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1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

Spatial process - stationary random field (RF) X = {X(t); t ∈ Rd} or
X = {X(t); t ∈ Zd} with covariance rX (t) := Cov(X(0),X(t))

LRD: rX nonintegrable (nonsummable):
∫
Rd |rX (t)|dt =∞ or

∑
t∈Zd |rX (t)| =∞

Great variety of spatial LRD models, limit theorems, limit distributions (scaling
limits)...

Scaling (zooming out): getting a distant view of the object

At large scales, short-range details (‘dependences’, ‘correlations’) disappear but
long-range ‘correlations’ may prevail

Scaling (partial sums) limits of any weakly dependent 2nd order process X coincide
with Brownian motion (Donsker’s theorem)
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1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

Scaling limit of a stationary process X is self-similar (Lamperti, 1962) and provides
a ‘large-scale summary of dependence structure of X ’

We (and many other works on scaling limits) consider the limit distribution of
integrals:

Xλ(φ) :=

∫
Rd

X(t)φ(t/λ)dt, as λ→∞, (1)

(or respective sums in the discrete argument case), where X = {X(t); t ∈ Rd} is a
given stationary RF, for each φ from a class of (test) functions Φ = {φ : Rd → R}.

A suitably normalized limit

d−1
λ (Xλ(φ)− EXλ(φ))

d−→ V (φ), λ→∞ (2)

is a RF V (φ) indexed by φ ∈ Φ is called the (isotropic) scaling limit of X

The above approach is common in the theory of generalized RFs
Gel’fand, I.M., Vilenkin, N.Ya. (1964) Generalized Functions - Vol.4: Applications of Harmonic Analysis
Dobrushin, R.L. (1980) Automodel generalized random fields and their renormgroup. In: R.L. Dobrushin and Ya.G. Sinai
(Eds.), Multicomponent Random Systems
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1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

The limit in (2) strongly depends on the class Φ of test functions

In the theory of generalized RFs (‘random Schwartz distributions’) Φ is Schwartz
space D(Rd ) or S(Rd ) of very smooth (infinitely differentiable) functions, which is
justified by applications in mathematical physics (quantum field theory)

In spatial statistics, Φ = {φ} may consist of indicator functions
φ(t) = I(t ∈ A), t ∈ Rd

where A runs over a class A of Borel subsets of Rd

For above indicator function φ,

Xλ(φ) =

∫
t∈λA

X(t)dt or Xλ(φ) =
∑

t∈λA∩Zd

X(t) (3)

is the empirical mean of X (times Lebd (λA) = λdLebd (A)) given observations of
X over ‘inflated’ set λA whose limit distribution in (2) is of interest

The limit distribution of empirical mean in (3) may be difficult if A has irregular
boundary (‘edge effects’)
Lahiri, S.N. and Robinson, P.M. (2016) Central limit theorems for long range dependent spatial linear processes.

Bernoulli 22, 345–375
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1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

Popular approach in limit theorems for RFs: integration/summation on rectangles:

Φrec,d := {I(t ∈]0, s]); s ∈ Rd
+}, ]0, s] :=

d∏
i=1

]0, si ]

Then Xλ(s) =
∑

t∈]0,λs ]
X(t) is a RF indexed by points s ∈ Rd

+

d-dimensional analog of the partial sums process of time series

Weak dependent X under mixing conditions (‘rectangles’ = ‘blocks’):
Dedecker, J., Doukhan, P., Lang, G., León, J.R., Louhichi, S. and Prieur, C. (2007) Weak Dependendence. With

Examples and Applications. Lecture Notes Statist. vol. 190. Springer

Functional convergence & tightness ignored in this talk

Isotropic or uniform scaling t → t/λ in (1) can be replaced by anisotropic or
operator scaling t → λ−Γt where Γ is a d × d-matrix, particularly, a diagonal
matrix

Γ = diag(γ1, · · · , γd ), (γ1, · · · , γd ) = γ ∈ Rd
+,

Operator scaling RF (OSRF):
Biermé, H., Meerschaert, M.M. and Scheffler, H.P. (2007) Operator scaling stable random fields. Stoch. Process. Appl.
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1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

We can consider the limit distribution of RF Xλ,Γ(φ) =
∑

t∈Zd X(t)φ(λ−Γt) or the
anisotropically rescaled partial sums RF:

Xλ,γ(s) =
∑

t∈]0,λΓs ]

X(t), λΓs = (λγ1s1, · · · , λγd sd ) (4)

Rectangle ]0, λΓs] grow at different rate λγj in jth direction

For i.i.d. RF X the presence of γj does not make any difference of the limit which
is a stable sheet on Rd

+ (except for a change of normalization)

The same indifference to γj of the limit in (4) is expected under weak dependence

Surprising: for a large class of LRD X scaling limits of (4) exist for any γ and
depend on γ ∈ Rd

+, moreover the number of different limits is finite.
In dimension d = 2 this number is 3: there exists γ0 > 0 such that the limits do
not depend on γ = (γ1, γ2) for γ2

γ1
> γ0 and γ2

γ1
< γ0

We say that scaling transition occurs at critical γ2
γ1

= γ0 (ratio of scaling
exponents on different axes of R2)
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1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

Some ref.:
Puplinskaitė, D. & S.D. (2015) Scaling transition for long-range dependent Gaussian random fields. Stoch. Proc. Appl.
125
Puplinskaitė, D. & S.D. (2016) Aggregation of autoregressive random fields and anisotropic long-range dependence.
Bernoulli 22
Pilipauskaitė, V. & S.D. (2017) Scaling transition for nonlinear random fields with long-range dependence. Stoch. Proc.
Appl. 127
Biermé, H., Durieu, O. & Wang, Y. (2017) Invariance principles for operator-scaling Gaussian random fields. Ann. Appl.
Prob. 27
S.D. (2019) Anisotropic scaling limits of long-range dependent linear random fields on Z3. J. Math. Anal. Appl. 472
S.D. (2020) Scaling transition and edge effects for negatively dependent linear random fields on Z2. Stoch. Proc. Appl.
130
Damarackas, J. & Paulauskas, V. (2021) On Lamperti type limit theorem and scaling transition for random fields. J.
Math. Anal. Appl. 497

S.D. (2022) Scaling transition for singular linear random fields on Z2: spectral approach. Preprint.

Extension: (isotropic) scaling with aggregation: the limit distribution of a sum of
M independent copies of (1):

Xλ,M(φ) :=

M∑
j=1

∫
Rd

Xj (t)φ(t/λ)dt (5)

as M →∞ and λ→∞
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1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

For d = 1 and φ(t) = I(t ∈]0, s]), s ≥ 0 (5) represent the aggregated sum

Xλ,M(s) =

M∑
j=1

∫ λs

0
Xj (t)dt, s ≥ 0 (6)

of integrated independent and identically distributed ‘input’ processes
Xj = {Xj (t); t ∈ R} with LRD ‘induced by heavy tails’, M referred to as the
‘connection rate’

Applications in telecommunications (Xλ,M(s) ‘aggregated workload from M
independent sources’) and econometrics (Xλ,M(s) averaged panel data from M
individual ‘micro time series’ )

‘Typical’ result in the heavy-tailed aggregated traffic research says that there exists
a critical ‘connection rate’ M0 = M0(λ)→∞ (λ→∞) such that the (normalized)
‘aggregated input’ Xλ,M(s) tends to an α-stable Lévy process or a Fractional
Brownian Motion depending on whether M/M0 tends to 0 or ∞; the critical
growth M/M0 → c ∈ (0,∞) results in a different ‘intermediate’ limit which is
neither Gaussian nor stable
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1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)
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1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

In these works, the critical ‘connection rate’ M0 = M0(λ) separating Gaussian
(‘fast connection rate’) and stable (‘slow connection rate’) limits grows as
M0 = O(λγ0 ) with some γ0 > 0 (up to slowly varying factor).
We argue that these works fit into the previous set-up of ‘scaling limit with
aggregation’ for RF X ′(t, j) := Xj (t) on (t, j) ∈ R× Z.
The trichotomy of scaling limits can be interpreted as scaling transition for RF X ′.

Unsurprisingly, most existing results on scaling limits of LRD RFs (d ≥ 2) (with or
without aggregation) apply to linear models.
A notable exception is Gaussian subordinated RFs (written as a nonlinear function
G(X(t)) of a Gaussian LRD RF X) treated via Hermite expansion
‘Dobrushin-Major-Taqqu [DMT] theory’.
This is in contrast to the one-dimensional case d = 1, where the martingale
approach developed in Ho, H.-C. & Hsing, T. (1997) Limit theorems for functionals of moving averages. Ann.

Probab. 25 is applicable to nonlinear functions and statistics of causal LRD moving
averages.
Nonlinear models are important since most statistics are nonlinear.
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2. Random grain (RG) model

Causality not very natural in spatial context & HH (1997) method hard to adopt
in noncausal case. But:
Doukhan, P., Lang, G. & S.D. (2002) Asymptotics of weighted empirical processes of linear random fields with long

range dependence. Ann. Inst. H. Poincaré 38 for G(x) = I(x ≤ y).
This result was applied to goodness-of-fit testing
Koul, H.L., Mimoto, N. & S.D. (2016) Goodness-of-fit tests for marginal distribution of linear random fields with long

memory. Metrika 79

2. Random grain model

A ‘superposition of uniformly scattered in Rd ’ and randomly dilated grains:

X(t) :=

∞∑
j=1

I(t ∈ (u j + Ξj )), t ∈ Rd . (7)

where:

{u j} ⊂ Rd : Poisson process of ‘centers’ or ‘germs’ with uniform intensity du
Ξj = R1/d

j Ξ0, {R,Rj > 0} i.i.d. with F (dr) := P(R ∈ dr) independent of {u j},
Ξ0 (‘generic grain’): a deterministic bounded Borel subset of Rd
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2. Random grain (RG) model

Lebd (Ξj ) = RjLebd (Ξ0): dilates Lebd (Ξ0) by random factor Rj

X(t) in (7) counts the number of random grains which cover t ∈ Rd

X(t) has marginal Poisson distribution with mean

µ = EX(t) =
∫
Rd P(t − u ∈ R1/d Ξ0)du = Lebd (Ξ0)ER <∞

and stochastic integral representation

X(t) =
∫
Rd×R+

I(t − u ∈ r 1/d Ξ0)N (du,dr), t ∈ Rd , (8)

N (du, dr): Poisson random measure with EN (du,dr) = duF (dr)

Closely related object: the (random) Boolean set:

X :=
⋃∞

j=1(u j + R1/d
j Ξ0) ⊂ Rd . (9)

Boolean model is basic in stochastic geometry and stereology
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2. Random grain (RG) model

Ξ0 = {‖t‖ ≤ 1} unit ball: random ball model

Trajectories of RG model very different from Gaussian:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0:1

0:
1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0:1

0:
1

Isotropically scaled random ball model, γ = 1, α = 3/2. Left: λ = 5, right: λ = 10
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Isotropic scaling with aggregation of RG model was discussed in important works:
[KLNS] Kaj, I., Leskelä, L., Norros, I. & Schmidt, V. (2007) Scaling limits for random fields with long-range

dependence. Ann. Probab. 35
[BEK] Biermé, H., Estrade, A. & Kaj, I. (2010) Self-similar random fields and rescaled random balls models. J.
Theoret. Probab. 23

Anisotropic scaling without aggregation of RG model (d = 2):

Pilipauskaitė, V. & S.D. (2016) Anisotropic scaling of random grain model with application to network traffic. J. Appl.

Probab. 53
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2. Random grain (RG) model

Covariance rX (t) = Cov(X(0),X(t)) of RG model writes as

rX (t) =
∫∞

0 Lebd (Ξ0 ∩ (Ξ0 − r−1/dt)) r F (dr).

Well-known: RG is LRD [= nonintegrable covariance] if P(R > r) = F (r ,∞) varies
regularly at ∞ with exponent α ∈ (1, 2).

Assumption LRD Ξ0 ⊂ Rd is a bounded Borel set whereas F (dr) = f (r)dr has
density function s.t.

f (r) ∼ cf r−1−α, r →∞ (∃ cf > 0, α ∈ (1, 2)). (10)

Moreover, (r , z) 7→ Lebd
(

Ξ0 ∩ (Ξ0− r−1/d z)
)

is continuous on (r , z) ∈ R+×{‖z‖ = 1}.

mild regularity of boundary ∂Ξ0

Under Assumption LRD

rX (t) ∼ ‖t‖−d(α−1)`(
t
‖t‖ ), |t| → ∞, 1 < α < 2, (11)

where `(z), ‖z‖ = 1 is a bdd cont. (angular) function

`(z) := cf
∫∞

0 Lebd
(

Ξ0 ∩ (Ξ0 − r−1/d z)
)
r−αdr .
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2. Random grain (RG) model

LRD property holds for 1 < α < 2 and does not hold for α > 2, α > 1 necessary
for EX(t) <∞ and existence of X

For d = 1,Ξ0 = [0, 1], X = {X(t); t ∈ R} is stationary M/G/∞ queue:

X(t) =
∑

uj≤t I(t − uj ≤ Rj )

counting the number of customers at time t at a queueing system with standard
Poisson arrivals uj , service times Rj and infinite waiting room,
also called the infinite source Poisson model.
Then rX (t) =

∫∞
t P(R > r)dr = O(t−(α−1)) is LRD for α ∈ (1, 2)

(11) implies the asymptotics of the variance of Xλ(φ) =
∫
Rd X(t)φ(t/λ)dt: for

any φ ∈ Φ = L1(Rd ) ∩ L∞(Rd )

Var(Xλ(φ)) ∼ λd(3−α)c(φ), λ→∞, (12)

where

c(φ) :=
∫
R2d φ(t1)φ(t2)`

( t1−t2
‖t1−t2‖

) dt1dt2
‖t1−t2‖d(α−1)
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2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

Scaling limits with aggregation for sums Xλ,M(φ) :=
∑M

j=1

∫
Rd Xj (t)φ(t/λ)dt of

independent RG models. These can be identified as integral

Xλ,M(φ) =
∫
Rd XM(t)φ(t/λ)dt, where

XM(t) =
∫
Rd×R+

I(t − u ∈ r 1/d Ξ0)NM(du, dr)

w.r.t. Poisson measure with ENM(du, dr) = MduF (dr)

For Poisson based models, aggregation amounts to multiplication of intensity

[KLNS] discuss scaling limit of Xλ,M(φ) indexed by signed (Riesz) measures φ.
In this talk:

φ ∈ Φ = L1(Rd ) ∩ L∞(Rd ).

What happens when M →∞ together with λ→∞? For fixed t ∈ Rd clearly
(XM(t)− EXM(t))/M1/2 d−→ N(0, µ) (M →∞) with µ = EX(t) = Var(X(t))
by CLT
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2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

Theorem (1)
Let Assumption LRD hold, M = λγ (γ > 0). Then for any φ ∈ Φ

λ−H(γ)(Xλ,M(φ)− EXλ,M(φ))
d−→


Bα(φ), γ > d(α− 1), H(γ) = γ+(3−α)d

2 ,

Lα(φ), γ < d(α− 1), H(γ) = γ+d
α
,

Jα(φ), γ = d(α− 1), H(γ) = d .

Thm essentially due to [KLNS]

Bα(φ): Gaussian RF with Var(Bλ(φ)) = c(φ) in (12). It is represented as integral
Bα(φ) =

∫
Rd×R+

Wα(du, dr)
∫
Rd φ(t)I(t − u ∈ r 1/d Ξ0)dt w.r.t. Gaussian noise

with EWα(du, dr)2 = cf r−1−αdrdu

Lα(φ): α-stable RF written as stochastic integral Lα(φ) =
∫
Rd φ(t)Lα(dt) w.r.t.

α-stable random measure Lα

Jα(φ): ‘intermediate Poisson’ RF written as stochastic integral
Jα(φ) =

∫
Rd×R+

Ñα(du, dr)
∫
Rd φ(t)I(t − u ∈ r 1/d Ξ0)dt w.r.t. centered Poisson

random measure with variance EÑα(du,dr)2 = cf r−1−αdrdu (the same as Wα)
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2. Random grain (RG) model

Stochastic representations of Bα(φ), Lα(φ), Jα(φ) mimic the structure of the
original RG model except for a change of random measure

Thm obtains trichotomy of scaling limits of XM(φ) at γ0 = d(α− 1) (scaling
transition)

For d = 1,Ξ0 = [0, 1] (infinite source Poisson model) Thm agrees with:
Mikosch, T., Resnick, S., Rootzén, H. & Stegeman, A. (2002) Is network traffic approximated by stable Lévy motion or
fractional Brownian motion? Ann. Appl. Probab. 12
Kaj, I. & Taqqu, M.S. (2008) Convergence to fractional Brownian motion and to the Telecom process: the integral
representation approach. In: M.E. Vares and V. Sidoravicius (Eds.) In and Out of Equilibrium 2. Progress in Probability,
vol. 60
Leipus, R., Pilipauskaitė, V. & S.D. (2023) Aggregation of network traffic and anisotropic scaling of random fields.

Th. Probab. Math. Statist.

Rather short proof using characteristic function

Intuitive explanation of different limits for γ > γ0 and γ < γ0: For
φ(t) = I(t ∈]0, 1]),M = λγ

XM(φ) ≈
∑

j Lebd ((u j,M + Rj Ξ
0)∩]0, λ]d ),

where {u j,M} is Poisson process with intensity Mdu = λγdu
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2. Random grain (RG) model

Intuition (ctnd): If random grain u j,M + Rj Ξ
0 ⊂]0, λ]d then the corresponding

Lebd ((u j,M + R1/d
j Ξ0)∩]0, λ]d ) = Lebd (R1/d

j Ξ0) ∝ Rj
which are independent and α-tailed r.v.

The number of Poisson points u j,M ⊂]0, λ]d grows as Mλd = λγ+d

Therefore, XM(φ) ≈
∑λd+γ

j=1 Rj ∧ λd behaves as a sum of α-tailed i.i.d. r.v.s
‘truncated’ at level λd

Chakrabarty, A. and Samorodnitsky, G. (2012) Tails in a bounded world or, is a truncated heavy tail heavy or not?

Stoch. Models 28

discussed limit distribution of sums of n α-tailed r.v.s truncated at level cn →∞

They show that the limit distribution of such sums is Gaussian for when
cn/n1/α → 0 and α-stable when cn/n1/α →∞
The boundary truncation level cn = n1/α results in ‘intermediate’ infinitely divisible
limit

In our case n = λd+γ , cn = λd , cn/n1/α = λd− d+γ
α and d − d+γ

α
= 0 is equivalent

to γ = γ0 = d(α− 1) exactly as in the above theorem.
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3. Poisson distribution, Charlier polynomials & Mehler’s formula

3.1. (Classics:) Gaussian distribution, Hermite polynomials and Mehler’s formula.
Hermite polynomials Hk (x), x ∈ R, k ∈ N related Z ∼ N(0, 1) are defined by power
series

eiux+u2/2 =

∞∑
k=0

(iu)k

k!
Hk (x), x , u ∈ R. (13)

The r.v.s Hk (Z), k ≥ N are orthogonal:
EHk (Z) = 0, EHk (Z)2 = k!, EHk (Z)H`(Z) = 0, k 6= ` = 0, 1, · · · .

Any G ∈ L2 can be expanded in Hermite polynomials:
G(x) =

∑∞
k=0

hG (k)
k!

Hk (x), hG (k) := EG(Z)Hk (Z), j = 0, 1, · · · .
hG (k) are called Hermite coefficients of G. Note hG (0) = EG(Z) and
EG(Z)2 =

∑∞
k=0

h2
G (k)

k!
.

Let (Z1,Z2) have bivariate normal distribution with mean zero, unit variances and
correlation coefficient ρ ∈ (−1, 1), with the joint density

φ(x , y) = (2π
√

1− ρ2)−1 exp
{
− 1

2(1−ρ2)

(
x2 + y 2 − 2ρxy

)}
x , y ∈ R.

and marginal density φ(x) = (2π)−1/2e−x2/2. Then:
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3.1. Poisson distribution, Charlier polynomials & Mehler’s formula (Gaussian case)

(i) (Orthogonality property): For any k, ` ∈ N

EHk (Z1)H`(Z2) =

{
0, k 6= `,

ρkk!, k = `,

(ii) Let Gi = Gi (x), x ∈ R, i = 1, 2 be given functions, EG2
i (Zi ) <∞, i = 1, 2. Then

EG1(Z1)G2(Z2) =
∑∞

k=0
hG1 (k)hG2 (k)

k!
ρk . (14)

(iii) (Mehler’s formula):

φ(x , y) =
∑∞

k=0
ρk

k!
φ(k)(x)φ(k)(y) = φ(x)φ(y)

∑∞
k=0

ρk

k!
Hk (x)Hk (y).

Proof of (i): Multiply generating functions eiuZ1+u2/2 and eivZ2+v2/2 and take
expectation to obtain

∞∑
k,`=0

(iu)k (iv)`

k!`!
EHk (Z1)H`(Z2) = Eei(uZ1+vZ2)e(u2+v2)/2

= e−ρuv =

∞∑
k=0

(−1)k

k!
ρkukv k .

(i) follows from this equality by comparing coefficients of powers ukv ` on both sides.
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3. Poisson distribution, Charlier polynomials & Mehler’s formula (Gaussian case)

Proof of (ii): immediate from (i) and Gi (Zi ) =
∑∞

j=0
hGi (j)

j! Hj (Zi ).

Proof of (iii): bivariate ch.f. of (Z1,Z2):∫
R2 ei(xu+yv)φ(x , y)dxdy = e−(u2−2ρuv+v2)/2.

Show this equality remains valid with φ(x , y) replaced by the r.h.s. of Mehler’s formula,
denoted by φ̃(x , y). We have

I :=
∫
R2 ei(xu+yv)φ̃(x , y)dxdy =

∑∞
k=0

ρk

k!

∫
R eixuφ(k)(x)dx

∫
R eiyvφ(k)(y)dy .

Integrating by parts,
∫
R eixuφ(k)(x)dx = (iu)k ∫

R eixuφ(x)dx = (iu)ke−u2/2, hence

I = e−(u2+v2)/2∑∞
k=0

ρk

k!
(iu)k (iv)k = e−(u2−2ρuv+v2)/2

completing the proof of (iii).

Mehler’s formula: classical tool in mathematics & physics (O-U evolution,
harmonic oscillators ...) Google search: > 300,000

Hermite rank kH(G) of an G : the index of the first non-zero coefficient hG (k) in
the Hermite expansion (14): G(x)− EG(Z) =

∑∞
k=kH (G)

hG (k)Hk (x)/k!
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3. Poisson distribution, Charlier polynomials & Mehler’s formula

(ii) and Cauchy-Schwarz imply

Cov(G1(Z1),G2(Z2)) ≤ |ρ|k
∗
H
∏2

i=1 Var(G(Zi ))1/2 ≤ |ρ|
∏2

i=1 Var(G(Zi ))1/2

where k∗H := kH(G1) ∨ kH(G2) ≥ 1, ρ = EZ1Z2 = correlation coefficient
Arcones, M.A. (1994) Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors, Ann.
Probab. 22, 2242–2274.

Gebelein, H. (1941) Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein

Zusammenhang mit der Ausgleichsrechnung. Z. Angew. Math. Mech. 21.

If G has Hermite rank kH(G) = 1 then (linear) Gaussian RF {G(X(t)), t ∈ Rd}
and (nonlinear) Gaussian subordinated RF Y (t) := G(X(t)), t ∈ Rd have the
same LRD properties and scaling limits:
Y (t) = hG (1)X(t) + Y ∗(t) where ‘remainder’ Y ∗(t) is negligible

Dobrushin-Major-Taqqu theory treats the general case of LRD Gaussian
subordinated RF Y (t) = G(X(t)), t ∈ Rd of arbitrary Hermite rank kH(G) ≥ 1
(scaling limits written through Gaussian polynomial chaos or multiple Wiener-Itô
integrals)
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3. Poisson distribution, Charlier polynomials & Mehler’s formula

3.2. Poisson distribution & Charlier polynomials
N = Poisson r.v. with mean µ = EN and distribution p(x ;µ) = e−µ µ

x

x !
, x ∈ N

Charlier polynomials Pk (x ;µ) of discrete variable x ∈ N defined through generating
function:

P(u; x , µ) :=
∑∞

k=0
uk

k!
Pk (x ;µ) = (1 + u)xe−uµ, (15)

P0(x ;µ) = 1,P1(x ;µ) = x − µ,P2(x ;µ) = x2 − (2µ+ 1)x + µ2,
Pk (x ;µ) = (−1)kµkp(x ;µ)−1Dk

−p(x ;µ), k ∈ N (16)
where Dk

− := D−Dk−1
− is the backward difference operator,

D−G(x) := G(x)− G(x − 1)I(x ≥ 1),D0
−G(x) = G(x)

Orthogonality relations for Charlier polynomials
EPk (N;µ) = 0, EPk (N)2 = k!µk , EPk (N;µ)P`(N;µ) = 0, k 6= `

follow from multiplying the series in (15) at the points u and v and taking the
expectation of the product:∑∞

k,`=0
uk v`
k!`!

EPk (N;µ)P`(N;µ) = e−(u+v)µE[((1 + u)(1 + v))N ]

= eµuv =
∑∞

k=0
(µuv)k

k!

and equating the coefficients of ukv `, k, ` ∈ N of the power series.
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function:

P(u; x , µ) :=
∑∞

k=0
uk

k!
Pk (x ;µ) = (1 + u)xe−uµ, (15)

P0(x ;µ) = 1,P1(x ;µ) = x − µ,P2(x ;µ) = x2 − (2µ+ 1)x + µ2,
Pk (x ;µ) = (−1)kµkp(x ;µ)−1Dk

−p(x ;µ), k ∈ N (16)
where Dk

− := D−Dk−1
− is the backward difference operator,

D−G(x) := G(x)− G(x − 1)I(x ≥ 1),D0
−G(x) = G(x)

Orthogonality relations for Charlier polynomials
EPk (N;µ) = 0, EPk (N)2 = k!µk , EPk (N;µ)P`(N;µ) = 0, k 6= `

follow from multiplying the series in (15) at the points u and v and taking the
expectation of the product:∑∞

k,`=0
uk v`
k!`!

EPk (N;µ)P`(N;µ) = e−(u+v)µE[((1 + u)(1 + v))N ]

= eµuv =
∑∞

k=0
(µuv)k

k!

and equating the coefficients of ukv `, k, ` ∈ N of the power series.
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3. Poisson distribution, Charlier polynomials & Mehler’s formula

Any G = G(x), x ∈ N with EG2(N) <∞ can be expanded in Charlier polynomials

G(x) =
∑∞

k=0
cG (k)

k!
Pk (x ;µ), x ∈ N (17)

where

cG (k) := µ−kEG(N)Pk (N;µ), k ∈ N (18)

are Charlier coefficients of G in (17). Summation by parts yields

cG (k) = EDk
+G(N), k ∈ N, (19)

where D+G(x) := G(x + 1)− G(x) is the forward difference. (18) and (17) yield
the bound

|cG (k)| ≤ µ−k
√

E[G2(N)]E[P2
k (N;µ)] = C(k!/µk )1/2, C =

√
EG(N)2. (20)

Charlier rank kC (G) of G : the index of the first non-zero coefficient cG (k), k ≥ 1
in the Charlier expansion (17)
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3. Poisson distribution, Charlier polynomials & Mehler’s formula

What is bivariate (multivariate) Poisson distribution with dependent components?
Or, when random vector (N1,N2) taking values in N2 has joint Poisson
distribution? Possible answer:

N1 = M1 + M3, N1 = M+M3 (21)

where Mi , i = 1, 2, 3 are independent Poisson r.v.s with EMi = µi .

Multivariate Poisson (N1, · · · ,Np) ∈ Np :

Ni = M(Ai ), i = 1, · · · , p,

where M(dx) is Poisson random measure on measurable space (X , µ) and
Ai ⊂ X , µ(Ai ) <∞ are any subsets. (nonconstructive?)

Examples of random processes with multivariate Poisson distribution: random
grain model, trawl process with Poisson seed:
Barndorff-Nielsen, O.E., Lunde, A., Shepard, N. & Veraart, A.E.D. (2014) Integer-valued trawl processes: a class of
stationary infinitely divisible processes. Scand. J. Statist. 41, 693–724.

Doukhan, P., Jakubowski, A., Lopes, S.R.C. & S.D. (2019) Discrete-time trawl processes. Stoch. Proc. Appl. 129
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3. Poisson distribution, Charlier polynomials & Mehler’s formula

Let Mi , i = 1, 2, 3, be independent Poisson r.v.s, µi := EMi , i = 1, 2, 3, µ1 = µ2 and
N1 := M1 + M3,N2 := M2 + M3, µ := µ1 + µ3 = EN1 = µ2 + µ3 = EN2,

p(x , y ;µ) := P(N1 = x ,N2 = y), (x , y) ∈ N2

- joint distribution of (N1,N2);

Var(N1) = Var(N2) = µ, Cov(N1,N2) = µ3, Corr(N1,N2) = µ3
µ

;

Pk (x ;µ), k ∈ N: Charlier polynomials

Lemma (1)
(i) (orthogonality): For any k, ` ∈ N

EPk (N1;µ)P`(N2;µ) =

{
0, k 6= `,

µk
3k!, k = `,

(ii) Let Gi = Gi (x), x ∈ N, i = 1, 2, EGi (Ni )
2 <∞, i = 1, 2. Then

EG1(N1)G2(N2) =
∑∞

k=0
cG1 (k)cG2 (k)

k!
µk

3 .
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3. Poisson distribution, Charlier polynomials & Mehler’s formula

Lemma (1, ctnd)
(iii) (Mehler’s formula):

p(x , y ;µ) =
∑∞

k=0
µk

3
k!

Dk
−p(x ;µ)Dk

−p(y ;µ)

= p(x ;µ)p(y ;µ)
∑∞

k=0
µk

3
µ2k k!

Pk (x ;µ)Pk (y ;µ).

For µ = 1 (ii) and (iii) provide complete expansions of joint expectations and
probabilities in powers µk

3 ( µ3 = Corr(N1,N2))
Nearly complete analogy with Hermite expansions in the Gaussian case... (how
far?)
Stationary Markov process {Nt ; t = 0, 1, · · · } with marginal Poisson distribution
P(Nt = x) = p(x ;µ) and transition probabilities P(Nt+1 = y |Nt = x) = p(y |x ;µ)

p(y |x ;µ) :=
p(x , y ;µ)

p(x ;µ)
, x , y ∈ N

is Poisson AR(1) or INAR(1) (‘Poisson O-U’). (trawl representation?) Proof:
bivariate generating function. Particular case of Markov evolutions of
non-interacting particle systems with death and immigration:
S.D. (1984) On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Statist. 3,
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3. Poisson distribution, Charlier polynomials & Mehler’s formula

Proof of Lemma 1. (i) Use generating function P(u; x , µ) = (1 + u)xe−uµ of Charlier
polynomials in (16):

EP(u; N1, µ)P(v ; N2, µ) = e−(u+v)µE[(1 + u)N1 (1 + v)N2 ]

= e−(u+v)µE[(1 + u)M1 ]E[(1 + v)M2 ]E[((1 + u)(1 + v))M3 ]

= e−(u+v)µe(µ−µ3)ue(µ−µ3)ve((1+u)(1+v)−1)µ3

= euvµ3 =

∞∑
k=0

(uvµ3)k

k!
.

On the other hand,

EP(u; N1, µ)P(v ; N2, µ) =

∞∑
k,`=0

ukv `

k!`!
E[Pk (N1;µ)P`(N2;µ)]

(i) follows by equating the coefficients of the power series on both sides.
(ii) Immediate from (i) and (17).
(iii) Apply (ii) to G1(x) := I(x = n),G2(x) := I(x = m), for given n,m ∈ N. By (19),
(16), cG1 (k) = E[Dk

+I(N1 = n)] = Dk
−p(n;µ) = (−1)kµ−kPk (n;µ)p(n;µ),

cG2 (k) = E[Dk
+I(N2 = m)] = Dk

−p(m;µ) = (−1)kµ−kPk (m;µ)p(n;µ), yielding (iii).
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3. Poisson distribution, Charlier polynomials & Mehler’s formula

Corollary (1)
Let Gi ,Ni , i = 1, 2 be as in Lemma 1, k∗C (Gi ) = Charlier rank of Gi . Then

Cov(G1(N1),G2(N2)) =

∞∑
k=k∗

C (G1)∨k∗
C (G2)

cG1 (k)cG2 (k)

k!
µk

3

=
cG1 (k∗C )cG2 (k∗)

k∗! µ
k∗

C
3 + R(k∗C )

where k∗C := k∗C (G1) ∨ k∗C (G2) and

|R(k∗C )| ≤ (µ3/µ)k∗
C +1

1− (µ3/µ)

2∏
i=1

E1/2G(Ni )
2. (22)

Cov(G1(N1),G2(N2)) decays as µk∗
C

3 when µ3 → 0

remainder R(k∗C ) = O(µ
k∗

C +1
3 )

2023 m. kovo 12 d. 32 / 42



3. Poisson distribution, Charlier polynomials & Mehler’s formula

Corollary (1)
Let Gi ,Ni , i = 1, 2 be as in Lemma 1, k∗C (Gi ) = Charlier rank of Gi .

Then

Cov(G1(N1),G2(N2)) =

∞∑
k=k∗

C (G1)∨k∗
C (G2)

cG1 (k)cG2 (k)

k!
µk

3

=
cG1 (k∗C )cG2 (k∗)

k∗! µ
k∗

C
3 + R(k∗C )

where k∗C := k∗C (G1) ∨ k∗C (G2) and

|R(k∗C )| ≤ (µ3/µ)k∗
C +1

1− (µ3/µ)

2∏
i=1

E1/2G(Ni )
2. (22)

Cov(G1(N1),G2(N2)) decays as µk∗
C

3 when µ3 → 0

remainder R(k∗C ) = O(µ
k∗

C +1
3 )

2023 m. kovo 12 d. 32 / 42



3. Poisson distribution, Charlier polynomials & Mehler’s formula

Corollary (1)
Let Gi ,Ni , i = 1, 2 be as in Lemma 1, k∗C (Gi ) = Charlier rank of Gi . Then

Cov(G1(N1),G2(N2)) =

∞∑
k=k∗

C (G1)∨k∗
C (G2)

cG1 (k)cG2 (k)

k!
µk

3

=
cG1 (k∗C )cG2 (k∗)

k∗! µ
k∗

C
3 + R(k∗C )

where k∗C := k∗C (G1) ∨ k∗C (G2) and

|R(k∗C )| ≤ (µ3/µ)k∗
C +1

1− (µ3/µ)

2∏
i=1

E1/2G(Ni )
2. (22)

Cov(G1(N1),G2(N2)) decays as µk∗
C

3 when µ3 → 0

remainder R(k∗C ) = O(µ
k∗

C +1
3 )

2023 m. kovo 12 d. 32 / 42



3. Poisson distribution, Charlier polynomials & Mehler’s formula

Corollary (1)
Let Gi ,Ni , i = 1, 2 be as in Lemma 1, k∗C (Gi ) = Charlier rank of Gi . Then

Cov(G1(N1),G2(N2)) =

∞∑
k=k∗

C (G1)∨k∗
C (G2)

cG1 (k)cG2 (k)

k!
µk

3

=
cG1 (k∗C )cG2 (k∗)

k∗! µ
k∗

C
3 + R(k∗C )

where k∗C := k∗C (G1) ∨ k∗C (G2) and

|R(k∗C )| ≤ (µ3/µ)k∗
C +1

1− (µ3/µ)

2∏
i=1

E1/2G(Ni )
2. (22)

Cov(G1(N1),G2(N2)) decays as µk∗
C

3 when µ3 → 0

remainder R(k∗C ) = O(µ
k∗

C +1
3 )

2023 m. kovo 12 d. 32 / 42



3. Poisson distribution, Charlier polynomials & Mehler’s formula

Corollary (1)
Let Gi ,Ni , i = 1, 2 be as in Lemma 1, k∗C (Gi ) = Charlier rank of Gi . Then

Cov(G1(N1),G2(N2)) =

∞∑
k=k∗

C (G1)∨k∗
C (G2)

cG1 (k)cG2 (k)

k!
µk

3

=
cG1 (k∗C )cG2 (k∗)

k∗! µ
k∗

C
3 + R(k∗C )

where k∗C := k∗C (G1) ∨ k∗C (G2) and

|R(k∗C )| ≤ (µ3/µ)k∗
C +1

1− (µ3/µ)

2∏
i=1

E1/2G(Ni )
2. (22)

Cov(G1(N1),G2(N2)) decays as µk∗
C

3 when µ3 → 0

remainder R(k∗C ) = O(µ
k∗

C +1
3 )

2023 m. kovo 12 d. 32 / 42



4. Scaling of nonlinear functions of RG model

Aggregated RG model:

XM(t) =
∫
Rd×R+

I(t − u ∈ r 1/d Ξ0)NM(du, dr)

NM : Poisson measure with ENM(du, dr) = MduF (dr)
X(t) ≡ X1(t) (not aggregated)

Subordinated nonlinear model:

YM(t) := G
(XM (t)−EXM (t)

M1/2

)
, t ∈ Rd ,

where G(x), x ∈ R is a given nonlinear function; Y (t) = Y1(t)

Re-scaled integrals: Xλ,M(φ) =
∫
Rd XM(t)φ(t/λ)dt,

Yλ,M(φ) =
∫
Rd YM(t)φ(t/λ)dt, Xλ(φ) = Xλ,1(φ),Yλ(φ) = Yλ,1(φ)

Problem: limit distribution of Yλ,M(φ) and Yλ(φ) as λ→∞ and M = λγ →∞,
for each φ ∈ Φ = L1(Rd ) ∩ L∞(Rd )

Under Assumption LRD: (≈ P(R > r) = F (r ,∞) ∼ cf r−α, r →∞, α ∈ (1, 2)) the
limit of linear Xλ,M(φ) and Xλ(φ) described in Thm 1 [KLNS]. Trichotomy of the
limit at γ = α− 1
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4. Scaling of nonlinear functions of RG model

‘Summary’ of this talk:
1. If Hermite rank of G is 1 then the limits of Yλ,M(φ) and Xλ,M(φ), M = λγ are

the same (up to the first Hermite coefficient of G), for any γ > 0

2. If Charlier rank of G is 1 then the limits of Yλ(φ) and Xλ(φ) are the same (up to
the first Charlier coefficient of G)

For fixed t ∈ Rd , YM(t)
d−→ Zµ ∼ N(0, µ) as M →∞ where

µ = EX(t) = Var(X(t)) = Lebd (Ξ0)ER

Expand G(x) =
∑∞

k=0
hG,µ(k)

k!
Hk (x ;µ) in Hermite polynomials Hk (x ;µ) with

generating function
∑∞

k=0(uk/k!)Hk (x ;µ) = eux−µu2/2 and coefficients

hG,µ(k) = µ−kEG(Zµ)Hk (Zµ;µ), k ∈ N.

hG,µ(1) = µ−1EG(Zµ)Zµ
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4. Scaling of nonlinear functions of RG model

Theorem (2)
1. Let XM(t) satisfy the conditions of Theorem 1, G = G(x), x ∈ R is an dx-a.e.
continuous function such that EG(Yλ,M(0))2 <∞ (∀M > 0) and

limM→∞ EG(Yλ,M(0))2 = EG(Zµ)2 <∞.

Let M = λγ for some γ > 0. Then for any φ ∈ Φ as λ→∞

λ(γ/2)−H(γ)(Yλ,M(φ)− EYλ,M(φ))
d−→ hG,µ(1)


Bα(φ), γ > d(α− 1),

Lα(φ), γ < d(α− 1),

Jα(φ), γ = d(α− 1),
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4. Scaling of nonlinear functions of RG model

Example (Boolean model)
The Boolean model X̂(t) = X(t) ∧ 1 corresponds to Y (t) = G(X(t)) with
G(x) = x ∧ 1, x ∈ N.
For φ(x) = I(x ∈ A), Yλ(φ) = Lebd (X ∩λA) =: X̂λ(A) (= volume of {X(t) = 1}∩λA)
Charlier coefficients: cG,µ(0) = 1− e−µ, cG,µ(k) = (−1)k+1e−µ (k ≥ 1)

Corollary (1)
Let A ⊂ Rd be a bounded Borel set and X(t) RG model as in Thm 1. Then

λ−d/α(X̂λ(A)− EX̂λ(A))
d−→ e−µLα(A), λ→∞

where Lα(A) is asymmetric α-stable r.v. with
EeiθLα(A) = exp{−σα|θ|αLebd (A)(1− i sgn(θ) tan(πα/2))}, θ ∈ R.
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4. Scaling of nonlinear functions of RG model

Example (Exponential model)

EM(t) := ea(XM (t)−EXM (t))/M1/2
, Eλ,M(φ) :=

∫
Rd φ(t/λ)EM(t)dt.

Particular case of (23) corresponding to G(x) = eax . Note Dk
+G(x) = (ea − 1)keax

and cG,µ(k) = (ea − 1)ke(ea−1)µ, k ∈ N. We also have

M1/2cG(·/M1/2),µM(1) = exp{(ea/M1/2
− 1− (a/M1/2))µM}M1/2(ea/M1/2

− 1)

→ aea2µ/2 = E[eaZµZµ] = hG,µ(1)

Corollary (2)
Let XM(t) be as in Thm 1 and G(x) = eax . Then

λ(γ/2)−H(γ)(Eλ,M − EEλ,M(φ))
d−→ aea2µ/2


Bα(φ), γ > d(α− 1),

Lα(φ), γ < d(α− 1),

Jα(φ), γ = d(α− 1),

where H(γ),Bα(φ), Lα(φ), Jα(φ) are the same as in Thm 1.
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5. Application to Burgers’ equation

Burgers’ equation with (random) potential initial data:

∂~v(t, x)/∂t + (~v(t, x),∇)~v(t, x) =
1
2κ∆~v(t, x), t > 0, x ∈ Rd

~v(0, x) = −∇ξ(x),

~v(t, x) = (v1(t, x), · · · , vd (t, x)): Rd -valued function (velocity field),
(~v(t, x),∇) :=

∑d
i=1 vi (t, x)∂/∂xi

κ > 0: viscosity parameter, ∆ = Laplacian
ξ = {ξ(x); x ∈ Rd}: initial scalar (potential) random field (RF);
(~v(t, x),∇) :=

∑d
i=1 vi (t, x)∂/∂xi

one of the important equations of mathematical physics [acoustic, astrophysics,
cosmology, turbulence]
nonlinear but explicitly solvable
solution ~v(t, x) with random initial data is a (vector-valued) RF
behavior of ~v(t, x) presents considerable physical and mathematical interest and
has been extensively studied
M. Rosenblatt, Ya. Sinai, S. Molchanov, W. Woyczynski, N. Leonenko, …
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5. Application to Burgers’ equation

Hopf-Cole substitution:

~v(t, x) = −κ∇ log u(t, x) = −κ∇u(t,x)
u(t,x)

with scalar-valued u(t, x) satisfying heat equation
∂u(t, x)/∂t = 1

2κ∆u(t, x)

with the exponential initial condition u(0+, x) = exp{ξ(x)/κ}, x ∈ Rd .

Explicit representation through heat kernel
g(t, x, y) := (2πκt)−d/2 exp{−‖x − y‖2/2κt}:

~v(t, x) = −
κ
∫
Rd ∇g(t,x ,y )eξ(y )/κdy∫
Rd g(t,x ,y )eξ(y )/κdy ,

Parabolic scaling leads to the RF ~vλ(t, x) := ~v(λ2t, λx) written as

~vλ(t, x) = −
κ
∫
Rd ∇g(t, x, y/λ)eξ(y )/κdy

λ
∫
Rd g(t, x, y/λ)eξ(y )/κdy

. (23)

integrals in numerator and denominator resemble Yλ(φ) =
∫
Rd G(ξ(y))φ(y/λ)dy

with G(x) = ex/κ, φ(y) = ∇g(t, x, y) and φ(y) = g(t, x, y)
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5. Application to Burgers’ equation

For κ > 0 fixed the limit distribution of ~vλ(t, x) was studied for several models of
initial RF ξ = {ξ(y), y ∈ Rd} with short and long range dependence [Gaussian,
Gaussian subordinated, shot-noise, Cox]
Albeverio, S., Molchanov, S.A. & S.D. (1994) Stratified structure of the Universe and Burgers’ equation - a probabilistic
approach. Probab. Th. Rel. Fields 100
Funaki, T., S.D. & Woyczynski, W.A. (1995) Gibbs-Cox random fields and Burgers’ turbulence. Ann. Appl. Probab. 5
Leonenko, N.N. & Woyczynski, W.A. (1998) Scaling limits of solutions of the heat equation for singular non-Gaussian
data. J. Stat. Physics 91

· · ·

Review paper:
S.D. & Woyczynski, W.A. (2003) Limit theorems for the Burgers equation initialized by data with long-range
dependence. In: P. Doukhan, G. Oppenheim and M.S. Taqqu (Eds.) Long Range Dependence: Theory and
Applications, pp. 507–523. Birkhäuser, Boston.

This talk: initial potential RF = aggregated RG model

ξM(y) := M−1/2(XM(y)− EXM(y)), y ∈ Rd , (24)

with intensity M = λγ increasing with λ for some γ > 0

The meaning of intial condition ~v(0+, x) = −∇ξM(x) ignored
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5. Application to Burgers’ equation

Thm 2 and Example 2 lead to

Corollary
1. Let ~vλ(t, x) be as in (23), (24), with XM ,M satisfying the conditions of Thm 1.
Then, as λ→∞, for any γ > 0

λ1+d+
γ
2 −H(γ)~vλ(t, x)

fdd−→


Bα(∇g(t, x, ·)), γ > d(α− 1),

Lα(∇g(t, x, ·)), γ < d(α− 1),

Jα(∇g(t, x, ·)), γ = d(α− 1),

(25)

where H(γ) and the limit RFs are the same as in Thms 1-2.

2. ~vλ(t, x) be as in (23) with ξ(y) = X(y) given in (8) (M = 1). Then, as λ→∞

λ1+d− d
α~vλ(t, x)

fdd−→ κ(e1/κ − 1)Lα(∇g(t, x, ·)), (26)

where Lα is α-stable RF as in part 1.
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where Lα is α-stable RF as in part 1.
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6. Open questions

1 Thm 2 yields trivial limits if respective Hermite/Charlier coefficients vanish:
hG,µ(1) = 0 or cG,µ(1) = 0. Limit distribution of
Yλ,M(φ) =

∫
Rd G(XM(t))φ(t/λ)dt in such cases is open (Gaussian/Poisson

chaos?)

2 Aggregated small-scale limits: λ→ 0 together with M = λγ → 0?

For linear integrals Xλ,M(φ):
Biermé, H., Estrade, A. & Kaj, I. (2010) Self-similar random fields and rescaled random balls models. J. Theoret.

Probab. 23

Nonlinear integrals: Yλ,M(φ) =
∫
Rd G(XM(t))φ(t/λ)dt ?

3 Cox RG model: Poisson grains with random intensity
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