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These are the lectures notes for a series of lectures given for the introductory school, held from Nov 26th to Dec 1st
2023, of the Quantum many-body systems out-of-equilibrium thematic trimester at Institut Henri Poincaré.
The lectures consisted of 3 sessions of 1h30 and were given at the �Institut d'études scienti�ques de Cargèse� in
Corsica. I express my gratitude towards Patrizia Vignolo for the organization of this very pleasant school and
inviting me to give these lectures.

There exists an abundant and excellent literature on the subject but to prepare these lectures, I mostly restricted
myself to the following references:

� The theory of open quantum systems, H.-P. Breuer and F. Petruccione [1]. (One of) the bible on the
subject.

� Lecture notes on the Theory of Open Quantum Systems, D.A. Lidar Lidar [2]. A self-contained course on the
subject by one of the expert of the �eld.

� Quantum noise, C. Gardiner, P. Zoller Gardiner and Zoller [3]. Another classic text book with a focus on
methods used in optics and stochastic quantum and/or classical di�erential equations.

� Statistical Aspects of Quantum state Monitoring for (and by) Amateurs D. Bernard. A non-published set of
lectures that can be found here with a focus on continuous measurement.

Proper referencing of all the physical concepts and ideas introduced in these lectures is beyond the scope of these
lectures. These notes have not been carefully reviewed and some sections are not even written yet. If you �nd some
typos, I would appreciate you indicating them to me. If you happen to enjoy the notes, you can also drop me a
message, that will give me motivation to improve them.

Prerequisites : The reader should be familiar with quantum mechanics of closed systems and especially the density
matrix formalism. Knowledge of second quanti�cation would help for some parts.

Introduction

The overarching philosophy of these lecture notes about open quantum systems revolves around the endeavor to
generalize the concept of �quantum evolution�. For closed systems, a very powerful general formalism that works in
non-relativistic case is provided by the Schrödinger equation. However there are some situations that are not encom-
passed by the Schrödinger equation. One such instance is encountered when performing a projective measurement
on the system. Despite being a perfectly legitimate quantum evolution, it eludes description through the unitary
approach. Our objective is to broaden this description, terming the generalized quantum evolution as a quantum
map or channel.

Having a generalized form for the evolution o�ers a solid foundation, enabling the derivation of theorems and
properties with broad applicability. For closed systems, a central role is played by the generator of unitary evolutions
in time, i.e. the Hamiltonian. Likewise, for open systems, once we obtain the generic form of a quantum map, it will
be desirable to derive the generic form of the generator. This will be given by the Gorini�Kossakowski�Sudarshan�
Lindblad (GKLS) equation, often just called the Lindblad or quantum master equation.

We will begin by the axiomatic approach, de�ning a set of reasonable axioms that a quantum map should adhere
to and, subsequently, deriving the generic expression aligning with these axioms. Following this, we then proceed to
derive the generator of a quantum map.

In a second part we will see how such Lindblad evolution arises from microsopic models such as system-bath
coupling and measurements.

Finally, we will talk in the last part about stochastic processes in the context of both quantum noise induced by
an harmonic oscillators bath and continuous measurements.

As said before, the subjects covered will not, by any mean, be exhaustive.

1

http://www.phys.ens.fr/~dbernard/#teaching


1 The axiomatic approach

1.1 Quantum channel

De�nition. Quantum channel.
Let HS be an Hilbert space and ρ ∈ End (HS) denote density matrices (i.e. positive semi-de�nite, Hermitian

operator of trace 1). We de�ne a quantum map as an application Φ :

Φ : End (HS) → End (HS) (1)

ρ→ Φ(ρ), (2)

which ful�lls the following requirements :

� Φ is trace preserving, i.e tr (Φ(ρ)) = tr (ρ).

� Φ is linear, i.e Φ (aρ1 + bρ2) = aΦ(ρ1) + bΦ(ρ2).

� Φ is completely positive.

Perhaps the most unusual property is the complete positivity. The positivity of the map would be a natural require-
ment, i.e. that the positive eigenvalues of ρ remains positive under action of the map (as they should, as one can
interpret them as probability weights). Complete-positivity is a stronger property that we de�ne now :

De�nition. Complete-positivity (CP).
Let HR denotes an arbitrary auxiliary space of dimension k. A map Φ is said to be completely positive when for

any HR, the trivial extension Φ⊗ IR is positive where IR is the identity operator on HR.

The way to interpret a CP-map is that one cannot alter the positivity of a given density matrix by doing a trivial
operation on a space that is disconnected from the system.

To make more sense of that, let's exhibit a map that is positive but not completely positive. The canonical
example is the transpose map T .

Example. The transpose map.
As is well-known, T preserves the eigenvalues of a given matrix. Indeed, the eigenvalues of ρ are determined by

solving the determinantal problem det (ρ− λI) = 0 and such equation is invariant by action of the transpose. Thus
the transpose is positive.

Now, we will show on an example that it is not completely-positive.
Let HS be a Hilbert space of dimension 2. A generic density matrix can be written as a 2× 2 matrix

ρ =

(
a b
c d

)
. (3)

The action of the transpose is

T (ρ) =

(
a c
b d

)
. (4)

Now consider additionally a spaceHR of dimension 2. We denote the basis ofHS⊗HR by {|0, 0⟩ , |0, 1⟩ , |1, 0⟩ , |1, 1⟩}.
The action of the partial transpose on an element |iS , iR⟩ ⟨jS , jR| is T ⊗ IR (|iS , iR⟩ ⟨jS , jR|) = |jS , iR⟩ ⟨iS , jR|, i.e
only the indices belonging to HS are swapped.

Now consider the state ρ = |ψ⟩ ⟨ψ| with |ψ⟩ = 1√
2
(|0, 0⟩+ |1, 1⟩).

ρ =
1

2
(|0, 0⟩ ⟨0, 0|+ |0, 0⟩ ⟨1, 1|+ |1, 1⟩ ⟨0, 0|+ |1, 1⟩ ⟨1, 1|) , (5)

=
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , (6)

T ⊗ IR(ρ) =
1

2
(|0, 0⟩ ⟨0, 0|+ |1, 0⟩ ⟨0, 1|+ |0, 1⟩ ⟨1, 0|+ |1, 1⟩ ⟨1, 1|) , (7)

=
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (8)
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and it is easy to see that the eigenvalues of ρ are {1, 0, 0, 0} while the ones of T ⊗ IR(ρ) are {− 1
2 ,

1
2 ,

1
2 ,

1
2}, hence using

the partial transpose on the system alone, we ended up with an unphysical state. Thus, the partial transpose is not
a valid quantum operation.

Remark : It turns out that the partial transpose can be used as a measure of entanglement between two systems.
This is called the PPT criterion for positive partial transpose.

Having de�ned the axioms that we wish our quantum map ful�lls, it would be now desirable to be able to write
a generic form for a quantum-map. This is what we'll see in the next subsection.

1.2 Kraus operator sum representation (OSR)

A set operators acting on HS , {Kµ} are said to be a Kraus operator sum representation (OSR) if
∑

µK
†
µKµ = I.

The associated map is de�ned as

Φ(ρ) =
∑
µ

KµρK
†
µ. (9)

Theorem. Being a quantum channel is equivalent to admitting a Kraus OSR.

We will prove only one implication of the equivalence, that is that admitting a Kraus OSR =⇒ being a quantum
channel. Let us check that it indeed ful�lls the axioms:

Trace preservation: We indeed have that tr(ρ) = tr
(∑

µKµρK
†
µ

)
thanks to the cyclicity of the trace and the

property
∑

µK
†
µKµ = I.

Linearity : The linearity is evident.
Complete-positivity

⟨ν|Φ⊗ IR(ρ) |ν⟩ =
∑
µ

⟨ν| (Kµ ⊗ IR) ρ
(
K†

µ ⊗ IR
)
|ν⟩ =

∑
µ

⟨νµ| ρ |νµ⟩ (10)

with |νµ⟩ =
(
K†

µ ⊗ IR
)
|ν⟩. Since ρ is positive, we have that

∑
µ ⟨νµ| ρ |νµ⟩ > 0, hence the CP property. See Choi [4]

for the proof in the other direction.
Remark: If there is only a single Kraus operator in the sum, the quantum channel is an unitary evolution.

1.3 Gorini�Kossakowski�Sudarshan�Lindblad (GKLS) equation a.k.a the quantum
master equation

Most of the times in quantum mechanics, we are interested in continuous time evolution of quantum states. The
starting point for solving unitary evolution is usually the local generator form, i.e the Hamiltonian. The unitary is
obtained through the exponential map U(t) = e−iHt.

Likewise, it would be useful to have a local in time formulation for quantum channels, i.e., is it possible for a
quantum channel Φt parametrized by time to generate it by application of the exponential map to a local operator
L: Φt = eLt? We will see that this is indeed the case and the associated local evolution equation is the famous
Gorini�Kossakowski�Sudarshan�Lindblad (GKLS) equation.

To do so, we �rst have to require an additional property from the map Φt which is the semi-group property :

De�nition. Semi-group.
A quantum channel with a continuous parametrization Φt is said to have the semi-group property if

Φt ◦ Φt′ = Φt+t′ . (11)

The semi-group property, when taken for an in�nitesimal timestep dt provides the Markov property, i.e. that the
evolution of the system at time t only depends on the state of the system at time t:

ρt+dt = Φt+dt(ρ0) = Φdt(ρt). (12)

This in general is no small assumption. It means that there is no memory e�ect induced by the external degrees of
freedom on the evolution of the system. Hence, having the GKLS form is much stronger than having the Kraus ORS
form.

We will now give an explicit generic form for Φdt. De�ne the time dependent Kraus operators as

Φt =
∑
µ

Kµ(t)ρK
†
µ(t). (13)
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We will perform a small time expansion.

Kµ = φµI+Nµ

√
dt+Mµdt. (14)

Remark that since Φt ∝ KµK
†
µ we need to do the Taylor expansion in powers of

√
dt to get the most general object

of order dt. For dt→ 0, we must recover the identity map, thus∑
µ

|φµ|2 = 1, (15)

and these numbers thus de�ne a probability distribution. We denote the average with respect to this distribution by
E0[•] :=

∑
µ |φµ|2•. φµ can be interpreted as probability amplitudes.

Let us express the Kraus condition∑
µ

K†
µKµ =

∑
µ

(
φ∗
µI+N†

µ

√
dt+M†

µdt
)(

φµI+Nµ

√
dt+Mµdt

)
(16)

= I+
∑
µ

(
φµN

†
µ + φ∗

µNµ

)√
dt+

∑
µ

(
N†

µNµ +M†
µ +Mµ

)
dt+O

(
dt3/2

)
(17)

leading to the conditions ∑
µ

(
φµN

†
µ + φ∗

µNµ

)
= 0, (18)

∑
µ

(
N†

µNµ +M†
µ +Mµ

)
= 0. (19)

These conditions mean that
∑

µ φµN
†
µ and

∑
µMµ + 1

2N
†
µNµ are anti-Hermitian operators. For reason that will be

clari�ed below, we give a name to the latter ∑
µ

Mµ +
1

2
N†

µNµ = −iH, (20)

with H an Hermitian matrix H† = H.
The in�nitesimal time evolution on ρt Φdt is now given by

ρt+dt = Φdt (ρt) =
∑
µ

(
φµI+Nµ

√
dt+Mµdt

)
ρt

(
φ∗
µI+N†

µ

√
dt+M†

µdt
)

(21)

= ρt +
∑
µ

(
φ∗
µNµρt + ρtφµN

†
µ

)√
dt+

∑
µ

(
NµρtN

†
µ +Mµρt + ρtM

†
µ

)
dt. (22)

We further impose cancellation of the term proportional to µ, i.e∑
µ

φµN
†
µ = ib, b ∈ R. (23)

Using additionally (20), we end up with the GKLS equation:

d

dt
ρt = −i[H, ρt] +

∑
µ

NµρtN
†
µ − 1

2

{
N†

µNµ, ρt
}
, (24)

=: L(ρt), (25)

where {, } is the anticommutator. Most of the times, this equation is taken as the starting point of an open quantum
system problem.

Remark: Had we not imposed the term proportional to
√
dt to be 0, it would have become the dominant

contribution and thus, we would have to rescale
√
dt → dt and discard the term proportional to dt2. However, this

would be equivalent to set Nµ → 0 in the previous expansion and this is not the most general case.
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1.3.1 Dual evolution on operator / Heisenberg picture

In the spirit of the Heisenberg picture of closed quantum mechanics, Eq.(24) induces a dual evolution on operators.
Indeed, let Ô be a quantum operator and O(t) its expectation value O(t) := tr(ρtÔ). We de�ne the time-evolved
operator Ô(t) as the time-dependent operator such that

tr
(
ρtÔ

)
= tr

(
ρ0Ô(t)

)
(26)

The time evolution of Ô(t) is given by

tr

(
ρ0
d

dt
Ô(t)

)
= tr

(
d

dt
ρtÔ

)
, (27)

= tr
(
ρtL∗(Ô)

)
, (28)

d

dt
Ô(t) = L∗(Ô)|t (29)

with

L∗(Ô) = i[H, Ô] +
∑
µ

L†
µÔLµ − 1

2

{
L†
µLµ, Ô

}
(30)

where the last expression was obtained using (??) and the cyclicity of the trace. Notice that the order of the daggers
as changed in the part proportional to L†, L. Notice also that the identity is indeed invariant under the action of L∗:
L∗(I) = 0.

1.4 The GKLS equation contains classical continuous time Markov processes in its
description

In this section, we show that all continuous time classical Markov processes can be described by a GKLS equation.
First, we recall what a classical Markov process is. Let C be the space of classical con�gurations of a given system.
A con�guration is noted C. Let pC(t) be the classical probability of �nding the system in C. A Markov process is a
dynamical process which induces the following time evolution on pC(t):

d

dt
pC(t) =

∑
C′ ̸=C

(MC′→CpC′(t)−MC→C′pC(t)) , (31)

where MC′→C ≥ 0 is the transition rate from con�guration C ′ to C. We will use the standard notation MC′C :=
MC′→C for C ′ ̸= C and MCC = −

∑
C′ ̸=C MCC′ so that

d

dt
pC(t) =

∑
C′

MC′CpC′(t). (32)

We now show that we can always associate to such continuous Markov process an equation of the form (??). To each
classical con�guration we associate an element of the Hilbert space |C⟩. We now suppose that ρ is diagonal in that
basis, i.e ρt =

∑
C ρ

C
t |C⟩ ⟨C|.

Now consider the GKLS equation:

d

dt
ρt =

∑
C,C′,C′ ̸=C

LC′CρtL
†
C′C − 1

2

{
L†
C′CLC′C , ρt

}
(33)

with LC′C =
√
MC′C |C⟩ ⟨C ′| and L†

C′CLC′C =MC′C |C ′⟩ ⟨C ′| so that

d

dt
ρCt =

∑
C′ ̸=C

MC′Cρ
C′

t −MCC′ρCt , (34)

And we see indeed that we can interpret ρCt as a classical probability weight associated to the con�guration C.
However the GKLS contains more structure since it also describes the dynamics of o�-diagonal elements as well as
cases where Lµ can not be written as |C⟩ ⟨C ′|. However having the classical Markov process interpretation in mind
is often practical for qualitative reasoning.
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1.5 Examples

Before going on, let us see some examples.

1.5.1 Spontaneous emission spin 1/2

Consider a spin 1/2 and denote the associated basis by {|↑⟩ , |↓⟩}. Let H0 be the Hamiltonian of the isolated system

H0 = ω0σz, (35)

where σz is the z Pauli matrix. We want to describe the spin �ip from up to down coming from, e.g., spontaneous
emission of a photon. The spin �ip can be described by an operator L =

√
α |↓⟩ ⟨↑| where α is the rate at which the

spontaneous emission occurs. We parametrize the density matrix as

ρ = ρ⇈ |↑⟩ ⟨↑|+ ρ↑↓ |↑⟩ ⟨↓|+ ρ↓↑ |↓⟩ ⟨↑|+ ρ⇊ |↓⟩ ⟨↓| . (36)

The evolution equation is given by

d

dt
ρ = −iω0[σz, ρ] + α

(
|↓⟩ ⟨↑| ρ |↑⟩ ⟨↓| − 1

2
{|↑⟩ ⟨↑| , ρ}

)
. (37)

In terms of components

d

dt
ρ⇈ = −αρ⇈, (38)

d

dt
ρ⇊ = αρ⇈, (39)

d

dt
ρ↑↓ = −2iω0ρ↑↓ −

α

2
ρ↑↓, (40)

which admit as solutions

ρ⇈(t) = ρ⇈(0)e−αt, (41)

ρ⇊(t) = 1− ρ⇈(0)e−αt, (42)

ρ↑↓(t) = ρ↑↓(0)e
−(i2ω0+

α
2 )t (43)

And we see that the stationary state is
ρ∞ = |↓⟩ ⟨↓| . (44)

We see that this steady state is unique and completely independent of the initial state which is a consequence of the
irreversible nature of the evolution.

1.5.2 Boundary driven free fermions

Suppose that we have a discrete 1d fermionic chain of size N . We consider a tight-binding Hamiltonian acting in the
bulk :

H0 = −τ
N−1∑
j=1

c†jcj+1 +H.c. (45)

We will study a simple out-of-equilibrium situation by driving the system out-of-equilibrium by adding Lindblad
operators that act only on the boundaries, i.e. the �rst and last sites. The total evolution of the density matrix is
then given by

d

dt
ρt = −i[H, ρt] +

∑
a∈{1,N}

αaL+
a (ρt) + βaL−

a (ρt) (46)

with

L+
a (ρt) = c†aρtca −

1

2

{
cac

†
a, ρt

}
, (47)

L−
a (ρt) = caρtc

†
a −

1

2

{
c†aca, ρt

}
. (48)

At the level of classical Markov processes, the interpretation of L+
a is that it injects a fermion on site a with rate

αa when it is empty while L−
a destroys a fermion on site a with rate βa when it is occupied. Thus, when the rates
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(α1, β1) ̸= (αN , βN ) we have an imbalance and expect an out-of-equilibrium situation. In general in these boundary
driven problems, one is interested in the computation of the out-of-equilibrium steady state.

In this example, the problem is considerably simpli�ed by the fact the the equations of motion close at the level

of two-point functions. Indeed, let Gij := tr
(
ρtc

†
jci

)
. One can check that, indeed,

d

dt
Gi,j =− iτ (Gi,j+1 +Gi,j−1 −Gi+1,j −Gi−1,j) (49)

−
∑

a∈{1,N}

1

2
(δi,a + δj,a) (αa + βa)Gi,j − δi,aδj,aαa. (50)

The stationary state is the solution to d
dtGi,j = 0. Because the problem is quadratic, we have a system of N2

(actually less because Gij is Hermitian) coupled equations to solve. However, for this particular case, we are able to
exhibit the solution analytically.

For simpli�cation, let us �x α1 = βN = 1+µ
2 , αN = β1 = 1−µ

2 and τ = 1. One can check that the following
solution solves the stationary equations:

Gi,j = δi,j

(
1

2
+
µ

6
δi,1 −

µ

6
δi,N

)
− iδi,j−1

µ

3
+ iδi,j+1

µ

3
. (51)

We see that apart, from the diagonal and the �rst o�-diagonal, all the elements are 0. The density pro�le is completely
�at apart from the two boundary sites.

The current operator is de�ned through the conservation equation taken in the bulk:

d

dt
Gi,i = −iτ (Gi,i+1 +Gi,i−1 −Gi+1,i −Gi−1,i) , (52)

=: − (Ji+1 − Ji) , (53)

Ji := iτ (Gi−1,i −Gi,i−1) , (54)

=
2µ

3
. (55)

As expected, the current is proportional to the bias. Notice however that it is independent of system size which is a
signature of ballistic transport.

2 Constructive approaches: a few (important) examples

2.1 System bath coupling

We start with a powerful theorem.

Theorem. (Stinespring) Let Φ be a quantum channel acting on ρ ∈ End (HS). There always exists a Hilbert space
HR, a state ρR ∈ End (HR) and a unitary operator U acting on HS ⊗HR such that

Φ(ρ) = trR
(
Uρ⊗ ρRU

†) (56)

where trR(•) denotes the partial trace on HR.

This means that, in principle, it is always possible to see the evolution of a given quantum channel as resulting
from the unitary evolution of a bigger system of which we have traced out some degrees of freedom that we call the
bath degrees of freedom. Now we will show how to explicitly make such a construction.

Consider an Hamiltonian of the form
H = HS +HB +HI . (57)

S refers to the system, B to the bath and I is some interaction term between the two. It will turn out to be convenient
to work in the interacting picture de�ned as follows. Let ρ(t) designates the density matrix in the Schrödinger picture,
de�ne the density matrix and the Hamiltonian in the interaction picture as

ρI(t) := ei(HS+HB)tρ(t)e−i(HS+HB)t, (58)

HI(t) := ei(HS+HB)tHIe
−i(HS+HB)t, (59)
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and we have

d

dt
ρI(t) = −i [HI(t), ρI(t)] . (60)

Observables in the interaction picture become time-dependent,

OI(t) := ei(HS+HB)tOe−i(HS+HB)t. (61)

For notational convention, we will drop the I index from now on. We will assume that the initial state is factorized:

ρ(0) = ρS(0)⊗ ρB . (62)

The integral form of (60) is

ρ(t) = ρ(0)− i

∫ t

0

ds [HI(s), ρ(s)] . (63)

Inserting this integral form into (60), we get

d

dt
ρ(t) = −i[HI(t), ρ(0)]−

∫ t

0

ds [HI(t), [HI(s), ρ(s)]] . (64)

To get the evolution on the system alone we take the partial trace over the bath degrees of freedom that we denote
by trB . We note ρS the reduced density matrix of the system alone, ρS := trB (ρ):

d

dt
ρS(t) = −itrB ([HI(t), ρ(0)])− trB

(∫ t

0

ds [HI(t), [HI(s), ρ(s)]]

)
. (65)

To simplify what will follow, we will suppose that ∀t trB ([HI(t), ρ(0)]) = 0. This means

d

dt
ρS(t) = −trB

(∫ t

0

ds [HI(t), [HI(s), ρ(s)]]

)
. (66)

We will now do a series of approximations that will allow to treat (66). The �rst one is the Born approximation or
weak coupling approximation. It consists in saying that, at any time, the e�ect of the system of the bath is negligible
and thus, we may always write the density matrix in a factorized form

ρ(t) = ρS(t)⊗ ρB . (67)

We additionally make the replacement s→ t− s for reasons of readibility that will be made clear below:

d

dt
ρS(t) = −trB

(∫ t

0

ds [HI(t), [HI(t− s), ρS(t− s)⊗ ρB ]]

)
. (68)

In this equation, there are implicitly two-times correlators evaluated on the initial distribution of the bath ρB , i.e
objects of the form trB (OB(t)OB(t− s)ρB). The next approximation, the Markov approximation will suppose that
there is a separation of time scales between the relaxation time τB in the bath and the typical time at which the
evolution takes place in the system τS . This tells us that the integral is non-zero for s ∝ τB . We are thus allowed to
do two things: i) Replace ρS(s) by ρS(t). ii) Take the upper bound for the integral to +∞. This gives

d

dt
ρS(t) = −trB

(∫ ∞

0

ds [HI(t), [HI(t− s), ρS(t)⊗ ρB ]]

)
. (69)

The advantage of having the lower bound to −∞ is that the evolution equation doesn't depend on the initial
conditions anymore.

We now suppose that the interaction between the bath and the system is of the form (in the Schrödinger picture)

HI =
∑
m

A†
mΓm +AmΓ†

m (70)

where Γm are operators acting on the bath only and Am are eigenoperators of HS satisfying[
HS , A

†
m

]
= ωmA

†
m, [HS , Am] = −ωmAm. (71)
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HI(t) =
∑
m

A†
me

iωmtΓm(t) +Ame
−iωmtΓ†

m(t). (72)

The double commutator in (69) gives rise to 4 terms. Let's zoom in on one of them :

I :=trB

(∫ ∞

0

dsHI(t)HI(t− s)ρS(t)⊗ ρB

)
, (73)

=trB

(∫ ∞

0

ds
∑
m,m′

(
A†

me
iωmtΓm(t) +Ame

−iωmtΓ†
m(t)

)
(74)

(
A†

m′e
iωm′ (t−s)Γm′(t− s) +Am′e−iωm′ (t−s)Γ†

m′(t− s)
)
ρS(t)⊗ ρB

)
. (75)

And we see the explicit contribution of the bath two-times correlators trB
(
Γ†
m(t)Γm′(t− s)ρB

)
.We will assume that

the bath is not squeezed, meaning that the pair creation and annihilation correlators are 0. Furthermore, we will
suppose that the bath correlators are translationally invariant in time so that they are just functions of s. Finally,
we make our third and last approximation, the rotating-wave approximation which stipulates that terms in the sum
with ωm ̸= ωm′ oscillate fast compared to the time scale of typical variations of the system τS . We then end up with

I =
∑
m

(
A†

mAm

∫ ∞

0

dseiωmstrB
(
Γm(s)Γ†

m(0)ρB
)
+AmA

†
m

∫ ∞

0

dse−iωmstrB
(
Γ†
m(s)Γm(0)ρB

))
ρS(t). (76)

Now introducing ∫ ∞

0

dseiωmstrB
(
Γm(s)Γ†

m(0)ρB
)
:=

1

2
Km + iδm, (77)∫ ∞

0

dse−iωmstrB
(
Γm(0)Γ†

m(s)ρB
)
:=

1

2
Km − iδm, (78)∫ ∞

0

dse−iωmstrB
(
Γ†
m(s)Γm(0)ρB

)
:=

1

2
Gm + iϵm, (79)∫ ∞

0

dseiωmstrB
(
Γ†
m(0)Γm(s)ρB

)
:=

1

2
Gm − iϵm. (80)

d

dt
ρS(t) =

∑
m

[
− iδm

[
A†

mAm, ρS
]
− iϵm

[
AmA

†
m, ρS

]
(81)

+Gm

(
A†

mρSAm − 1

2

{
AmA

†
m, ρS

})
(82)

+Km

(
AmρSA

†
m − 1

2

{
A†

mAm, ρS
})]

. (83)

And we see that the we indeed obtain terms of the Lindblad form.
Remark that there is an asymmetry between the process with the quantum jump Am and A†

m. This asymmetry
naturally comes from the asymmetry of the correlations in the bath (Think for instance of the creation and annihi-
lation of a photon in the vacuum which is strongly di�erent from the process where we �rst annihilate and create).
Interestingly, this gives a way of realizing classical asymmetric stochastic processes such as the ASEP (asymmetric
simple exclusion process).

2.1.1 Summary of the approximations used

We recall the main approximations used in the previous derivation

Rotating wave approximation Terms oscillating at ωS + ωB can be neglected.

Born approximation Frequency scales associated with the system environment coupling is small in scale com-
pared to the system and environment's own frequency scales. This is equivalent to saying that the coupling between
the system and the bath is weak.

9



Markov approximation System-environment coupling is time independent over short timescales. The Markov
approximation also assumes that relaxation times of the bath are fast compared to typical timescale of the dynamics
within the system. For a thermal bath, the lifetime of the correlation in the bath are set by τT := ℏ

2πkBT . For

T = 1K, τT ≈ 10−12s.

2.2 Measurements

De�nition. Positive Operator Valued Measure (POVM)
A set of operators {Fs} on a Hilbert space H constitute a POVM if they satisfy the relation∑

F †
sFs = I. (84)

In the context of measurements, we can associate to a given POVM a measurement process as follows : s indexes
the possible outputs of the measurement and the state after the measurement is updated to

ρ→ FsρF
†
s

π(s)
, (85)

where π(s) is the probability associated with the result s given by π(s) := tr
(
FsρF

†
s

)
. The POVM de�nition ensures

that the density matrix stay positive semi-de�nite, Hermitian of trace 1.
For the usual measurement of an observable O =

∑
s λsΠs with λs the (possibly degenerate) eigenvalues associated

to O and Πs the corresponding projectors, the Fs are simply the Πs. However, the POVM de�nition encompasses
more general cases such as weak measurements as we will see.

If we average over the results of the measurement, we get

E[ρ] =
∑
s

π(s)
FsρF

†
s

π(s)
, (86)

=
∑
s

FsρF
†
s , (87)

where we denoted the average with E[]. We see that we naturally get a Kraus operator structure with Fs being the
Kraus operators.

Suppose now that the we repeat the measurements and they occur with some probability rate γ, i.e at each time
step dt there is a probability γdt for a measurement to occur and (1− γ) dt for a measurement to not take place.
Additionally, we always discard the results of the measurements, i.e we average over the di�erent measurement results
(we discard the E[] in what follows to lighten notations). The density matrix gets updated according to

ρt+dt = γdt
∑
s

FsρtF
†
s + (1− γ)dtρt, (88)

d

dt
ρt = γ

∑
s

FsρF
†
s +

1

2
{F †

sFs, ρ}dt, (89)

where in the second line we used that
∑

s F
†
sFs = I. We see that this is indeed of the Lindblad form.

3 Stochastic formalism

In the examples of Sec.2, quantum maps were obtained in both cases by averaging over some external degrees of
freedom (dof). For the system bath coupling, it was the external bath degrees of freedom while for the measurements,
it was the measurements results. What would happen if we kept track of these dofs ? We will see that in both case,
it is possible, under certain assumptions to obtain an e�cient e�ective description of these additional dofs in terms
of stochastic processes.

3.1 Quantum white noise

We will illustrate concepts of quantum noise on a idealized problem. Consider the following Hamiltonian:

H = HS +HB +HI , (90)

10



where B is a set of bosonic modes indexed by ω with linear energy ω:

HB =

∫ ∞

−∞
dωωb†ωbω, (91)

with [b(ω), b†(ω′)] = δ(ω − ω′). Although the integral reaches to −∞, one has in practice to imagine all the modes
far away from some resonance value ωc are not relevant and do not contribute to the physics of the problem. The
integration range is then just a mere calculational convenience.

The interaction is taken to be

HI = i

∫ ∞

−∞

dω√
2π
γ(ω)

(
b†ωc− c†bω

)
(92)

where c and c† are unspeci�ed operators acting on the system. In the Markov approximation, the coupling κ(ω) is
taken to be frequency independent, γ(ω) = γ.

The Heisenberg equations of motion on the bath mode and on a given generic system operator a are given by

d

dt
bω(t) = −iωbω(t) +

γ√
2π
c(t), (93)

d

dt
a(t) = i[HS , a] + γ

∫
dω√
2π

(
b†ω[a, c]− [a, c†]bω

)
. (94)

The solution of the former is

bω(t) = e−iω(t−t0)bω(t0) +
γ√
2π

∫ t

t0

dt′e−iω(t−t′)c(t′). (95)

In what follows we will note bω(t0) = bω.
Inserting the previous solution into (94), we obtain:

d

dt
a(t) =i[HS , a] (96)

+ γ

∫
dω√
2π
dω

(
eiω(t−t0)b†ω[a, c]− [a, c†]e−iω(t−t0)bω

)
(97)

+ γ2
∫
dω

2π

∫ t

t0

dt′
(
eiω(t−t′)c†(t′)[a, c]− e−iω(t−t′)[a, c†]c(t′)

)
. (98)

Our particular choice of bath spectrum and coupling allows to simplify greatly this expression:

d

dt
a(t) =i[HS , a] +

(
γb†str(t) +

γ2

2
c†
)
[a, c]− [a, c†]

(
γbstr(t) +

γ2

2
c(t)

)
, (99)

where we introduced the �eld

bstr(t) :=

∫
dω√
2π
e−iω(t−t0)bω. (100)

(Notice the factor of 1/2 which comes from the fact that
∫ t

t0
c(t′)δ(t − t′)dt′ = 1

2c(t) since the Dirac distribution is

located at the upper integration limit.) The bstr operator ful�ll the commutation relation[
bstr(t), b

†
str(t

′)
]
= δ(t− t′). (101)

An identity that we will use later and notice now is that for t′ > t,

[a(t), bstr(t
′)] = 0. (102)

This is simply a causality statement, since the value of a(t) can only depend, by construction, on its previous values
and previous values of bstr.

The statistics of these operators are imposed by �xing the bath distribution ρB :

tr
(
b†str(t)bstr(t

′)ρB

)
=

∫
dωdω′

2π
eiω

′(t′−t0)e−iω(t−t0)tr
(
b†ωbω′ρB

)
. (103)

The quantum white noise limit is obtained by imposing that

tr
(
b†ωbω′ρB

)
= αδ(ω − ω′). (104)

11



The crucial assumption here is that α is independent of ω which would not be the case for e.g. a thermal state. This
leads to

tr
(
b†str(t)bstr(t

′)ρB

)
= αδ (t− t′) , (105)

tr
(
bstr(t)b

†
str(t

′)ρB

)
= (α+ 1) δ (t− t′) . (106)

These relations encourage us to interprete bstr(t) as some kind of white noise. However, one should keep in mind
that they are non-commuting objects, hence the name quantum white noise. In the following we will set t0 → 0 for
simpli�cation.

Let W be the �quantum Wiener process� associated to this quantum white noise:

Wt :=

∫ t

0

bstr(t
′)dt′. (107)

The statistics of this object is de�ned through the distribution of the bath ρB . We have that[
Wt1 ,W

†
t2

]
= min (t1, t2) (108)

tr (WtρB) = tr
(
W 2

t ρB
)
= 0, (109)

tr
(
W †

t1Wt2ρB

)
= αmin (t1, t2) , (110)

tr
(
Wt1W

†
t2ρB

)
= (α+ 1)min (t1, t2) . (111)

We will assume that these are all the correlations required to �x the statistics ofWt, i.e we assume that the distribution
of the bath is Gaussian.

3.1.1 It	o versus Stratonovich

For some (quick) introduction on classical stochastic calculus and It	o vs Stratonovich, see App A. We will see in what
follows that the concept of stochastic calculus and the It	o and Stratonovich prescriptions translate to the quantum
case.

It	o prescription Let g(t) be a generic system operator. The quantum It	o integral is de�ned through the following
prescription: ∫ t

0

g(t′)dWt′ := lim
n→∞

n∑
i=1

g (ti)
(
Wti+1 −Wti

)
(112)

with t = n∆t and ti = i∆t.
Because of causality the increment

(
Wti+1

−Wti

)
commutes with g(ti), so that∫ t

0

g(t′)dWt′ =

∫ t

0

dWt′g(t
′). (113)

Stratonovich prescription Let ‘t̃i :=
1
2 (ti + ti+1) be an intermediate time between ti and ti+1. We denote this

convention with a ◦:∫ t

0

g(t′) ◦ dWt′ := lim
n→∞

n∑
i=1

g
(
t̃i
) (
Wti+1 −Wti

)
, (114)

= lim
n→∞

[
n∑

i=1

g
(
t̃i
) (
Wti+1

−Wt̃i

)
+

n∑
i=1

g
(
t̃i
) (
Wt̃i

−Wti

)]
. (115)

Let ∆g be the increment from ti to t̃i in the It	o prescription, ∆g := g(t̃i)− g(ti)
From our previous de�nition, we have

∆g = −γ
[
g, c†

] (
Wt̃i

−Wti

)
+ γ

(
W †

t̃i
−W †

ti

)
[g, c] +O

(
t̃i − ti

)
. (116)
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(For our purpose, the deterministic terms O
(
t̃i − ti

)
won't matter so we don't write them explicitly). This leads to∫ t

0

g(t′) ◦ dWt′ = lim
n→∞

[ n∑
i=1

g
(
t̃i
) (
Wti+1

−Wt̃i

)
+

n∑
i=1

g (ti)
(
Wt̃i

−Wti

)
− γ

n∑
i=1

[
g, c†

] (
Wt̃i

−Wti

) (
Wt̃i

−Wti

)
(117)

+ γ

n∑
i=1

(
W †

t̃i
−W †

ti

) (
Wt̃i

−Wti

)
[g, c]

]
We regroup the �rst two terms and use the It	o rules to get∫ t

0

g(t′) ◦ dWt′ =

∫ t

0

g(t′)dWt′ + γ
α

2

∫ t

0

dt′[g, c]. (118)

Similarly, one can show ∫ t

0

dWt′ ◦ g(t′) =
∫ t

0

g(t′)dWt′ + γ
(α+ 1)

2

∫ t

0

dt′[g, c], (119)∫ t

0

g(t′) ◦ dW †
t′ =

∫ t

0

g(t′)dW †
t′ − γ

(α+ 1)

2

∫ t

0

dt′[g, c†], (120)∫ t

0

dWt′ ◦ g(t′) =
∫ t

0

g(t′)dW †
t′ − γ

α

2

∫ t

0

dt′[g, c†]. (121)

These relations carry on for the integrands:

g(t) ◦ dWt =g(t)dWt + γ
α

2
[g, c]dt, (122)

dWt ◦ g(t) =g(t)dWt + γ
(α+ 1)

2
[g, c]dt,

g(t) ◦ dW †
t =g(t)dW †

t − γ
(α+ 1)

2
[g, c†]dt,

dW †
t ◦ g(t) =g(t)dW †

t − γ
α

2
[g, c†]dt.

Using these notations, we can rewrite (99) as an SDE taken in the Stratonovich convention as

da(t) = −i[a,HS ]dt+
γ2

2

(
c†[a, c]− [a, c†]c

)
dt,

+ γ
(
dW †

t ◦ [a, c]− [a, c†] ◦ dWt

)
. (123)

3.1.2 It	o SDE

We now show that the following quantum SDE written in It	o convention is consistent with (99):

da =− i [a,HS ] dt+
γ2

2
(α+ 1)

(
2c†ac− ac†c− c†ca

)
dt

+
γ2

2
α
(
2cac† − acc† − cc†a

)
dt (124)

− γ
[
a, c†

]
dWt + γdW †

t [a, c] .

equipped with the It	o rules dW 2
t =

(
dW †

t

)2

= 0, dWtdW
†
t = (α + 1)dt, dW †

t dWt = αdt. Notice that the previous

relations are strict equalities where no average is taken.
To show that this expression is indeed equivalent to (99), it su�ces to change the convention for the noise

increments in (124). From (122), we have that[
a, c†

]
dWt =

[
a, c†

]
◦ dWt −

γ

2
α
[[
a, c†

]
, c
]
dt, (125)

dW †
t [a, c] = dW †

t ◦ [a, c] + γ

2
α
[
[a, c] , c†

]
dt. (126)

13



Plugging these expressions into (124) leads to

da(t) = −i[a,HS ]dt+
γ2

2

(
c†[a, c]− [a, c†]c

)
dt,

+ γ
(
dW †

t ◦ [a, c]− [a, c†] ◦ dWt

)
, (127)

which is the Stratonovich version of the SDE.

3.1.3 Some examples

WIP

3.2 Indirect, repeated measurements

We introduce here the concept of indirect measurements. In this setting, one does not perform the measurement
on the system directly but instead on an ancilla A that is �rst entangled with the system S and then measured.
Depending on the degree of intrication between the two systems, the projective measurement of A gives total or
partial information about the state of S. in the later case, we talk about weak measurement. One paradigmatic
example of

Let us put this idea into equations. Let |φ⟩ ∈ HA be the state of the ancilla before interaction with the system
and ρS the state of the system. After the interaction, the state is updated as follows.

ρS ⊗ |φ⟩ ⟨φ| → U (ρ⊗ |φ⟩ ⟨φ|)U† (128)

where U is an unitary acting on HS ⊗ HA. Let OA be an observable living on HA and s index the corresponding
eigenvalues. A measurement of OA updates the state of the system according to

ρS → ⟨a|U (ρS ⊗ |φ⟩ ⟨φ|)U† |a⟩
π(a)

, (129)

π(a) := tr
(
⟨a|U (ρ⊗ |φ⟩ ⟨φ|)U† |a⟩

)
. (130)

Eq.(129) has the form of a POVM with Fa := ⟨a|U |φ⟩ an operator acting on HS alone. We can check that indeed∑
a F

†
aFa =

∑
a ⟨φ|U† |a⟩ ⟨a|U |φ⟩ = I.

In the repeated measurements formalism, one prepares a series of ancilla indexed by n, An that are all independent
of one another. We �rst entangle the system with probe 1 and do the measurement of A1, then the same for A2, etc.
A collection measurement results obtained this way is called a quantum trajectory. We will see below of to construct
one explicitly. The treatment of the general case can be found in D.Bernard's lecture notes.

Non-Demolition condition In order for this procedure to reproduce a projective measurement, we need that a
speci�c basis {|k⟩} of the system, that we call the pointer basis is preserved by the interaction with the ancilla, i.e if
the system is in the pure state ρS = |k⟩ ⟨k|, it is left invariant by the weak measurement procedure with probability
one.

One way to enforce this is to impose that the unitary coupling the system and the ancilla can be written under
the form

U =
∑
k

|k⟩ ⟨k| ⊗ uk (131)

where uk is a unitary acting on the ancilla space. This is called the non-demolition condition. Let's verify that this
unitary indeed preserves the k basis. We start from a pure state |ψS⟩ = |k0⟩ before the interaction.

U |ψS⟩ ⊗ |φ⟩ = |k0⟩ ⊗ uk0
|φ⟩ . (132)

After the measurement with output a, the system state is updated to

|ψ⟩ = |k0⟩ ⟨a|uk0 |φ⟩√
π(a)

(133)

where the probability π(a) writes π(a) = |⟨a|uk0
|φ⟩|2 . Since the state is de�ned up to a phase

|ψ⟩ = |k0⟩ ∀a. (134)
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Figure 1: Scheme of the LKB experiment where photons are observed via Rydberg atoms that serve as ancilla. The
photons in blue are trapped between the two mirrors of the cavity C. They are probed by two-level atoms (the
small pink torus) �ying out the preparation box B, passing through the cavity C and measured in D. Each atom
is manipulated before and after C in Ramsey cavities R1 and R2, respectively. It is �nally detected in D either in
ground state g or in excited state e.

Repeated measurements and collapse We now want to repeat the previous procedure many times. We imagine
that we prepare an ensemble of ancillas, all in the same initial state and index them by n. The ancilla are sent one
by one to interact with the system and we measure everytime the state of the ancilla.

Let's assume that the non-demolition condition is satis�ed. Let ⟨k| ρ(n)S |k′⟩ be the elements of the density matrix

of the system in the preserved pointer basis. We give a special name to the diagonal elements qn(k) := ⟨k| ρ(n)S |k⟩.
After each step, these elements are updated according to

qn(k) → qn+1(k) =
⟨k, a|U

(∑
k′,k′′ ⟨k′| ρ(n)S |k′′⟩ |k′⟩ ⟨k′′| ⊗ |φ⟩ ⟨φ|

)
U† |k, a⟩

πn(a)
, (135)

=
|⟨a|uk |φ⟩|2 qn(k)

πn(a)
. (136)

Remark that |⟨a|uk |φ⟩|2 can be thought as a conditioned probability, i.e the probability of getting the output a

knowing that the system is in the state k, p(a|k) := |⟨a|uk |φ⟩|2 and πn(a) =
∑

k p(a|k)qn(k).

Theorem. (Bauer-Bernard) Progressive collapse:
Assume that the conditioned probabilities p(a|k) are all disjoints, that is, there does not exist a disjoint pair of

pointer states k and k′ such that p(a|k) = p(a|k′) ∀a, then:
• The sequences n→ qn(k) converge almost surely and in L1 for any k.
• The limit distribution is peaked: q∞(k) = δk,k∞ for some random target pointer k∞.
• The random target k∞ is distributed according to the initial distribution P[k∞ = k] = p0(k).
• The convergence to the target is exponentially fast with pn(k)/p∞(k) ∝ e−nS(k∞|k), with S (k∞|k) the relative

entropy S (k∞|k) = −
∑

s p(s|k∞) log
[

p(s|k)
p(s|k∞)

]
.

Proof: Cf. lecture notes from D. Bernard. The key is to notice that qn(k) is a Martingale, i.e

E [qn+1(k)|Fn] = qn(k), ∀k. (137)

where Fn is the �ltration up to the n-th step. One then uses Doob's martingale convergence theorem stipulating that
a bounded Martingal necessarily converges almost surely and in L1. One can show that only the peaked distribution

satis�es the �stationary� condition q∞(k) = p(a|k)q∞(k)
πn(a)

. The probability pk∞ to get the pointer distribution q∞(k) =

δk,k∞ is then determined by the martingale property

pk∞ = E[q∞(k)] = q0(k). (138)

The estimate on the rate of convergence can be obtained by applying successively the recursion relation.

Example Haroche's, cavity QED experiment Guerlin et al. [5] We now give an example of the previous
QND collapse with Haroch's celebrated cavity QED experiment. The experimental setup is shown on Fig. 1.

Rydberg atoms are used as probes and are described as two-level atoms that can be either in the ground or
excited state. They are generated in the excited state and then rotated by R1 using a π/2 pulse onto the x axis. The
interaction of the Rydberg atom with the photons in the cavity is such that the photon number rotates the Rydberg
atom by a phase proportional to the number of photons in the cavity n.
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Figure 2: �Evolution of the atomic spin on the Bloch sphere in a real experiment: an initial pulse R1 rotates the spin
from Oz to Ox (left). Light shift produces a π/4 phase shift per photon of the spin's precession in the equatorial
plane. Directions associated with n = 0 to 7 end up regularly distributed over 360 (centre). Pulse R2 maps the
direction Ou onto Oz, before the atomic state is read out (right).� From Guerlin et al. [5].

Figure 3: �Photon number probabilities plotted versus photon and atom numbers n and N . The histograms evolve,
as N increases from 0 to 110, from a �at distribution into n = 5 and n = 7 peaks.� From Guerlin et al. [5].

The resulting conditioned probability distribution is given by

p(a|ϕ, n) = 1

2

(
1 + cos

(
πn

q
− ϕ+ aπ

))
(139)

with a ∈ {0, 1}, π
q is the shift set by a photon set by the interaction time (with q integer) and ϕ is the angle of the

axis Ou (see Fig. 2). Two realizations of the experiment are shown on Fig. 3.

3.2.1 Special case: spin 1/2

The system is a spin 1/2 and so are all the ancillas. All the spins are initially independent. All the ancillas are

initially prepared in the state |x⟩(n) = 1√
2

(
|+⟩(n) + |−⟩(n)

)
while the state of the system is generically �xed to ρS,0.

The interaction Hamiltonian between the two spins is chosen to be

H = − |↑⟩ ⟨↑| ⊗ σ(n)
y + |↓⟩ ⟨↓| ⊗ σ(n)

y . (140)

H is chosen such that it rotates the ancilla clockwise around the y axis of the Bloch sphere if the state of the system
is ↑ and counterclockwise it is in ↓. For a short interaction time, the + state of the ancilla is thus positively correlated
with the ↑ state of the system and − with the ↓ state. However, the correlation is not perfect, and a measurement
of the ancilla state only gives �weak� information about the state of the system.

Let us see what happens when we start from an initial state ρn for the system and go through one step of the
interaction and measurement procedure. To lighten notation, we drop the (n) superscript indexing the ancilla for
the computations and will restore it when needed. Let ε be the interaction time. We suppose that we measure the
state of the ancilla in the {|+⟩ , |−⟩} immediately after the interaction took place.
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From the de�nition above

F± = ⟨±|U |x⟩ , (141)

π± = tr
(
F±ρnF

†
±

)
. (142)

Let us perform the small ε expansion of F±:

F± ≈ ⟨±|
(
I− iHε− 1

2
H2ε2

)
|x⟩ , (143)

=
1√
2
I− iε (− |↑⟩ ⟨↑|+ |↓⟩ ⟨↓|)⊗ ⟨±|σ(n)

y |x⟩+− 1

2
√
2
ε2I, (144)

=
1√
2

(
I± εσz −

ε2

2
I
)
, (145)

where we used that H2 = I.

F±ρnF
†
± ≈ 1

2

(
I± εσz −

ε2

2
I
)
ρn

(
I± εσz −

ε2

2
I
)

(146)

≈ 1

2

(
ρn ± ε {σz, ρn}+ ε2

(
σzρnσz −

1

2

{
σ2
z , ρn

}))
, (147)

π± ≈ 1

2
(1± 2ε⟨σz⟩n) (148)

with ⟨σz⟩n := tr(ρnσz). Finally,

ρn+1 =
F±ρnF

†
±

π±
, (149)

≈ ρn +∆S(n) {(σz − ⟨σz⟩n) , ρn}+ ε2
(
σzρnσz −

1

2

{
σ2
z , ρn

})
− 2ε2 {(σz − ⟨σz⟩n) , ρn} ⟨σz⟩n, (150)

where we called ∆S(n) a random variable taking value ±ε with probability π
(n)
± . Now notice that

E[∆S(n)] = ε
(
π
(n)
+ − π

(n)
−

)
= 2ε2⟨σz⟩n, (151)

E[
(
∆S(n)

)2

] = ε2
(
π
(n)
+ + π

(n)
−

)
= ε2. (152)

Now we de�ne the signal

SN =

N∑
n=0

∆S(n), (153)

In the limit N → ∞, ε → 0 and keeping t := Nε2 �nite, the signal converges to the stochastic process St which
follows the stochastic di�erential equation (SDE):

dSt = 2⟨σz⟩tdt+ dBt, (154)

where Bt is a Brownian process, i.e. dBt is a random variable with mean 0 and variance dt. For t ̸= t′, dBt and dBt′

are independent. The �rst term in (154) is called the drift and the second term is a white noise. We see that on
average the signal evolves as the average value of the σz component of the system. Reinserting this expression and
taking the continuous limit in (150), we obtain the SDE for the density matrix of the system:

dρt = {(σz − ⟨σz⟩t) , ρt} dBt +

(
σzρtσz −

1

2

{
σ2
z , ρt

})
dt. (155)

The second part of the equation is of the GKLS form (??) that we are already familiar with. The �rst part is
proportional to dBt and comes from the randomness of the outcomes of the measurements on the ancilla. Importantly,
remark it is non-linear in the density matrix.

In terms of matrix component, this gives

d⟨σz⟩t = 2
(
1− ⟨σz⟩2t

)
dBt, (156)

d⟨σx⟩t = −2⟨σx⟩t (dt+ ⟨σz⟩tdBt) , (157)

d⟨σy⟩t = −2⟨σy⟩t (dt+ ⟨σz⟩tdBt) . (158)
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Any process that can be written directly proportional to the noise is a Martingale, indeed E[d⟨σz⟩t|Ft] = 0 so that
E[⟨σz⟩t+dt|Ft] = ⟨σz⟩t. First equation is a bounded Martingale so it converges almost surely to a given random
variable in the in�nite time limit. In our case the only possible target random variables are the ones with peaked
probability distributions δ (⟨σx⟩ ± 1). To get the probability of attaining either of these distributions, we use the
Martingale property to have E[⟨σz⟩∞|F0] = ⟨σz⟩t=0. The latter is just Born rule!

For an experimental realization with superconducting qubit coupled to a radiating light �eld, see Campagne-
Ibarcq et al. [6].

3.3 Quantum trajectories or how to win a factor of N in numerical simulation of open
quantum systems

WIP...

A A bad introduction to stochastic di�erential equation (SDE)

In this appendix, we provide a bad �rst introduction to SDE. For a better introduction, you can read for instance
Oksendal [7].

Consider the stochastic di�erential equation

dx

dt
= f(x, t) + ”σ(x, t)ξt” (159)

where x is a random, continuous process in time, f(x, t) and σ(x, t) di�erentiable functions from C2 → C and ξt a
white noise, i.e E[ξt] = 0 and E[ξtξt′ ] = δ(t − t′). We put quotation marks because, as we will see, this equation
taken as such is ill-de�ned. We want to make sense of the integral of such an equation, i.e:

x(t) =

∫
dt′f(x, t′) + ”

∫
dt′σ(x, t′)ξ′′t′ . (160)

And to start, with we should try to make sense of

”

∫
dt′ξt′”. (161)

Qualitatively, this represents a sum of random increments, that are all independent. The increments should average
to 0 and their variance should be proportional to dt. However, we immediately run into a problem with this notation
as the variance of the increment for small time step dt should be something like

∝ dt2δ (0) . (162)

Something tempting would be to cancel the δ(0) contribution with one of the dt but it is not clear what it means
from the mathematical point of view. A better starting point is to �rst de�ne the increment. We call it dBt and
require that

E [dBt] = 0, (163)

E
[
dB2

t

]
= dt, (164)

E [dBtdBt′ ] = 0 for t ̸= t′. (165)

And our SDE would be rather written as
dx = fdt+ σdBt. (166)

Now the crucial problem is that if we try to construct integrals of dBt using discrete Riemann summation, there is
an a priori ill-de�niteness that we expose now.

For the usual integration, if f is a C1 function, we have∫ t

0

f(t′)dt′ = lim
n→∞

∑
i

f(τi) (ti+1 − ti) (167)

with t = n∆t, ti = i∆t and τi ∈ [ti, ti+1]. The important point is that we are free to chose the point where we
evaluate τi, it doesn't matter in the continuous limit as long as it belongs to the interval [ti, ti+1]. All possible
prescriptions converge to the same quantity.

18



This is however not true for stochastic integration. Indeed, let's look at∫ t

0

Bt′dBt′ = lim
n→∞

n−1∑
i=0

Bτi

(
Bti+1

−Bti

)
. (168)

We have that

E
[∫ t

0

Bt′dBt′

]
=

n−1∑
i=0

(τi − ti) . (169)

One sees that the result strongly depends on the choice of the prescription! For instance for τi = ti we have

E
[∫ t

0

Bt′dBt′

]
= 0 (170)

while for τi =
ti+ti+1

2 , we have

E
[∫ t

0

Bt′dBt′

]
= t/2. (171)

The most used conventions are precisely these two. The choice τi = ti is called the It	o prescription while the choice
τi = ti+ti+1

2 is the Stratonovich prescription. It	o integrals will be noted
∫
fdBt while Stratonovich will be noted∫

f ◦ dBt. They both have pros and cons that we list in the following table:

It	o Stratonovich

Pros Easy to take averages No obvious averaging
Cons No chain rule, need additional It	o rules to di�erentiate Chain rule works

It	o prescription In the It	o prescription taking average of the SDE is easy. Indeed:

dx = f(x, t)dt+ σ(x, t)dBt. (172)

Since σ(x, t) is independent of dBt we have E [σdBt] = 0 and

E [dx] = [f ] dt (173)

We admit that the di�erentiation of a function y(x) works as follows

dy = ∂xydx+
1

2
∂2xy (dx)

2
, (174)

= ∂xy (fdt+ σdBt) +
1

2
∂2xy (dBt)

2
, (175)

=

(
∂xyf +

1

2
∂2xyσ

2

)
dt+ ∂xyσdBt. (176)

To pass from the the second to the third line, we introduced an algebraic identity called the It	o rule dB2
t = dt.

Importantly there is no average involved in the previous relation. What the It	o rule stipulates is that the stochastic
process where all the dB2

t have been replaced by dt converge to the same process where they have been not when
taking the continuous limit. For the proof of this statement, we refer to Oksendal [7].

A qualitative explanation for why we need to keep track of the second order expansion is that we have term
proportional to dBt in the SDE for x which scale like

√
dt since Bt represents a Brownian process. Thus terms like

dB2
t will give a contribution of order dt.
For the same reason, the Leibniz rule for the di�erentiation of a product has to be modi�ed:

d (xy) = xdy + dxy + dxdy. (177)
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Conversion from It	o to Stratonovich. Let t̃i := ti+ti+1

2 , we can convert between the It	o and Stratonovich
integral through the following steps:∫ t

0

x(Bt′ , t
′) ◦ dBt′ = lim

n→∞

∑
i

x
(
Bt̃i

, t̃i
) (
Bti+1 −Bti

)
, (178)

= lim
n→∞

[∑
i

x
(
Bt̃i

, t̃i
) (
Bti+1

−Bt̃i

)
+ x

(
Bt̃i

, t̃i
) (
Bt̃i

−Bti

)]
, (179)

= lim
n→∞

[∑
i

x
(
Bti , t̃i

) (
Bti+1

−Bt̃i

)
+ x (Bti , ti)

(
Bt̃i

−Bti

)
+ σ (Bti , ti)

(
Bt̃i

−Bti

) (
Bt̃i

−Bti

) ]
, (180)

=

∫ t

0

x (Bt′ , t
′) dBt′ +

1

2
σ (Bt′ , t

′) dt′ (181)

where in the last line we used the It	o rule dB2
t = dt.

In integrand form this relation is

x ◦ dBt = xdBt +
1

2
σdt (182)

Hence, the equation in the It	o form
dx = fdt+ σdB, (183)

corresponds to the Stratonovich equation

dx = fdt− 1

2
∂xσσdt+ σ ◦ dBt, (184)

where we used the fact that the SDE followed by σ is given by

dσ(x, t) =

(
∂xσf +

1

2
∂2xσσ

2

)
dt+ ∂xσσdBt. (185)

We can now easily check that the chain rule is veri�ed for Stratonovich. Recall the di�erential of y(x) for It	o:

dy =

(
∂xyf +

1

2
∂2xyσ

2

)
dt+ ∂xyσdBt. (186)

The SDE for ∂xyσ is given by

d (∂xyσ) =
(
∂2xyσ

2 + ∂xy∂xσσ
)
dBt +O(dt), (187)

so that

(∂xyσ) dBt = (∂xyσ) ◦ dBt −
1

2

(
∂2xyσ

2 + ∂xy∂xσσ
)
dt (188)

Replacing this into the expression (186), we end up with

dy = (∂xyf) dt−
1

2
(∂xy∂xσσ) dt+ (∂xyσ) ◦ dBt, (189)

and we see that indeed
dy = ∂xydx (190)

for Stratonovich.
Finally, let us check that Leibniz rule is ful�lled for Stratonovich. Let x and y be two stochastic processes following

the SDEs

dx = fxdt+ σxdBt, (191)

dy = fydt+ σydBt, (192)

dx = fxdt−
1

2
∂xσxσx + σx ◦ dBt, (193)

dy = fydt−
1

2
∂yσyσy + σy ◦ dBt, (194)
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d (xy) = xdy + dxy + dxdy, (195)

= (xσy + yσx) dBt ++(xfy + yfx) dt+ σxσydt, (196)

and
d (xσy + yσx) = (σxσy + x∂yσyσy + σyσx + y∂xσxσx) dBt +O(dt) (197)

and we indeed have that

d (xy) = (xσy + yσx) ◦ dBt −
1

2
(σxσy + x∂yσyσy + σyσx + y∂xσxσx) dt+ (xfy + yfx) dt+ σxσydt, (198)

= x

(
σy ◦ dBt −

1

2
∂yσyσydt+ fydt

)
+ y

(
σx ◦ dBt −

1

2
∂xσxσxdt+ fxdt

)
, (199)

= x ◦ dy + y ◦ dx. (200)
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