on the Berry curvature). Note that this
geometrical translation clarifies as well that A depends
only on the geometry of the trajectory !B(θ): that is, not
only is A independent of τ , but it is also invariant under
any reparametrization θ ′(θ), which might change the local
speed and time spent on different points of the trajectory.

Concerning L2, it can be interpreted as a length squared
of the control trajectory !B(θ), as it is clear from Eq. (10)
that it represents the integral of a quadratic form that
defines a metric in the !B space. At the same time, given the
presence of two time derivatives, L2 can depend in general
on reparametrizations θ ′(θ). However, L2 represents losses
due to dissipation in the driving—see Eq. (6)—and we are

therefore interested in its minimum value, which can be
obtained through a Cauchy-Schwarz inequality

L2 ≥
(∫ 1

0
dθ

√
!̇B · " · !̇B

)2

=
(∫

∂'

√
d !B · " · d !B

)2

≡ L2.

(15)

The lower bound L is fully geometric (it depends solely
on ∂') and it is always achievable by choosing the time
parametrization θ ′ such that !̇B · " · !̇B is constant. L is a
natural extension of the standard thermodynamic length
[9,30–37,42,44,68] to nonequilibrium setups where the
WS is simultaneously interacting with several baths.

Finally, it is apparent that 〈κ〉 Eq. (11) represents the
simple average of a scalar number (the heat conductance)
along the trajectory. In general, it clearly also depends on
reparametrizations of the adimensional time θ ′(θ), as the
average can be arbitrarily close to the maximum value κmax
of the trajectory, in case θ ′ is such to spend almost all the
time close to κmax. Similarly 〈κ〉 can be arbitrarily close to
the minimum value along the trajectory κmin.

IV. PERFORMANCE OF THE MACHINE AND
TIME OPTIMIZATION

In this section we discuss the different operation modes
of the thermal machine, and introduce the relevant figures
of merit for its characterization.

A. Heat engine
The system described in the previous sections can be

used to extract work from two reservoirs with a tempera-
ture bias. This is the engine operating mode of the system.
We write the power of the heat engine and its efficiency as

P = W
τ

= $T
T

A[1 − (τD/τ )]
τ

, (16)

η = W
Q

= ηC
1 − (τD/τ )

1 + (τ/τk)
, (17)

where we substitute Eqs. (6) and (7) and we define the
dissipation and heat-leak time scales

τD = T
$T

L2

A
, τκ = T

$T
A

〈κ〉
. (18)

In the previous expressions ηC = $T/T is the Carnot effi-
ciency. Given the expressions above, we can optimize the
duration of the cycles in order to maximize the power or
the efficiency, obtaining correspondingly

τP = 2τD, τη = τD +
√

τD(τD + τκ). (19)

We see that the duration for maximum efficiency is always
larger than the duration for maximum power. The cor-
responding maximum power and efficiency at maximum
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IV. PERFORMANCE OF THE MACHINE AND
TIME-OPTIMIZATION

In this section we discuss the di↵erent operation modes of the
thermal machine, and introduce the relevant figures of merit
for its characterization.

A. Heat engine

The system described in the previous sections can be used
to extract work from two reservoirs with a temperature bias.
This is the engine operating mode of the system. We write the
power of the heat engine and its e�ciency as

P =
W
⌧
=
�T
T

A(1 � ⌧D
⌧ )

⌧
, (14)

⌘ =
W
Q
= ⌘C

1 � ⌧D
⌧

1 + ⌧⌧k

, (15)

where we substituted Eqs. (4)-(5) and we defined the dissipa-
tion and heat leak timescales

⌧D =
T
�T

L2

A
, ⌧ =

T
�T

A
hi
. (16)

In the previous expressions ⌘C = �T/T is the Carnot e�-
ciency. Given the expressions above, we can optimize the du-
ration of the cycles in order to maximize the power or the
e�ciency, obtaining correspondingly

⌧P = 2⌧D, ⌧⌘ = ⌧D +
p
⌧D(⌧D + ⌧) . (17)

We see that the duration for maximum e�ciency is always
larger than the duration for maximum power. The correspond-
ing maximum power and e�ciency at maximum power are

Pmax =
1
4

(�T )2

T 2
A2

L2 , ⌘Pmax =
⌘C

2
x � 1
x + 1

(18)

while the maximum e�ciency and power at maximum e�-
ciency

⌘max = ⌘C

 
1 �

2
p

x + 1

!
, P⌘max =

(�T )2

T 2 hi
(
p

x � 1)2
p

x
,

(19)

with

x = 1 +
A2

L2hi
. (20)

See Fig. 2 for a summary and visual explanation of these re-
sults.

B. Refrigerator

In the heat pump or refrigerating mode, external work is sup-
plied to the system to extract heat from the cold bath and trans-
fer it to the hot one. Therefore we define the cooling power P0

FIG. 2. Engine mode: Power and e�ciency vs. cycle duration.
The optimal operating region is the gray interval between the two
dashed lines: indeed for any point outside the region, there is a point
inside with both larger e�ciency and larger power.
In the limit of big heat leaks hi the corresponding heat leaks
timescale ⌧ (16) is small, and the di↵erence between ⌧P and ⌧⌘ (17)
shrinks. That is, when the heat leak is the dominant loss, power and
e�ciency maximization tend to coincide, as one could expect (this
can be verified by direct inspection of (14) and (15)); the correspond-
ing maximum e�ciency is also small in this limit.
In the opposite limit of no leaks hi ! 0, ⌧ tends to infinite, and
we recover the standard scenario in which power is maximized for
a finite time, while the e�ciency is maximum for ⌧ ! 1, where it
tends to the Carnot e�ciency, as the dominant loss is due to finite-
time dissipation. For finite values of hi, the scenario is intermediate.
In the plot ⌧D = 1 and ⌧ = 2.5.

and the coe�cient of performance (COP) ⌘0

P0 =
�Q
⌧
= A

1 � ⌧
|⌧k |

⌧
, (21)

⌘0 =
Q
W
= ⌘0C

1 � ⌧
|⌧k |

1 + |⌧D |

⌧

, (22)

where ⌘0C = T/�T is the Carnot COP. The di↵erence with
the engine operating mode is that in this case both Q and W
are negative (heat is transferred against the thermal bias and
work is performed on the system). We have therefore A < 0
which implies ⌧ < 0 and ⌧D < 0 are formally negative as well
(which is the reason of the absolute values in the equations).
By direct inspection of (21) we see that the maximum power
of such mode is unbounded, as in the limit ⌧ ! 0 the power
tends to infinity. The slow-driving approximation ⌧rel/⌧ ⌧ 1
prevents us from analyzing the limit of arbitrary small ⌧ and
a reliable analysis of the cooling power requires a description
beyond linear response [67, 68]. Thus, we focus only on max-
imizing the e�ciency of this operation, for which we get
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In this section we discuss the di↵erent operation modes of the
thermal machine, and introduce the relevant figures of merit
for its characterization.

A. Heat engine

The system described in the previous sections can be used
to extract work from two reservoirs with a temperature bias.
This is the engine operating mode of the system. We write the
power of the heat engine and its e�ciency as
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In the previous expressions ⌘C = �T/T is the Carnot e�-
ciency. Given the expressions above, we can optimize the du-
ration of the cycles in order to maximize the power or the
e�ciency, obtaining correspondingly

⌧P = 2⌧D, ⌧⌘ = ⌧D +
p
⌧D(⌧D + ⌧) . (17)

We see that the duration for maximum e�ciency is always
larger than the duration for maximum power. The correspond-
ing maximum power and e�ciency at maximum power are
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with
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L2hi
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See Fig. 2 for a summary and visual explanation of these re-
sults.

B. Refrigerator

In the heat pump or refrigerating mode, external work is sup-
plied to the system to extract heat from the cold bath and trans-
fer it to the hot one. Therefore we define the cooling power P0

FIG. 2. Engine mode: Power and e�ciency vs. cycle duration.
The optimal operating region is the gray interval between the two
dashed lines: indeed for any point outside the region, there is a point
inside with both larger e�ciency and larger power.
In the limit of big heat leaks hi the corresponding heat leaks
timescale ⌧ (16) is small, and the di↵erence between ⌧P and ⌧⌘ (17)
shrinks. That is, when the heat leak is the dominant loss, power and
e�ciency maximization tend to coincide, as one could expect (this
can be verified by direct inspection of (14) and (15)); the correspond-
ing maximum e�ciency is also small in this limit.
In the opposite limit of no leaks hi ! 0, ⌧ tends to infinite, and
we recover the standard scenario in which power is maximized for
a finite time, while the e�ciency is maximum for ⌧ ! 1, where it
tends to the Carnot e�ciency, as the dominant loss is due to finite-
time dissipation. For finite values of hi, the scenario is intermediate.
In the plot ⌧D = 1 and ⌧ = 2.5.
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which implies ⌧ < 0 and ⌧D < 0 are formally negative as well
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of such mode is unbounded, as in the limit ⌧ ! 0 the power
tends to infinity. The slow-driving approximation ⌧rel/⌧ ⌧ 1
prevents us from analyzing the limit of arbitrary small ⌧ and
a reliable analysis of the cooling power requires a description
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where ⌘0C = T/�T is the Carnot COP. The di↵erence with
the engine operating mode is that in this case both Q and W
are negative (heat is transferred against the thermal bias and
work is performed on the system). We have therefore A < 0
which implies ⌧ < 0 and ⌧D < 0 are formally negative as well
(which is the reason of the absolute values in the equations).
By direct inspection of (21) we see that the maximum power
of such mode is unbounded, as in the limit ⌧ ! 0 the power
tends to infinity. The slow-driving approximation ⌧rel/⌧ ⌧ 1
prevents us from analyzing the limit of arbitrary small ⌧ and
a reliable analysis of the cooling power requires a description
beyond linear response [67, 68]. Thus, we focus only on max-
imizing the e�ciency of this operation, for which we get
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prevents us from analyzing the limit of arbitrary small ⌧ and
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Optimizing the power reduces to an isoperimetric problem:  

The task of finding the shape that maximizes the ratio between 
area and perimeter in a space with non-trivial metric.

Optimizing with respect to the duration of the cycle: 
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[53] Viktor Blåsjö, “The Isoperimetric Problem,” The American
Mathematical Monthly 112, 526–566 (2005).

[54] Hugh Howards, Michael Hutchings, and Frank Morgan, “The
Isoperimetric Problem on Surfaces,” The American Mathemat-
ical Monthly 106, 430–439 (1999).

[55] Frank Morgan, “Manifolds with density,” Notices of the AMS
52, 853–858 (2005).

[56] César Rosales, Antonio Cañete, Vincent Bayle, and Frank Mor-
gan, “On the isoperimetric problem in Euclidean space with
density,” Calculus of Variations and Partial Di↵erential Equa-
tions 31, 27–46 (2007).

[57] Colin Carroll, Adam Jacob, Conor Quinn, and Robin Walters,
“THE ISOPERIMETRIC PROBLEM ON PLANES WITH
DENSITY,” Bulletin of the Australian Mathematical Society
78, 177–197 (2008).

[58] R. Landauer, “Irreversibility and Heat Generation in the Com-
puting Process,” IBM Journal of Research and Development 5,
183–191 (1961).

[59] Rolf Landauer, “Dissipation and noise immunity in computa-
tion and communication,” Nature 335, 779–784 (1988).

[60] Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio
Ciliberto, Raoul Dillenschneider, and Eric Lutz, “Experimen-
tal verification of landauer’s principle linking information and
thermodynamics,” Nature 483, 187–189 (2012).
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FIG. 3. The Berry-type curvature
h
~rB ^ ~⇤(B)

i
y
. The integration of

this quantity over the area enclosed by the control trajectory defines
the A as in Eq. (12). Parameters are ✏C = 120kBT and �̄ = 0.2.
Curves (a), (b) and (c) are heuristically searched protocols of elliptic
shape, centered in (0, 0), (1, 1) and (�1.5,�0.45) respectively, that
maximize the value A2/L2 (see Sec. V D). Curve (d) is a protocol
with the shape of a circular sector centered at (0, 0), with radius R
and spanning an angle⌦ symmetrically with respect to the quadrant’s
bisector.

It is also easy to visualize in Fig. (3), that protocols enclos-
ing a large portion of the dark blue or bright yellow areas
lead to a large value of |A|. Focusing on simple curves that
do not cross themselves we consider a circular-sector trajec-
tory like the curve (d) depicted in Fig. (3), characterized by
a radius R and an aperture angle ⌦ symmetric with respect to
the the quadrant’s bisector. It is clear from the figure that the
protocol leading to the maximum achievable value of |A| in
the present setup corresponds to a trajectory fully enclosing a
quadrant. Such a trajectory is, for instance, the special case
of the circular-sector trajectory with ⌦ = ⇡/2 that: i) starts at
the origin and goes to infinity along the Bx axis, ii) rotates ⇡/2
counterclockwise and aligns in the Bz axis, iii) returns to the
origin along the Bz axis.
This limiting protocol corresponds to a quasistatic Carnot cy-
cle and the resulting value of A is

Alim =

Z

quadrant
(~rB ^ ~⇤) · dŷ = ±kBT log(2), (33)

where the signs are determined by the enclosed quadrant and
the circulation considered. Notice that, according to Eq. (5),
this corresponds to the extreme values for the energy that
could be transported between the two reservoirs at the same
temperature T through the qubit, and coincides with the fa-
mous bound obtained by Landauer’s argument [58] according
to which the change of Shannon entropy in the process of eras-
ing the information encoded in a bit is ± log(2). In the present
case, it is associated to the transfer of the same amount of en-
tropy between the reservoirs (a similar result was found quan-
tum dots [70]). At finite �T , according to Eq. (4) this quantity

FIG. 4. Positive eigenvalues of ⇤ -see Eq. (27)- as a function of
|~B| = Br. Parameters are ✏C = 120kBT and �̄ = 0.2 (solid lines),
�̄ = 0.05 (dashed lines). Note for �̄ = 0.2 (solid lines) that most
of the relevant region of Fig. 3 lies inside the interval (Br,low, Br,high)
where the radial dissipation is about one order of magnitude bigger
than the polar dissipation.

also sets the maximum value of the work that can be extracted
in the heat-engine operational mode (for Alim > 0) in the limit
of vanishing dissipation. This result is, respectively,

Wlim = kB(Th � Tc) log(2) = Alim ⌘C . (34)

We now turn to analyze L2, which assesses the dissipated en-
ergy for a particular protocol. This quantity is determined by
⇤ given by Eq. (8). For the qubit, this matrix can be decom-
posed in two contributions, as expressed in Eq. (27) which are
associated to the dissipation of energy originated in the radial
and polar changes of ~B.
We see from the analytical expressions of Eqs. (29) and (30)
that ⇤ is symmetric along the polar axis, i.e. it only depends
on Br. This is illustrated in the upper panel of Fig. 9 of Ap-
pendix B. In Fig. 4 we show the dependence of the coe�cients
�r and �� on Br for two di↵erent values of the �̄ parameter. For
some values of �̄ we find an interval (Br,low, Br,high) for which
the dissipation is mainly due to changes in the energy spec-
trum induced by finite Ḃr. The specific values Br,low, Br,high
depend on the working temperature and the coupling constant
�̄ between the qubit and the reservoirs. More details on the
⇤ submatrix and the dissipation structure of the qubit can be
found in Appendix B.
The final value of L2 for a protocol ~B(✓⌧) defined over @⌃ in
the parameter space still depends on the chosen parametriza-
tion ✓. Out of all the possible parametrizations, Eq. (13) tells
us that there exists a particular one for which L2 = L2. Fur-
thermore, this corresponds to the lower bound for L2 and, im-
portantly, it is a function of @⌃ only (it is geometrical).
In addition, for a given ✓ associated to @⌃, we are able to ob-
tain the optimal parametrization ✓̄(✓) that saturates the bound,
and defines the less dissipative protocol ~B(✓̄⌧) around @⌃ in
time ⌧. The new value of the velocity at a given time can be
computed using (13), demanding that ~̇B(✓⌧) · ⇤(~B) · ~̇B(✓⌧) is
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this quantity over the area enclosed by the control trajectory defines
the A as in Eq. (12). Parameters are ✏C = 120kBT and �̄ = 0.2.
Curves (a), (b) and (c) are heuristically searched protocols of elliptic
shape, centered in (0, 0), (1, 1) and (�1.5,�0.45) respectively, that
maximize the value A2/L2 (see Sec. V D). Curve (d) is a protocol
with the shape of a circular sector centered at (0, 0), with radius R
and spanning an angle⌦ symmetrically with respect to the quadrant’s
bisector.

It is also easy to visualize in Fig. (3), that protocols enclos-
ing a large portion of the dark blue or bright yellow areas
lead to a large value of |A|. Focusing on simple curves that
do not cross themselves we consider a circular-sector trajec-
tory like the curve (d) depicted in Fig. (3), characterized by
a radius R and an aperture angle ⌦ symmetric with respect to
the the quadrant’s bisector. It is clear from the figure that the
protocol leading to the maximum achievable value of |A| in
the present setup corresponds to a trajectory fully enclosing a
quadrant. Such a trajectory is, for instance, the special case
of the circular-sector trajectory with ⌦ = ⇡/2 that: i) starts at
the origin and goes to infinity along the Bx axis, ii) rotates ⇡/2
counterclockwise and aligns in the Bz axis, iii) returns to the
origin along the Bz axis.
This limiting protocol corresponds to a quasistatic Carnot cy-
cle and the resulting value of A is

Alim =

Z

quadrant
(~rB ^ ~⇤) · dŷ = ±kBT log(2), (33)

where the signs are determined by the enclosed quadrant and
the circulation considered. Notice that, according to Eq. (5),
this corresponds to the extreme values for the energy that
could be transported between the two reservoirs at the same
temperature T through the qubit, and coincides with the fa-
mous bound obtained by Landauer’s argument [58] according
to which the change of Shannon entropy in the process of eras-
ing the information encoded in a bit is ± log(2). In the present
case, it is associated to the transfer of the same amount of en-
tropy between the reservoirs (a similar result was found quan-
tum dots [70]). At finite �T , according to Eq. (4) this quantity

FIG. 4. Positive eigenvalues of ⇤ -see Eq. (27)- as a function of
|~B| = Br. Parameters are ✏C = 120kBT and �̄ = 0.2 (solid lines),
�̄ = 0.05 (dashed lines). Note for �̄ = 0.2 (solid lines) that most
of the relevant region of Fig. 3 lies inside the interval (Br,low, Br,high)
where the radial dissipation is about one order of magnitude bigger
than the polar dissipation.

also sets the maximum value of the work that can be extracted
in the heat-engine operational mode (for Alim > 0) in the limit
of vanishing dissipation. This result is, respectively,

Wlim = kB(Th � Tc) log(2) = Alim ⌘C . (34)

We now turn to analyze L2, which assesses the dissipated en-
ergy for a particular protocol. This quantity is determined by
⇤ given by Eq. (8). For the qubit, this matrix can be decom-
posed in two contributions, as expressed in Eq. (27) which are
associated to the dissipation of energy originated in the radial
and polar changes of ~B.
We see from the analytical expressions of Eqs. (29) and (30)
that ⇤ is symmetric along the polar axis, i.e. it only depends
on Br. This is illustrated in the upper panel of Fig. 9 of Ap-
pendix B. In Fig. 4 we show the dependence of the coe�cients
�r and �� on Br for two di↵erent values of the �̄ parameter. For
some values of �̄ we find an interval (Br,low, Br,high) for which
the dissipation is mainly due to changes in the energy spec-
trum induced by finite Ḃr. The specific values Br,low, Br,high
depend on the working temperature and the coupling constant
�̄ between the qubit and the reservoirs. More details on the
⇤ submatrix and the dissipation structure of the qubit can be
found in Appendix B.
The final value of L2 for a protocol ~B(✓⌧) defined over @⌃ in
the parameter space still depends on the chosen parametriza-
tion ✓. Out of all the possible parametrizations, Eq. (13) tells
us that there exists a particular one for which L2 = L2. Fur-
thermore, this corresponds to the lower bound for L2 and, im-
portantly, it is a function of @⌃ only (it is geometrical).
In addition, for a given ✓ associated to @⌃, we are able to ob-
tain the optimal parametrization ✓̄(✓) that saturates the bound,
and defines the less dissipative protocol ~B(✓̄⌧) around @⌃ in
time ⌧. The new value of the velocity at a given time can be
computed using (13), demanding that ~̇B(✓⌧) · ⇤(~B) · ~̇B(✓⌧) is
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constant at each point. The result is

~B(✓̄⌧)
@✓̄
= ~̇B(✓⌧)

vt
L2

~̇B(✓⌧) · ⇤(~B) · ~̇B(✓⌧)
(35)

where the dot in ~̇B is the derivative with respect to the origi-
nal parametrization ✓. This driving ensures constant entropy
production along the cycle.

D. Maximum power

An interesting question in the present problem is whether we
can find a protocol that maximizes the output power of the sys-
tem. We have shown in Section III that, given a parametriza-
tion ~B(✓⌧) defined over @⌃ in the parameter space, we can
compute the duration ⌧ that upper bounds the power for that
protocol. The result is expressed in Eq. (18).
Besides, we know from the definition in Eq. (12) that the
value of A2 does not depend on reparametrizations ✓0, while
the value of L2 can be lower-bounded by L2 according to
Eq. (13). With all these considerations, we find that the maxi-
mum power developed by a protocol moving along a curve @⌃
is expressed by

Pmax(@⌃) =
1
4

(�T )2

T 2
A2

L2 . (36)

Eq. (36) tells us that the problem of finding the maximum
output power of the system is equivalent to the (isoperimet-
ric) problem of maximizing the term A2/L2 over the set of all
closed curves @⌃ in the parameter space. The optimization of
this geometrical quantity is not a simple task in general, since
one must choose a test curve @⌃ that maximizes A2, while
keeping L2 small, being those quantities nontrivial functions
of @⌃. Although a global maximum for Pmax(@⌃) is hard
to find, it is still possible to design simple trajectories with
useful output power and reasonable e�ciency. We perform
a numerical search of max@⌃A2/L2 using a gradient descent
method, restricted to the space of elliptic trajectories centered
at a given point ~B. The trajectories (a), (b) and (c) shown in
Fig. 3 are examples of the resulting curves. We choose this
type of curves because elliptical trajectories are easy to im-
plement and flexible enough to perform an extensive optimal
search. The advantage of the elliptical protocols is not obvi-
ous, taking into account that Fig. 3 suggests that the circular-
sector protocols are better than the ellipses for maximising A.
However, this is not the case for A2/L2: we show in Ap-
pendix C that suitable chosen ellipses can clearly outperform
circular-sector protocols in terms of power output.
Focusing on the elliptic protocols, we see that the highest val-
ues of power are achieved for test curves that avoid the re-
gion of small |~B|, where the dissipation coe�cient �� diverges.
The curve (a) centered at (0, 0) is an interesting example. It
maximizes A2 by enclosing the two lobes in the first and third
quadrant of Fig. 3, and closes the curve near infinity in order
to avoid the central region of high dissipation.

FIG. 5. max A2/L2 as a function of ~B, for an heuristic optimization
of elliptic trajectories centered at ~B. Parameters are ✏C = 120kBT
and �̄ = 0.2. Only positive values of Bx and Bz are shown, since this
quantity is symmetric with respect to Bx = 0 and Bz = 0.

In Fig. 5 we depict the value of max@⌃A2/L2 found by the
mentioned heuristic method, as a function of the (fixed)
central point of the ellipse. We distinguish two di↵erent
regimes leading to the optimal power, as a consequence of
the crossover between the two mechanisms of dissipation dis-
cussed in the context of Fig. 4. For small Br, where the less
dissipative protocol is radial, the optimal trajectories are like
the case (a) in Fig. 3, while in the opposite limit where Br is
large, the optimal protocols are like the ones indicated with
(b) and (c) in that Fig.

E. Maximum e�ciency

The e�ciencies ⌘max, ⌘0max, ⌘Pmax are all increasing functions
of the same parameter A2/(L2

hi). We notice that the denom-
inator can be lower bounded again with a Cauchy-Schwarz
inequality

L2
hi =

 Z 1

0
d✓ ~̇B · ⇤ · ~̇B

!  Z 1

0
d✓ 

!

�

 Z 1

0
d✓
p


q
~̇B · ⇤ · ~̇B

!2

. (37)

Again, the bound can be always saturated, by choosing a
reparametrization ✓0(✓) such that ~̇B · ⇤ · ~̇B/ is constant in
time. The lower bound in Eq. (37) can be interpreted again
as a length defined by an underlying metric

 Z

@⌃

q
d~B · ⇤ · d~B

!2

⌘ L
2
 , ⇤ = ⇤ . (38)

The lengthL is fully geometric, i.e. it depends only on the set
of points defined by the trajectory @⌃, and the maximization of
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this quantity over the area enclosed by the control trajectory defines
the A as in Eq. (12). Parameters are ✏C = 120kBT and �̄ = 0.2.
Curves (a), (b) and (c) are heuristically searched protocols of elliptic
shape, centered in (0, 0), (1, 1) and (�1.5,�0.45) respectively, that
maximize the value A2/L2 (see Sec. V D). Curve (d) is a protocol
with the shape of a circular sector centered at (0, 0), with radius R
and spanning an angle⌦ symmetrically with respect to the quadrant’s
bisector.

It is also easy to visualize in Fig. (3), that protocols enclos-
ing a large portion of the dark blue or bright yellow areas
lead to a large value of |A|. Focusing on simple curves that
do not cross themselves we consider a circular-sector trajec-
tory like the curve (d) depicted in Fig. (3), characterized by
a radius R and an aperture angle ⌦ symmetric with respect to
the the quadrant’s bisector. It is clear from the figure that the
protocol leading to the maximum achievable value of |A| in
the present setup corresponds to a trajectory fully enclosing a
quadrant. Such a trajectory is, for instance, the special case
of the circular-sector trajectory with ⌦ = ⇡/2 that: i) starts at
the origin and goes to infinity along the Bx axis, ii) rotates ⇡/2
counterclockwise and aligns in the Bz axis, iii) returns to the
origin along the Bz axis.
This limiting protocol corresponds to a quasistatic Carnot cy-
cle and the resulting value of A is

Alim =

Z

quadrant
(~rB ^ ~⇤) · dŷ = ±kBT log(2), (33)

where the signs are determined by the enclosed quadrant and
the circulation considered. Notice that, according to Eq. (5),
this corresponds to the extreme values for the energy that
could be transported between the two reservoirs at the same
temperature T through the qubit, and coincides with the fa-
mous bound obtained by Landauer’s argument [58] according
to which the change of Shannon entropy in the process of eras-
ing the information encoded in a bit is ± log(2). In the present
case, it is associated to the transfer of the same amount of en-
tropy between the reservoirs (a similar result was found quan-
tum dots [70]). At finite �T , according to Eq. (4) this quantity

FIG. 4. Positive eigenvalues of ⇤ -see Eq. (27)- as a function of
|~B| = Br. Parameters are ✏C = 120kBT and �̄ = 0.2 (solid lines),
�̄ = 0.05 (dashed lines). Note for �̄ = 0.2 (solid lines) that most
of the relevant region of Fig. 3 lies inside the interval (Br,low, Br,high)
where the radial dissipation is about one order of magnitude bigger
than the polar dissipation.

also sets the maximum value of the work that can be extracted
in the heat-engine operational mode (for Alim > 0) in the limit
of vanishing dissipation. This result is, respectively,

Wlim = kB(Th � Tc) log(2) = Alim ⌘C . (34)

We now turn to analyze L2, which assesses the dissipated en-
ergy for a particular protocol. This quantity is determined by
⇤ given by Eq. (8). For the qubit, this matrix can be decom-
posed in two contributions, as expressed in Eq. (27) which are
associated to the dissipation of energy originated in the radial
and polar changes of ~B.
We see from the analytical expressions of Eqs. (29) and (30)
that ⇤ is symmetric along the polar axis, i.e. it only depends
on Br. This is illustrated in the upper panel of Fig. 9 of Ap-
pendix B. In Fig. 4 we show the dependence of the coe�cients
�r and �� on Br for two di↵erent values of the �̄ parameter. For
some values of �̄ we find an interval (Br,low, Br,high) for which
the dissipation is mainly due to changes in the energy spec-
trum induced by finite Ḃr. The specific values Br,low, Br,high
depend on the working temperature and the coupling constant
�̄ between the qubit and the reservoirs. More details on the
⇤ submatrix and the dissipation structure of the qubit can be
found in Appendix B.
The final value of L2 for a protocol ~B(✓⌧) defined over @⌃ in
the parameter space still depends on the chosen parametriza-
tion ✓. Out of all the possible parametrizations, Eq. (13) tells
us that there exists a particular one for which L2 = L2. Fur-
thermore, this corresponds to the lower bound for L2 and, im-
portantly, it is a function of @⌃ only (it is geometrical).
In addition, for a given ✓ associated to @⌃, we are able to ob-
tain the optimal parametrization ✓̄(✓) that saturates the bound,
and defines the less dissipative protocol ~B(✓̄⌧) around @⌃ in
time ⌧. The new value of the velocity at a given time can be
computed using (13), demanding that ~̇B(✓⌧) · ⇤(~B) · ~̇B(✓⌧) is
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constant at each point. The result is

~B(✓̄⌧)
@✓̄
= ~̇B(✓⌧)

vt
L2

~̇B(✓⌧) · ⇤(~B) · ~̇B(✓⌧)
(35)

where the dot in ~̇B is the derivative with respect to the origi-
nal parametrization ✓. This driving ensures constant entropy
production along the cycle.

D. Maximum power

An interesting question in the present problem is whether we
can find a protocol that maximizes the output power of the sys-
tem. We have shown in Section III that, given a parametriza-
tion ~B(✓⌧) defined over @⌃ in the parameter space, we can
compute the duration ⌧ that upper bounds the power for that
protocol. The result is expressed in Eq. (18).
Besides, we know from the definition in Eq. (12) that the
value of A2 does not depend on reparametrizations ✓0, while
the value of L2 can be lower-bounded by L2 according to
Eq. (13). With all these considerations, we find that the maxi-
mum power developed by a protocol moving along a curve @⌃
is expressed by

Pmax(@⌃) =
1
4

(�T )2

T 2
A2

L2 . (36)

Eq. (36) tells us that the problem of finding the maximum
output power of the system is equivalent to the (isoperimet-
ric) problem of maximizing the term A2/L2 over the set of all
closed curves @⌃ in the parameter space. The optimization of
this geometrical quantity is not a simple task in general, since
one must choose a test curve @⌃ that maximizes A2, while
keeping L2 small, being those quantities nontrivial functions
of @⌃. Although a global maximum for Pmax(@⌃) is hard
to find, it is still possible to design simple trajectories with
useful output power and reasonable e�ciency. We perform
a numerical search of max@⌃A2/L2 using a gradient descent
method, restricted to the space of elliptic trajectories centered
at a given point ~B. The trajectories (a), (b) and (c) shown in
Fig. 3 are examples of the resulting curves. We choose this
type of curves because elliptical trajectories are easy to im-
plement and flexible enough to perform an extensive optimal
search. The advantage of the elliptical protocols is not obvi-
ous, taking into account that Fig. 3 suggests that the circular-
sector protocols are better than the ellipses for maximising A.
However, this is not the case for A2/L2: we show in Ap-
pendix C that suitable chosen ellipses can clearly outperform
circular-sector protocols in terms of power output.
Focusing on the elliptic protocols, we see that the highest val-
ues of power are achieved for test curves that avoid the re-
gion of small |~B|, where the dissipation coe�cient �� diverges.
The curve (a) centered at (0, 0) is an interesting example. It
maximizes A2 by enclosing the two lobes in the first and third
quadrant of Fig. 3, and closes the curve near infinity in order
to avoid the central region of high dissipation.

FIG. 5. max A2/L2 as a function of ~B, for an heuristic optimization
of elliptic trajectories centered at ~B. Parameters are ✏C = 120kBT
and �̄ = 0.2. Only positive values of Bx and Bz are shown, since this
quantity is symmetric with respect to Bx = 0 and Bz = 0.

In Fig. 5 we depict the value of max@⌃A2/L2 found by the
mentioned heuristic method, as a function of the (fixed)
central point of the ellipse. We distinguish two di↵erent
regimes leading to the optimal power, as a consequence of
the crossover between the two mechanisms of dissipation dis-
cussed in the context of Fig. 4. For small Br, where the less
dissipative protocol is radial, the optimal trajectories are like
the case (a) in Fig. 3, while in the opposite limit where Br is
large, the optimal protocols are like the ones indicated with
(b) and (c) in that Fig.

E. Maximum e�ciency

The e�ciencies ⌘max, ⌘0max, ⌘Pmax are all increasing functions
of the same parameter A2/(L2

hi). We notice that the denom-
inator can be lower bounded again with a Cauchy-Schwarz
inequality

L2
hi =

 Z 1

0
d✓ ~̇B · ⇤ · ~̇B

!  Z 1

0
d✓ 

!

�

 Z 1

0
d✓
p


q
~̇B · ⇤ · ~̇B

!2

. (37)

Again, the bound can be always saturated, by choosing a
reparametrization ✓0(✓) such that ~̇B · ⇤ · ~̇B/ is constant in
time. The lower bound in Eq. (37) can be interpreted again
as a length defined by an underlying metric

 Z

@⌃

q
d~B · ⇤ · d~B

!2

⌘ L
2
 , ⇤ = ⇤ . (38)

The lengthL is fully geometric, i.e. it depends only on the set
of points defined by the trajectory @⌃, and the maximization of
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this quantity over the area enclosed by the control trajectory defines
the A as in Eq. (12). Parameters are ✏C = 120kBT and �̄ = 0.2.
Curves (a), (b) and (c) are heuristically searched protocols of elliptic
shape, centered in (0, 0), (1, 1) and (�1.5,�0.45) respectively, that
maximize the value A2/L2 (see Sec. V D). Curve (d) is a protocol
with the shape of a circular sector centered at (0, 0), with radius R
and spanning an angle⌦ symmetrically with respect to the quadrant’s
bisector.

It is also easy to visualize in Fig. (3), that protocols enclos-
ing a large portion of the dark blue or bright yellow areas
lead to a large value of |A|. Focusing on simple curves that
do not cross themselves we consider a circular-sector trajec-
tory like the curve (d) depicted in Fig. (3), characterized by
a radius R and an aperture angle ⌦ symmetric with respect to
the the quadrant’s bisector. It is clear from the figure that the
protocol leading to the maximum achievable value of |A| in
the present setup corresponds to a trajectory fully enclosing a
quadrant. Such a trajectory is, for instance, the special case
of the circular-sector trajectory with ⌦ = ⇡/2 that: i) starts at
the origin and goes to infinity along the Bx axis, ii) rotates ⇡/2
counterclockwise and aligns in the Bz axis, iii) returns to the
origin along the Bz axis.
This limiting protocol corresponds to a quasistatic Carnot cy-
cle and the resulting value of A is

Alim =

Z

quadrant
(~rB ^ ~⇤) · dŷ = ±kBT log(2), (33)

where the signs are determined by the enclosed quadrant and
the circulation considered. Notice that, according to Eq. (5),
this corresponds to the extreme values for the energy that
could be transported between the two reservoirs at the same
temperature T through the qubit, and coincides with the fa-
mous bound obtained by Landauer’s argument [58] according
to which the change of Shannon entropy in the process of eras-
ing the information encoded in a bit is ± log(2). In the present
case, it is associated to the transfer of the same amount of en-
tropy between the reservoirs (a similar result was found quan-
tum dots [70]). At finite �T , according to Eq. (4) this quantity

FIG. 4. Positive eigenvalues of ⇤ -see Eq. (27)- as a function of
|~B| = Br. Parameters are ✏C = 120kBT and �̄ = 0.2 (solid lines),
�̄ = 0.05 (dashed lines). Note for �̄ = 0.2 (solid lines) that most
of the relevant region of Fig. 3 lies inside the interval (Br,low, Br,high)
where the radial dissipation is about one order of magnitude bigger
than the polar dissipation.

also sets the maximum value of the work that can be extracted
in the heat-engine operational mode (for Alim > 0) in the limit
of vanishing dissipation. This result is, respectively,

Wlim = kB(Th � Tc) log(2) = Alim ⌘C . (34)

We now turn to analyze L2, which assesses the dissipated en-
ergy for a particular protocol. This quantity is determined by
⇤ given by Eq. (8). For the qubit, this matrix can be decom-
posed in two contributions, as expressed in Eq. (27) which are
associated to the dissipation of energy originated in the radial
and polar changes of ~B.
We see from the analytical expressions of Eqs. (29) and (30)
that ⇤ is symmetric along the polar axis, i.e. it only depends
on Br. This is illustrated in the upper panel of Fig. 9 of Ap-
pendix B. In Fig. 4 we show the dependence of the coe�cients
�r and �� on Br for two di↵erent values of the �̄ parameter. For
some values of �̄ we find an interval (Br,low, Br,high) for which
the dissipation is mainly due to changes in the energy spec-
trum induced by finite Ḃr. The specific values Br,low, Br,high
depend on the working temperature and the coupling constant
�̄ between the qubit and the reservoirs. More details on the
⇤ submatrix and the dissipation structure of the qubit can be
found in Appendix B.
The final value of L2 for a protocol ~B(✓⌧) defined over @⌃ in
the parameter space still depends on the chosen parametriza-
tion ✓. Out of all the possible parametrizations, Eq. (13) tells
us that there exists a particular one for which L2 = L2. Fur-
thermore, this corresponds to the lower bound for L2 and, im-
portantly, it is a function of @⌃ only (it is geometrical).
In addition, for a given ✓ associated to @⌃, we are able to ob-
tain the optimal parametrization ✓̄(✓) that saturates the bound,
and defines the less dissipative protocol ~B(✓̄⌧) around @⌃ in
time ⌧. The new value of the velocity at a given time can be
computed using (13), demanding that ~̇B(✓⌧) · ⇤(~B) · ~̇B(✓⌧) is
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We show that heat production in slowly driven quantum systems is linked to the topological
structure of the driving protocol through the Fubini-Study tensor. Analyzing a minimal model of a
spin weakly coupled to a heat bath, we find that dissipation is controlled by the quantum metric and
a “quality factor” characterizing the spin’s precession. Utilizing these findings, we establish lower
bounds on the heating rate in two-tone protocols, such as those employed in topological frequency
converters. Notably, these bounds are determined by the topology of the protocol, independent of
its microscopic details. Our results bridge topological phenomena and energy dissipation in slowly
driven quantum systems, providing a design principle for optimal driving protocols.

Heating is a ubiquitous non-equilibrium phenomenon
that influences a broad range of systems, including quan-
tum computation platforms, semiconductor devices, and
mesoscopic setups. In closed, driven quantum many-
body systems, heating manifests through the growth of
entanglement entropy, resulting in volume-law entangled
states that are akin to infinite temperature states in
equilibrium [1–3]. Typically lacking distinctive features,
these states are generally considered undesirable.

Heating can be suppressed in systems possessing a
macroscopic number of local integrals of motion, such
as in the many-body localized phase [4–9], or prepared
in a dynamically obstructed state characterized by quan-
tum many-body scar [10–13]. On the other hand, certain
types of drives can give rise to long-lived quasi-steady
states, both in high and low frequency regimes [14–19].
In the quasi-adiabatic regime, heating occurs due to di-
abatic corrections [20, 21] which can be mitigated by in-
corporating counter-diabatic terms that counteract exci-
tations [22–24] and through drive-engineering techniques
known as shortcuts to adiabaticity [25, 26].

A di↵erent approach consists of coupling the system to
a low-temperature heat bath, maintaining the system in
a low-entropy steady state. Such steady states can have
exotic features with no equilibrium analogues [27–34]. To
stabilize a low-entropy steady state, the bath must be ca-
pable of continuously absorbing the heat generated by the
drive. Therefore, controlling heat production is crucial to
maintain its constant flow. In this work, our primary ob-
jective is to evaluate the steady-state energy flow from a
slowly-driven system to the heat bath.

In the quasi-adiabatic regime, time evolution is gov-
erned by the quantum geometry of the wavefunction [35–
44]. The corresponding heating rate can be found by eval-
uating an action along a trajectory in parameter space
controlled by the “dissipation metric” [43, 45–49]. Here,
we establish a connection between the dissipation metric
and the quantum metric [50]. We then exploit inequality
relations between the quantum metric and Berry curva-

𝑊d

𝜶1 𝑡 𝜶2 𝑡

መ𝑑

Ƹ𝑒 መ𝑓

𝑊c

FIG. 1. The setup. A spin driven by two fields ↵1(t)
and ↵2(t), slowly oscillating with frequencies !1 and !2, and
weakly-coupled to a heat bath (represented by the blue halo).
The black and red curves denote the trajectories of the Bloch-
sphere vector d̂(t) representing the instantaneous Hamilto-
nian and the steady-state vector Sst(t) of the spin. The in-
stantaneous coordinate system consists of d̂, its normalized

time derivative f̂ = ˙̂d/| ˙̂d| and ê = f̂ ⇥ d̂. To leading order,
nonadiabatic corrections to the dynamics create an o↵set of
the spin in the ê direction which gives rise to energy pumping
between ↵1 and ↵2 with rate Wc. The lag between the spin
vector and the Hamiltonian (along the f̂ direction) induced
by the heat bath leads to energy dissipation with rate Wd.

ture [50–52] to establish a “topological” bound on heating
rates in two-tone protocols [53]. While heating is a↵ected
by the details of the driving protocol, its lower bound de-
pends only on the topological features of the protocol and
the quality factor of the system-bath coupling.
Setup.— We consider a two-level system subject to

quasi-adiabatic driving (see a generalization to N levels
in the Supplementary Material [54]), described by

H(t) = h0(t) + d(t) · �, (1)

where � = (�x,�y,�z) is a vector of Pauli matrices span-
ning the Hilbert space [55]. The Hamiltonian can be
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We show that heat production in slowly driven quantum systems is linked to the topological
structure of the driving protocol through the Fubini-Study tensor. Analyzing a minimal model of a
spin weakly coupled to a heat bath, we find that dissipation is controlled by the quantum metric and
a “quality factor” characterizing the spin’s precession. Utilizing these findings, we establish lower
bounds on the heating rate in two-tone protocols, such as those employed in topological frequency
converters. Notably, these bounds are determined by the topology of the protocol, independent of
its microscopic details. Our results bridge topological phenomena and energy dissipation in slowly
driven quantum systems, providing a design principle for optimal driving protocols.

Heating is a ubiquitous non-equilibrium phenomenon
that influences a broad range of systems, including quan-
tum computation platforms, semiconductor devices, and
mesoscopic setups. In closed, driven quantum many-
body systems, heating manifests through the growth of
entanglement entropy, resulting in volume-law entangled
states that are akin to infinite temperature states in
equilibrium [1–3]. Typically lacking distinctive features,
these states are generally considered undesirable.

Heating can be suppressed in systems possessing a
macroscopic number of local integrals of motion, such
as in the many-body localized phase [4–9], or prepared
in a dynamically obstructed state characterized by quan-
tum many-body scar [10–13]. On the other hand, certain
types of drives can give rise to long-lived quasi-steady
states, both in high and low frequency regimes [14–19].
In the quasi-adiabatic regime, heating occurs due to di-
abatic corrections [20, 21] which can be mitigated by in-
corporating counter-diabatic terms that counteract exci-
tations [22–24] and through drive-engineering techniques
known as shortcuts to adiabaticity [25, 26].

A di↵erent approach consists of coupling the system to
a low-temperature heat bath, maintaining the system in
a low-entropy steady state. Such steady states can have
exotic features with no equilibrium analogues [27–34]. To
stabilize a low-entropy steady state, the bath must be ca-
pable of continuously absorbing the heat generated by the
drive. Therefore, controlling heat production is crucial to
maintain its constant flow. In this work, our primary ob-
jective is to evaluate the steady-state energy flow from a
slowly-driven system to the heat bath.

In the quasi-adiabatic regime, time evolution is gov-
erned by the quantum geometry of the wavefunction [35–
44]. The corresponding heating rate can be found by eval-
uating an action along a trajectory in parameter space
controlled by the “dissipation metric” [43, 45–49]. Here,
we establish a connection between the dissipation metric
and the quantum metric [50]. We then exploit inequality
relations between the quantum metric and Berry curva-

FIG. 1. The setup. A spin driven by two fields ↵1(t)
and ↵2(t), slowly oscillating with frequencies !1 and !2, and
weakly-coupled to a heat bath (represented by the blue halo).
The black and red curves denote the trajectories of the Bloch-
sphere vector d̂(t) representing the instantaneous Hamilto-
nian and the steady-state vector Sst(t) of the spin. The in-
stantaneous coordinate system consists of d̂, its normalized

time derivative f̂ = ˙̂d/| ˙̂d| and ê = f̂ ⇥ d̂. To leading order,
nonadiabatic corrections to the dynamics create an o↵set of
the spin in the ê direction which gives rise to energy pumping
between ↵1 and ↵2 with rate Wc. The lag between the spin
vector and the Hamiltonian (along the f̂ direction) induced
by the heat bath leads to energy dissipation with rate Wd.

ture [50–52] to establish a “topological” bound on heating
rates in two-tone protocols [53]. While heating is a↵ected
by the details of the driving protocol, its lower bound de-
pends only on the topological features of the protocol and
the quality factor of the system-bath coupling.
Setup.— We consider a two-level system subject to

quasi-adiabatic driving (see a generalization to N levels
in the Supplementary Material [54]), described by

H(t) = h0(t) + d(t) · �, (1)

where � = (�x,�y,�z) is a vector of Pauli matrices span-
ning the Hilbert space [55]. The Hamiltonian can be
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We show that heat production in slowly driven quantum systems is linked to the topological
structure of the driving protocol through the Fubini-Study tensor. Analyzing a minimal model of a
spin weakly coupled to a heat bath, we find that dissipation is controlled by the quantum metric and
a “quality factor” characterizing the spin’s precession. Utilizing these findings, we establish lower
bounds on the heating rate in two-tone protocols, such as those employed in topological frequency
converters. Notably, these bounds are determined by the topology of the protocol, independent of
its microscopic details. Our results bridge topological phenomena and energy dissipation in slowly
driven quantum systems, providing a design principle for optimal driving protocols.

Heating is a ubiquitous non-equilibrium phenomenon
that influences a broad range of systems, including quan-
tum computation platforms, semiconductor devices, and
mesoscopic setups. In closed, driven quantum many-
body systems, heating manifests through the growth of
entanglement entropy, resulting in volume-law entangled
states that are akin to infinite temperature states in
equilibrium [1–3]. Typically lacking distinctive features,
these states are generally considered undesirable.

Heating can be suppressed in systems possessing a
macroscopic number of local integrals of motion, such
as in the many-body localized phase [4–9], or prepared
in a dynamically obstructed state characterized by quan-
tum many-body scar [10–13]. On the other hand, certain
types of drives can give rise to long-lived quasi-steady
states, both in high and low frequency regimes [14–19].
In the quasi-adiabatic regime, heating occurs due to di-
abatic corrections [20, 21] which can be mitigated by in-
corporating counter-diabatic terms that counteract exci-
tations [22–24] and through drive-engineering techniques
known as shortcuts to adiabaticity [25, 26].

A di↵erent approach consists of coupling the system to
a low-temperature heat bath, maintaining the system in
a low-entropy steady state. Such steady states can have
exotic features with no equilibrium analogues [27–34]. To
stabilize a low-entropy steady state, the bath must be ca-
pable of continuously absorbing the heat generated by the
drive. Therefore, controlling heat production is crucial to
maintain its constant flow. In this work, our primary ob-
jective is to evaluate the steady-state energy flow from a
slowly-driven system to the heat bath.

In the quasi-adiabatic regime, time evolution is gov-
erned by the quantum geometry of the wavefunction [35–
44]. The corresponding heating rate can be found by eval-
uating an action along a trajectory in parameter space
controlled by the “dissipation metric” [43, 45–49]. Here,
we establish a connection between the dissipation metric
and the quantum metric [50]. We then exploit inequality
relations between the quantum metric and Berry curva-

FIG. 1. The setup. A spin driven by two fields ↵1(t)
and ↵2(t), slowly oscillating with frequencies !1 and !2, and
weakly-coupled to a heat bath (represented by the blue halo).
The black and red curves denote the trajectories of the Bloch-
sphere vector d̂(t) representing the instantaneous Hamilto-
nian and the steady-state vector Sst(t) of the spin. The in-
stantaneous coordinate system consists of d̂, its normalized

time derivative f̂ = ˙̂d/| ˙̂d| and ê = f̂ ⇥ d̂. To leading order,
nonadiabatic corrections to the dynamics create an o↵set of
the spin in the ê direction which gives rise to energy pumping
between ↵1 and ↵2 with rate Wc. The lag between the spin
vector and the Hamiltonian (along the f̂ direction) induced
by the heat bath leads to energy dissipation with rate Wd.

ture [50–52] to establish a “topological” bound on heating
rates in two-tone protocols [53]. While heating is a↵ected
by the details of the driving protocol, its lower bound de-
pends only on the topological features of the protocol and
the quality factor of the system-bath coupling.
Setup.— We consider a two-level system subject to

quasi-adiabatic driving (see a generalization to N levels
in the Supplementary Material [54]), described by

H(t) = h0(t) + d(t) · �, (1)

where � = (�x,�y,�z) is a vector of Pauli matrices span-
ning the Hilbert space [55]. The Hamiltonian can be
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Two-frequency driving:  ϕ1(t) = ω1t, ϕ2(t) = ω2t

3

FIG. 2. Approaching the incommensurate limit. a.
Trajectories on the surface s = 1

2

p
�d̂, for di↵erent values of

!2/!1 = n
n+1 . b. Normalized average dissipation rate along

the “Lissajous” curve, wd = W d/W0, as a function of n. We
use the driven spin model in Eq. 14 and consider b11 = b22 =
1, b12 = b21 = 0.5, ✓ = 0, ⌧2 = 10, and three values of m

indicated in the bottom-left inset. The top-right inset shows
the deviation of the dissipation rate from its asymptotic value,
�wd = (wd(n) � wd(1))/wd(1). c. Normalized frequency
conversion rate, wc = W c/W0 as a function of n for the same
parameters as in b. The inset shows the deviation of wc from
its asymptotic value, �wc = wc(n)� wc(1).

two drives (with a = 1, 2). In this language the energy
dissipation rate is given by

W d =
!a!b

T

Z T

0
dt�gab, (8)

with the quantum metric in the space of the phases �a,
gab = Gij

@↵i

@�a

@↵j

@�b
. Similarly, the transferred power be-

tween modes 1 and 2 in the steady state can be calculated

through W12 = 1
2 (W1 �W2) ⌘

1
2

⇣
@d
@�1

�̇1 �
@d
@�2

�̇2

⌘
· Sst.

This term is anti-symmetric in indices 1, 2, and thus does
not contribute to the net energy dissipation. Using the
steady-state vector in Eq. (5), one obtains two contri-
butions, W12 = Wad + Wc where Wad = �((�̇1)2g11 �

(�̇2)2g22) denotes the di↵erence in energy dissipation due
to each drive, and the (time-averaged) conversion power

W c =
!1!2

T

Z T

0
dt


⌧
2
2�

2

1 + ⌧
2
2�

2

�
⌦12, (9)

where ⌦12 = 1
2d ·

⇣
@�1 d̂⇥ @�2 d̂

⌘
is the Berry curvature

associated with the phases of the two drives.
Incommensurate driving.— For two harmonic fields

↵1(t) and ↵2(t) oscillating with frequencies !1 and !2,
respectively, the trajectory of Sst(t) on the Bloch sphere
is a “Lissajous” curve [66]. For a given ratio !2/!1 =
n

n+1 , the time to complete one cycle increases with n as

T = (n+ 1) 2⇡!1
, see Fig. 2a. We compute the dissipation

and frequency conversion rates using Eqs. (8) and (9);
the data are plotted in Figs. 2b,c. Both quantities rapidly

converge for n & 5 to their respective asymptotic values
(n ! 1) corresponding to incommensurate driving.
When the drive frequencies !1 and !2 are incommen-

surate, the system explores its entire phase space in the
long-time limit. The long-time averages in Eqs. (8) and
(9) can then replaced by an average over the phases

�a = !at, limT!1
1
T

R T
0 !

v d�1d�2

4⇡2 . In the limit of
weak relaxation ⌧2� � 1, the frequency conversion rate
has a clear topological character, W c =

!1!2
2⇡ C, where

C =
1

2⇡

{
d�1d�2⌦12 (10)

is the corresponding Chern number, see Fig. 3a.
Bounds on dissipation and topology.— We now use

the connection between energy dissipation and the quan-
tum metric to derive lower bounds on dissipation for
topological drives. We begin with a simple scenario in
which the system and drives are in a symmetric con-
figuration [54] with g12 ⌘

v
d�1d�2g12 = 0 [67]. In

this case, the time-averaged dissipation arises only from
the diagonal components of the quantum metric, pro-
portional to !

2
1g11 + !

2
2g22. These two terms can be

bounded from below by 2!1!2
p
g11g22 � 2!1!2

p
det g,

using det g = g11g22 � g
2
12. Next, we use the iden-

tity
p
det g � |⌦12|/2 (saturated for two-band mod-

els [51]), leading to a geometric lower bound on dissi-
pation, W d � Wgb, where

Wgb = !1!2

{
d�1d�2

4⇡2
�|⌦12|. (11)

A purely topological lower bound, Wtb  Wgb, can be
obtained by replacing the �a-dependent term �(�1,�2),
by its minimal value �min = min�1,�2 �(�1,�2), yielding

Wtb =
!1!2

2⇡
�min|C|. (12)

It follows from Eq. (12) that a finite frequency conversion
rate (|C| > 0), implies a minimum dissipation rate in the
symmetric drive configuration. Further, Wgb provides a
lower bound on dissipation for topologically-trivial pro-
tocols, with C = 0, yet with a finite Berry curvature.
In the general case, when the configuration is not

symmetric, the bound is more subtle because the termv
g12d�1d�2, encoding cross-correlations of the drives,

can be negative. Then, a bound on dissipation reads [54],

Wfb =
!1!2�min�2

minC
2

8⇡2(P1 + P2)
, (13)

where Pi =
v d�1d�2

4⇡2 (@�id)
2 is a measure of the smooth-

ness of the mapping d(�).
Numerical simulation.— As an application of our re-

sults, we consider the classical problem of a spin cou-
pled to two elliptically-polarized magnetic fields [53],
B1(t) = (0, b11 sin!1t, b12 cos!1t) and B2(t) =
(0, b21 sin!2t, b22 cos!2t). The Hamiltonian reads

H(t) = m(✓,') · � +B(t) · �, (14)

Net work conversion:
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conversion rate, wc = W c/W0 as a function of n for the same
parameters as in b. The inset shows the deviation of wc from
its asymptotic value, �wc = wc(n)� wc(1).
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dissipation rate is given by

W d =
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0
dt�gab, (8)

with the quantum metric in the space of the phases �a,
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This term is anti-symmetric in indices 1, 2, and thus does
not contribute to the net energy dissipation. Using the
steady-state vector in Eq. (5), one obtains two contri-
butions, W12 = Wad + Wc where Wad = �((�̇1)2g11 �

(�̇2)2g22) denotes the di↵erence in energy dissipation due
to each drive, and the (time-averaged) conversion power
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associated with the phases of the two drives.
Incommensurate driving.— For two harmonic fields

↵1(t) and ↵2(t) oscillating with frequencies !1 and !2,
respectively, the trajectory of Sst(t) on the Bloch sphere
is a “Lissajous” curve [66]. For a given ratio !2/!1 =
n

n+1 , the time to complete one cycle increases with n as

T = (n+ 1) 2⇡!1
, see Fig. 2a. We compute the dissipation

and frequency conversion rates using Eqs. (8) and (9);
the data are plotted in Figs. 2b,c. Both quantities rapidly

converge for n & 5 to their respective asymptotic values
(n ! 1) corresponding to incommensurate driving.
When the drive frequencies !1 and !2 are incommen-

surate, the system explores its entire phase space in the
long-time limit. The long-time averages in Eqs. (8) and
(9) can then replaced by an average over the phases
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2⇡ C, where
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is the corresponding Chern number, see Fig. 3a.
Bounds on dissipation and topology.— We now use

the connection between energy dissipation and the quan-
tum metric to derive lower bounds on dissipation for
topological drives. We begin with a simple scenario in
which the system and drives are in a symmetric con-
figuration [54] with g12 ⌘

v
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det g � |⌦12|/2 (saturated for two-band mod-
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by its minimal value �min = min�1,�2 �(�1,�2), yielding
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It follows from Eq. (12) that a finite frequency conversion
rate (|C| > 0), implies a minimum dissipation rate in the
symmetric drive configuration. Further, Wgb provides a
lower bound on dissipation for topologically-trivial pro-
tocols, with C = 0, yet with a finite Berry curvature.
In the general case, when the configuration is not

symmetric, the bound is more subtle because the termv
g12d�1d�2, encoding cross-correlations of the drives,

can be negative. Then, a bound on dissipation reads [54],

Wfb =
!1!2�min�2

minC
2

8⇡2(P1 + P2)
, (13)

where Pi =
v d�1d�2

4⇡2 (@�id)
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ness of the mapping d(�).
Numerical simulation.— As an application of our re-

sults, we consider the classical problem of a spin cou-
pled to two elliptically-polarized magnetic fields [53],
B1(t) = (0, b11 sin!1t, b12 cos!1t) and B2(t) =
(0, b21 sin!2t, b22 cos!2t). The Hamiltonian reads
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Quantum two-level systems interacting with the surroundings are ubiquitous in nature. The

interaction suppresses quantum coherence and forces the system towards a steady state.

Such dissipative processes are captured by the paradigmatic spin-boson model, describing a

two-state particle, the “spin”, interacting with an environment formed by harmonic oscilla-

tors. A fundamental question to date is to what extent intense coherent driving impacts a

strongly dissipative system. Here we investigate experimentally and theoretically a super-

conducting qubit strongly coupled to an electromagnetic environment and subjected to a

coherent drive. This setup realizes the driven Ohmic spin-boson model. We show that the

drive reinforces environmental suppression of quantum coherence, and that a coherent-to-

incoherent transition can be achieved by tuning the drive amplitude. An out-of-equilibrium

detailed balance relation is demonstrated. These results advance fundamental understanding

of open quantum systems and bear potential for the design of entangled light-matter states.
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The spin-boson model has been prominent for several
decades in the study of open quantum systems1, 2. It
describes a two-state quantum system (spin), interacting

with its environment. The latter is modeled as a set of harmonic
oscillators (bosons) constituting a so-called heat bath. The
dynamical regimes of the spin-boson model at a given finite
temperature are essentially dictated by the coupling to the
environment and by the low-frequency behavior of the bath
spectrum. In the strong coupling regime, this model provides an
accurate representation of a variety of physical and chemical
situations of broad interest, including incoherent tunneling of
bistable defects in metals3 and amorphous systems4, macroscopic
quantum tunneling in superconducting circuits5, or electron and
proton transfer in solvent environments6. Moreover, the spin-
boson model is relevant in describing exciton transport in bio-
logical complexes7, 8. The weak coupling regime characterizes
situations where preserving quantum coherence is crucial, such as
in quantum computing, whereas strong coupling can give rise to
novel entangled states of system and reservoir, for example, to
polaron or Kondo clouds2.

In the Ohmic spin-boson model, the environment has a linear
spectrum at low frequencies which leads to various remarkable
phenomena, such as bath-induced localization or a coherent-to-
incoherent transition even at zero temperature for large enough
coupling strengths1.

Recently, a new experimental setup was implemented9 which
realizes the Ohmic spin-boson model with an environmental
coupling tunable from weak to ultrastrong10. This particular
implementation is formed from a superconducting flux qubit
coupled to a transmission line, which play the role of the two-
state system and environment, respectively. The tunability of the
interaction allows one to test the key predictions of the spin-
boson model. In11, a qubit ultrastrongly coupled to a single
oscillator mode was demonstrated.

In this article, we study the spin-boson setup from ref. 9 under
strong driving, which adds a new dimension of exploration for a
spin-boson system12. Previous experiments studying strongly
driven systems have reported remarkable effects, such as the
formation of dressed states13–15, Landau-Zener interference16, 17,
amplitude spectroscopy18, and the observation of Floquet states19.
However, these experimental reports were restricted to weak or
moderate coupling to the environment. Here, we combine intense
driving and diverse dissipation strengths in a superconducting
qubit circuit, with the aim of tracing out the dynamical phase
diagram of a driven spin-boson system in coupling regimes
ranging form weak to ultrastrong.

Results
Relation between experimental and theoretical observables. A
schematic representation of the experimental setup is shown in
Fig. 1a. The two-state system is a flux qubit, a superconducting
circuit consisting of a loop interrupted by four Josephson junc-
tions20. The bosonic environment is formed from electromagnetic
modes in the superconducting transmission line coupled to the
qubit. The qubit is pumped by a strong continuous-wave drive
applied through the transmission line. Both the amplitude and
the frequency of the drive can be changed over a broad range. The
driven system is studied spectroscopically by additionally apply-
ing a weak probe field. The measured transmission T at the probe
frequency ωp gives direct access to the linear response function
associated to the weak probe signal, the so-called linear suscept-
ibility χ via the relation

T ωp
! "

¼ 1" iN !hωpχ ωp
! "

; ð1Þ

where N is a coupling constant (see Methods). According to

Kubo’s linear response theory21, χ(ω) carries information about
the dispersive and absorptive properties of the qubit in the
absence of the probe, and in turn, as discussed below, about the
dynamical phases of the driven spin-boson system. By measuring
the transmission also when the drive is switched off, we get a
reference for the effects of a coherent drive on quantum coher-
ence and localization properties.

Phase diagram of the undriven spin-boson model. We first
introduce the spin-boson model and its dynamics without driv-
ing. Historically, the Ohmic spin-boson model was first studied in
the context of the tunneling of a quantum particle in a double-
well potential1. At low temperatures the dynamics are effectively
restricted to the Hilbert space spanned by the states Lj i and Rj i,
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Fig. 1 Experimental setup and phase diagram of the symmetric spin-boson
model. a Measurement, driving circuit schematic and optical micrograph of
a device similar to the ones used in the experiment. A coplanar waveguide
running across the chip plays the role of the bath coupled to the qubit. The
inset is a scanning electron micrograph showing the qubit attached to the
line. The scale bar is 2 μm. Here and in panel b the red (black) arrow
indicates clockwise (anticlockwise) circulating persistent currents. b
Schematics of the double-well potential associated to the flux threading the
qubit. In the absence of external driving sources the potential is symmetric
and the forward and backward tunneling rates kf/b are equal. In the
presence of a positive bias asymmetry ε, forward tunneling dominates over
backward tunneling. c Dependence of the temperature T*(α) for the
crossover from the coherent to the incoherent tunneling regime on the
coupling α. The red curve interpolates numerical results (asterisks)
obtained within the nonperturbative NIBA. The dots labeled I, II, and III
mark the positions in parameter space of the three devices used in this
work
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Take-home message
• Quantum systems operating under periodic driving in contact 

to two thermal reservoirs at different temperatures may operate 
as thermal machines: engines or refrigerators if and only if there 
exist a heat-work conversion mechanism. 


• For slow driving such mechanism is associated to pumping and 
it is described by a geometric quantity akin to a Berry phase. 


• Useful for optimizing protocols in combination with the 
thermodynamic length.
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Optimal driving for a given trajectory
9

power and e�ciency of the machine as a function of the cy-
cle total duration. Plots in solid and dashed lines correspond,
respectively, to the protocols with constant angular velocity
and optimal velocity. We note from this figure that the op-
timized parametrization is around two times bigger in power,
and around four times more e�cient, with respect to the trivial
parametrization of the ellipse circulated at a constant angular
velocity. Dashed lines in Fig. 8 are akin to those of Fig. 2
where power values are normalized to Pmax and e�ciencies to
⌘max, and summarizes the performance of the machine.

G. Estimates for the performance

To finalize the analysis of the qubit heat engine, it is interest-
ing to analyze concrete values characterizing its performance.
As before, we focus on the protocol (b) of Fig. 3, for which
we have

A2 = 0.233k2
BT 2

L
2 = 7.71~. (41)

For these values, we find using Eq. (18):

Pmax =
✓
1.364 ⇥ 10�2 pW

K2

◆
(�T )2,

which for a working temperature of T = 100mK and a temper-
ature bias corresponding to �T = 0.05T , as in previous Fig-
ures, gives Pmax = 0.341aW with e�ciency ⌘Pmax = 0.23⌘C .
The total time ⌧P for maximum power output per cycle is com-
puted through Eq. (17):

⌧P = 2⌧D = 48.8ns

which corresponds to an operation frequency in the order of
0.1GHz.
It is interesting to compare the value obtained for the max-
imum power in the protocol under consideration with the
power associated to the limiting value for the work given by
Eq. (33). Such limiting power can be obtained by replacing
⌧P of Eq. (16) in Eq. (10), where we see that at finite time the
net work done by the machine operating at maximum power is
WPmax = A ⌘C/2. Taking into account that for the heat engine
A  log(2)kBT – see Eq. (33)– we conclude that the bound
for the maximum operating power in a cycle of duration ⌧P is
Plim = log(2) kBT ⌘C/(2⌧P). For the case of the protocol (b),
given the values of Eq. (41), we get Pmax = 0.7Plim.
In a similar way using Eq. (19), the optimized parametrization
that maximizes the e�ciency of the cycle give us the value
⌘max = 0.34⌘C .
Specific values for the maximum e�ciency of the machine
operating under other protocols can be obtained by substitut-
ing in Eq. (20) the values shown in Fig.7. This calculation
shows that this machine can achieve a performance as high as
⌘max > 0.55⌘C . These results are very encouraging regard-
ing the possibility of the experimental implementation of this
system.

FIG. 8. Power (blue) and e�ciency (orange) for curve (b) of Fig. 6 as
a function of the cycle duration ⌧. Solid lines: circulating around the
curve at constant angular velocity. Dashed lines: Using the optimal
velocities given by Eqs. (13) (for power) and (38) (for e�ciency).

VI. SUMMARY AND CONCLUSIONS

We have followed a geometrical approach to describe the two
competing mechanisms of a non-equilibrium adiabatic ther-
mal machine: the dissipation of energy and the heat–work
conversion. While the first mechanism is described in terms of
a length, the second one can be represented by and area in the
parameter space. We then showed that the problem of finding
optimal protocols reduces to an isoperimetric problem, which
consists in finding the optimal ratio between area and length
in a space with non-trivial metrics.
We applied this description to a thermal machine which con-
sists of a single qubit asymmetrically coupled to two bosonic
reservoirs at small di↵erent temperatures and driven by a
cyclic protocol controlled by two parameters that vary slowly
in time. We solved this problem in the limit of weak coupling
between the qubit and the reservoirs. We analytically show
the limiting value of the pumped heat between reservoirs is
given by Landauer bound in an ideal Carnot cycle. We an-
alyzed in this problem the type of cycles leading to optimal
performance of the machine. Interestingly, the qubit machine
has a very good ratio between performance and power within
a wide set of parameters.
According to our analysis, e�ciencies larger than 0.55 of the
Carnot cycle can be achieved and values of the correspond-
ing output power of 0.7 of the limiting power, correspond-
ing to the work done in an ideal Carnot cycle divided by
the duration of the cycle at which the maximum power is
achieved. These estimates are very encouraging for the exper-
imental implementation of this machine. In this sense, a very
promising platform is a superconducting qubit coupled to res-
onators, in which there are several configurations under study
for some years now [71–76]. Other possible platforms are
those in which the Otto cycle has been already implemented,
like AMO systems [2, 77, 78], as well as spin systems in NMR
setups [6]. Quantum dots, where electron pumping has been
observed [79, 80] are also candidates for implementing the
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varying parameters (driving potentials) !X (t ) = {X!(t )} with
! = 1, . . . , N , so that HS (t ) ≡ HS[ !X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/&
directly gives the heat current,

JQ
α = &

2π

∫ 2π/&

0
dt

〈
J E

α (t )
〉
. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

!=1

χ ad
t [O,F!]Ẋ!(t )

+
∑

α=L,R

χ ad
t

[
O,J E

α

]
ξ̇α (t ). (10)

Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E

R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
J E

α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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ticles. In the latter case, they are held at the same chemical
potential µL = µR = µ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − µNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
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The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
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definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
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bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters !X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency & is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

!=1

χ ad
t [O,F!]Ẋ!(t )

+
∑

α=L,R

χ ad
t

[
O,J E

α

]
ξ̇α (t ). (10)

Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt =
∑

m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and
Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F! = − ∂H
∂X!

, with ! = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F =
( !F,J E

R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + !( !X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = -T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix !(X) with
elements defined as

.µ,ν ( !X ) =
{
χ ad

t [Fµ,Fν] µ ! N
∑

α=L,R χ ad
t

[
J E

α ,Fν

]
µ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the .µ,ν ( !X ) depend
on time only through the parameters !X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

.µ,ν ( !X , !B) = sµsν.ν,µ( !X ,−!B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
!B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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TABLE I. Notation used in the text.

N Number of slowly varying coupling parameters
N + 1 Number of slowly varying coupling parameters

including thermal bias
!v Arrows denote N-dimensional vectors
v Bold fonts denote (N + 1)-dimensional vectors
! , !′ Labels of elements of N-dimensional vectors

or matrices
µ , ν Labels of elements of (N + 1)-dimensional

vectors or matrices
←→
M N × N matrix

M (N + 1) × (N + 1) matrix

Let us start with the simple observation that the thermal
bias, without the action of the ac driving, induces a net heat
flow from the hot to the cold reservoir. On the other hand, it is
useful to consider an analogy with the operation of classical
machines and notice that the modulation of the parameters
!X (t ) is introduced by some mechanism, which is akin to a
weight moving a wheel in the classical case. By the combined
effects of thermal bias and ac driving forces, it is possible to
realize heat-work conversion, which constitutes the key for
the operation of the device as a thermal machine. Two main
operational modes are possible. (i) In the heat engine mode,
part of the heat flowing in the direction of the thermal bias
is transformed into work performed against the mechanisms
ruling the dynamics of !X (t ). (ii) In the refrigerator mode, part
of the work induced by the action of the ac parameters can
be used to extract heat from the cold reservoir, against the
action of the thermal bias. In the latter case, the thermal bias
plays the role of the weight. In the operation of the thermal
machines, these processes come along with dissipation of
energy leading to entropy production. The efficiency of the
thermal machine relies on the appropriate balance between the
heat-work conversion mechanism and dissipation.

A. Heat, work, and operational modes

As we are interested in the dynamics for slow driving and
small temperature biases, it is convenient to define the N + 1-
dimensional vector of “velocities,”

Ẋ(t ) = { !̇X (t ),#T (t )/T }. (1)

These two types of vector notation (arrow and bold character)
appear in several places throughout the paper. For later refer-
ence, the Table I summarizes the different symbols used in the
text.

A temperature bias as well as time-dependent system and
bath parameters generally induce net heat transport between
the reservoirs. At the same time, any driving mechanism gen-
erates heat that is dissipated into the reservoirs. Hence, the
total heat current entering a given reservoir has a component
resulting from the net transport between the two reservoirs
and a component originated in the dissipation because of the
action of the driving forces. The net heat current JQ

α , averaged
over one cycle of period 2π/&, satisfies [109],

JQ
L + JQ

R = P, (2)

where P is the total dissipative power generated by the driving
forces, also averaged over one period. Identifying the compo-
nent due to transport and that due to dissipation in JQ

α is a non
trivial task in general. The transport component satisfies

JQ
tr,R = −JQ

tr,L ≡ JQ
tr , (3)

and we notice that only the total dissipative heat contributes to
Eq. (2). In the next section, we exactly calculate JQ

α to linear
order in Ẋ(t ) and we show that it satisfies Eq. (3). Hence, we
identify it with the leading term of the transport current.

The net heat transported per cycle between the two reser-
voirs is

Qtr = &

2π
JQ

tr . (4)

This component is defined such that Qtr > 0 when heat flows
in the direction of the thermal bias (hot to cold). We also
define the net work W performed on the system by the ac
forces during one cycle. We take W > 0 when the ac forces
exert work on the system. The balance between Qtr and W
is the key to the performance of the thermal machine, which
may operate as a heat engine by transforming heat into work
against the time-dependent driving or as a refrigerator, by
using the work performed by the ac driving to pump heat
from the cold to the hot reservoir. In the absence of heat-
work conversion, one finds that both Qtr ! 0 and W ! 0. In
the heat-engine mode, the heat–work conversion mechanism
operates against the ac forces and consequently W < 0. In
the refrigerator mode, the heat–work conversion mechanism
operates by using part of the work done by the ac forces to
pump heat against the thermal bias, so that Qtr < 0.

It is straightforward to generalize our considerations to
multi-terminal devices or to include additional macroscopic
variables beyond temperature such as an electrochemical po-
tential difference between reservoirs.

B. Adiabatic linear response

To analyze the performance of the adiabatic thermal ma-
chines, we need to compute the currents. This can be done
by conventional many-body techniques, such as the nonequi-
librium Green’s function formalism, scattering matrix theory
(for systems without many-body interactions), or master equa-
tions (for weak coupling between system and reservoirs).
Although we use these techniques to solve specific examples,
we employ a Hamiltonian representation for the temperature
difference and a Kubo linear response framework for small
#T to derive general results. This enables us to analyze the
energy dynamics induced by the thermal driving on the same
footing with that induced by the time-dependent driving. Here
we follow Luttinger’s approach [110] to thermal transport
which introduces a “gravitational” potential whose gradients
induce energy flows akin to the electrical currents induced
by gradients of the electrochemical potential. Details of this
approach are given in Appendix A.

We then introduce the Hamiltonian H governing the sys-
tem of Fig. 1, which can be expressed as

H(t ) = HS (t ) + Hbaths + Hc + Hth(t ). (5)

The first term HS (t ) is the Hamiltonian of the quantum sys-
tem. It depends on time through the N slowly and periodically
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Summarizing, the adiabatic response functions in which
the energy current enters are

χ ad
t

[
J E

α ,J E
α

]
= χ ad

t

[
J E

ᾱ ,J E
ᾱ

]
,

χ ad
t

[
J E

α ,J E
α

]
= −χ ad

t

[
J E

α ,J E
ᾱ

]
, (B7)

χ ad
t

[
Fl ,J E

α

]
= −χ ad

t

[
Fl ,J E

ᾱ

]
,

χ ad
t

[
J E

α ,Fl
]

= −χ ad
t

[
J E

ᾱ ,Fl
]
, (B8)

up to some function that vanishes when averaging over one
period. In the above equations ᾱ denotes the reservoir opposite
to α.

APPENDIX C: ENTROPY PRODUCTION RATE

In what follows, we present a microscopic derivation of the
expression for the entropy production rate associated to the
combined effect of the time-dependent and thermal driving in
the adiabatic regime.

1. ac driving

We start by analyzing the effect of the time-dependent
driving. To this end, we can proceed along the lines of
Refs. [100,140] and start from the definition of von Neumann
entropy

S(t ) = −kBTr[ρ(t )lnρ(t )]. (C1)

We also introduce the following auxiliary function:

S[Ht ] = kBTr[ρ(t )(βHt + lnZt )], (C2)

with Zt = Tr[e−βHt ]. Under a small change in the parameter
space, X(t ) → X(t + δt ), the Hamiltonian evolves to

Ht+δt = Ht + ∂H(t )
∂X

· Ẋ(t )δt = Ht − F · Ẋ(t )δt . (C3)

Consequently,

S[Ht+δt ] = kBTr[ρ(t + δt )(βHt+δt + lnZt+δt )]. (C4)

The change in the latter function is δS[H] = S[Ht+δt ] −
S[Ht ], which keeping terms up to first order in δt explicitly
reads

δS[H] = kBβ{Tr[ρ(t + δt )Ht ] − Tr[ρ(t )Ht ]}
+ kBlnZt+δt − kBlnZt

− kBβTr[ρ(t )F ] · Ẋ(t )δt . (C5)

In the last Eq. we have used Tr[ρ(t + δt )] = Tr[ρ(t )] = 1. We
can identify the first term with a change in the internal energy,

U = Tr[ρ(t )Ht ], (C6)

i.e., δU = Tr[ρ(t + δt )Ht ] − Tr[ρ(t )Ht ], as well as the
change in the internal free energy,

F = −kBT lnZt . (C7)

The other terms are related to the work developed in the
change of the time-dependent parameters [141],

δW = −Tr[ρ(t )F ] · Ẋ(t )δt . (C8)

Therefore Eq. (C6) can be expressed as follows:

T δS[H] = δU − δF + δW. (C9)

Following Ref. [100,142–144], we define the nonequilibrium
entropy production as the following difference:

δSneq = δS − δS[H], (C10)

and we evaluate it for a protocol δC in the parameter space
starting in X(t0) and ending in X(τ ), which consists in a
sequence of the previous small changes. Using Eq. (C1) and
(C6), and introducing the definition of the relative entropy
S[ρ(t )||ρt ] = S(t ) + kBTr[ρ(t )lnρt ], the nonequilibrium en-
tropy change can be written as in Ref. [100]

δSneq = S[ρ(τ )||ρτ ] − S[ρ(t0)||ρt0 ]

+ kBβ

∫

δC
dtTr[ρ(t )F ] · Ẋ(t ). (C11)

APPENDIX D: LEHMANN REPRESENTATION FOR
THE THERMOADIABATIC TENSOR

Performing a Fourier transform in the adiabatic suscepti-
bilities entering the of Eq. (15), we see that the elements of
this tensor can be expressed as

(µ,ν ( #X ) = −i∂ωχµ,ν (ω)|ω=0 = lim
ω→0

Im[χµ,ν (ω)]
ω

, (D1)

being χµ,ν (ω) the Fourier transform of the susceptibility
χµ,ν (t − t ′) = −iθ (t − t ′)〈[Fµ(t ),Fν (t ′)]〉t . Using the nota-
tion Fµ = −∂µHt and expressing the susceptibility in the
Lehmann representation we have

χµ,ν (ω) = h̄
∑

n,m

pm(εm − εn)2
[ 〈∂µm|n〉〈n|∂νm〉
ω − (εm − εn) + iη

− 〈∂νm|n〉〈n|∂µm〉
ω − (εn − εm) + iη

]
, (D2)

with η = 0+. We have used the following identities calculated
from Ht |n〉 = εn|n〉 and 〈n|∂µ(Ht |m〉):

〈n|∂µHt |m〉 = (εm − εn)〈n|∂µm〉 + δn,m∂µεm,

〈m|∂µHt |n〉 = (εm − εn)〈∂µm|n〉 + δn,m∂µεm. (D3)

Calculating the derivative as indicated in Eq. (D1), we have
(µ,ν ( #X ) = (A

µ,ν ( #X ) + (S
µ,ν ( #X ), with the antisymmetric and

symmetric components given by

(S
µ,ν ( #X ) = h̄π lim

ω→0

∑

n,m

pm
(εn − εm)2

ω
Re[〈∂µm|n〉〈n|∂νm〉]

× [δ(ω − (εm − εn)) − δ(ω − (εn − εm))]

(A
µ,ν ( #X ) = 2h̄

∑

m

pm Im[〈∂µm|∂νm〉]. (D4)

APPENDIX E: DRIVEN QUBIT: CALCULATION OF
CURRENTS AND POWER FOR DIFFERENT

SPIN COUPLINGS

1. Coupling: τ̂L = σ̂x and τ̂R = σ̂z

The different components of p(t ) for the driving protocol
of Eq. (44) with τ̂L = σ̂x and τ̂R = σ̂z can be calculated by
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