Miniconference on dependence and ecology Paris, IHP, 20230315

Scaling limits of nonlinear functions of random grain model with application to Burgers' equation

Donatas Surgailis (Vilnius University)

Contents:

(1) Spatial long-range dependence (LRD) and limit theorems (scaling limits)

Contents:

(1) Spatial long-range dependence (LRD) and limit theorems (scaling limits)
(2) Scaling of random grain (RG) model

Contents:

(1) Spatial long-range dependence (LRD) and limit theorems (scaling limits)
(2) Scaling of random grain (RG) model
(3) Charlier polynomials \& Mehler's formula

Contents:

(1) Spatial long-range dependence (LRD) and limit theorems (scaling limits)
(2) Scaling of random grain (RG) model
(3) Charlier polynomials \& Mehler's formula
(9) Scaling of nonlinear functions of RG model

Contents:

(1) Spatial long-range dependence (LRD) and limit theorems (scaling limits)
(2) Scaling of random grain (RG) model
(3) Charlier polynomials \& Mehler's formula
(9) Scaling of nonlinear functions of RG model
(3) Application to Burgers' equation

Contents:

(1) Spatial long-range dependence (LRD) and limit theorems (scaling limits)
(2) Scaling of random grain (RG) model
(3) Charlier polynomials \& Mehler's formula
(9) Scaling of nonlinear functions of RG model
(6) Application to Burgers' equation
(0) Perspectives \& open questions

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Spatial process - stationary random field (RF) $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ or $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{Z}^{d}\right\}$ with covariance $r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Spatial process - stationary random field (RF) $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ or $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{Z}^{d}\right\}$ with covariance $r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$
- LRD: r_{X} nonintegrable (nonsummable): $\int_{\mathbb{R}^{d}}\left|r_{X}(\boldsymbol{t})\right| \mathrm{d} \boldsymbol{t}=\infty$ or $\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}}\left|r_{X}(\boldsymbol{t})\right|=\infty$

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Spatial process - stationary random field (RF) $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ or $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{Z}^{d}\right\}$ with covariance $r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$
- LRD: r_{x} nonintegrable (nonsummable): $\int_{\mathbb{R}^{d}}\left|r_{x}(\boldsymbol{t})\right| \mathrm{d} \boldsymbol{t}=\infty$ or $\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}}\left|r_{x}(\boldsymbol{t})\right|=\infty$
- Great variety of spatial LRD models, limit theorems, limit distributions (scaling limits)...

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Spatial process - stationary random field (RF) $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ or $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{Z}^{d}\right\}$ with covariance $r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$
- LRD: r_{x} nonintegrable (nonsummable): $\int_{\mathbb{R}^{d}}\left|r_{x}(\boldsymbol{t})\right| \mathrm{d} \boldsymbol{t}=\infty$ or $\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}}\left|r_{x}(\boldsymbol{t})\right|=\infty$
- Great variety of spatial LRD models, limit theorems, limit distributions (scaling limits)...
- Scaling (zooming out): getting a distant view of the object

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Spatial process - stationary random field (RF) $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ or $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{Z}^{d}\right\}$ with covariance $r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$
- LRD: r_{X} nonintegrable (nonsummable): $\int_{\mathbb{R}^{d}}\left|r_{X}(\boldsymbol{t})\right| \mathrm{d} \boldsymbol{t}=\infty$ or $\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}}\left|r_{x}(\boldsymbol{t})\right|=\infty$
- Great variety of spatial LRD models, limit theorems, limit distributions (scaling limits)...
- Scaling (zooming out): getting a distant view of the object
- At large scales, short-range details ('dependences', 'correlations') disappear but long-range 'correlations' may prevail

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Spatial process - stationary random field (RF) $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ or $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{Z}^{d}\right\}$ with covariance $r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$
- LRD: r_{X} nonintegrable (nonsummable): $\int_{\mathbb{R}^{d}}\left|r_{X}(\boldsymbol{t})\right| \mathrm{d} \boldsymbol{t}=\infty$ or $\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}}\left|r_{X}(\boldsymbol{t})\right|=\infty$
- Great variety of spatial LRD models, limit theorems, limit distributions (scaling limits)...
- Scaling (zooming out): getting a distant view of the object
- At large scales, short-range details ('dependences', 'correlations') disappear but long-range 'correlations' may prevail
- Scaling (partial sums) limits of any weakly dependent 2 nd order process X coincide with Brownian motion (Donsker's theorem)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Spatial process - stationary random field (RF) $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ or $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{Z}^{d}\right\}$ with covariance $r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$
- LRD: r_{X} nonintegrable (nonsummable): $\int_{\mathbb{R}^{d}}\left|r_{X}(\boldsymbol{t})\right| \mathrm{d} \boldsymbol{t}=\infty$ or $\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}}\left|r_{X}(\boldsymbol{t})\right|=\infty$
- Great variety of spatial LRD models, limit theorems, limit distributions (scaling limits)...
- Scaling (zooming out): getting a distant view of the object
- At large scales, short-range details ('dependences', 'correlations') disappear but long-range 'correlations' may prevail
- Scaling (partial sums) limits of any weakly dependent 2 nd order process X coincide with Brownian motion (Donsker's theorem)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Scaling limit of a stationary process X is self-similar (Lamperti, 1962) and provides a 'large-scale summary of dependence structure of X '

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Scaling limit of a stationary process X is self-similar (Lamperti, 1962) and provides a 'large-scale summary of dependence structure of X '
- We (and many other works on scaling limits) consider the limit distribution of integrals:

$$
\begin{equation*}
X_{\lambda}(\phi):=\int_{\mathbb{R}^{d}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { as } \lambda \rightarrow \infty, \tag{1}
\end{equation*}
$$

(or respective sums in the discrete argument case), where $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ is a given stationary RF, for each ϕ from a class of (test) functions $\Phi=\left\{\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Scaling limit of a stationary process X is self-similar (Lamperti, 1962) and provides a 'large-scale summary of dependence structure of X '
- We (and many other works on scaling limits) consider the limit distribution of integrals:

$$
\begin{equation*}
X_{\lambda}(\phi):=\int_{\mathbb{R}^{d}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { as } \lambda \rightarrow \infty \tag{1}
\end{equation*}
$$

(or respective sums in the discrete argument case), where $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ is a given stationary $R F$, for each ϕ from a class of (test) functions $\Phi=\left\{\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$.

- A suitably normalized limit

$$
\begin{equation*}
d_{\lambda}^{-1}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \quad \xrightarrow{\mathrm{d}} \quad V(\phi), \quad \lambda \rightarrow \infty \tag{2}
\end{equation*}
$$

is a RF $V(\phi)$ indexed by $\phi \in \Phi$ is called the (isotropic) scaling limit of X

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Scaling limit of a stationary process X is self-similar (Lamperti, 1962) and provides a 'large-scale summary of dependence structure of X '
- We (and many other works on scaling limits) consider the limit distribution of integrals:

$$
\begin{equation*}
X_{\lambda}(\phi):=\int_{\mathbb{R}^{d}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { as } \lambda \rightarrow \infty \tag{1}
\end{equation*}
$$

(or respective sums in the discrete argument case), where $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ is a given stationary RF , for each ϕ from a class of (test) functions $\Phi=\left\{\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$.

- A suitably normalized limit

$$
\begin{equation*}
d_{\lambda}^{-1}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \quad \xrightarrow{\mathrm{d}} \quad V(\phi), \quad \lambda \rightarrow \infty \tag{2}
\end{equation*}
$$

is a RF $V(\phi)$ indexed by $\phi \in \Phi$ is called the (isotropic) scaling limit of X

- The above approach is common in the theory of generalized RFs

Gel'fand, I.M., Vilenkin, N.Ya. (1964) Generalized Functions - Vol.4: Applications of Harmonic Analysis Dobrushin, R.L. (1980) Automodel generalized random fields and their renormgroup. In: R.L. Dobrushin and Ya.G. Sinai (Eds.), Multicomponent Random Systems

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- The limit in (2) strongly depends on the class Φ of test functions

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- The limit in (2) strongly depends on the class Φ of test functions
- In the theory of generalized RFs ('random Schwartz distributions') Φ is Schwartz space $\mathcal{D}\left(\mathbb{R}^{d}\right)$ or $\mathcal{S}\left(\mathbb{R}^{d}\right)$ of very smooth (infinitely differentiable) functions, which is justified by applications in mathematical physics (quantum field theory)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- The limit in (2) strongly depends on the class Φ of test functions
- In the theory of generalized RFs ('random Schwartz distributions') Φ is Schwartz space $\mathcal{D}\left(\mathbb{R}^{d}\right)$ or $\mathcal{S}\left(\mathbb{R}^{d}\right)$ of very smooth (infinitely differentiable) functions, which is justified by applications in mathematical physics (quantum field theory)
- In spatial statistics, $\Phi=\{\phi\}$ may consist of indicator functions

$$
\phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A), \quad \boldsymbol{t} \in \mathbb{R}^{d}
$$

where A runs over a class \mathcal{A} of Borel subsets of \mathbb{R}^{d}

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- The limit in (2) strongly depends on the class Φ of test functions
- In the theory of generalized RFs ('random Schwartz distributions') Φ is Schwartz space $\mathcal{D}\left(\mathbb{R}^{d}\right)$ or $\mathcal{S}\left(\mathbb{R}^{d}\right)$ of very smooth (infinitely differentiable) functions, which is justified by applications in mathematical physics (quantum field theory)
- In spatial statistics, $\Phi=\{\phi\}$ may consist of indicator functions

$$
\phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A), \quad \boldsymbol{t} \in \mathbb{R}^{d}
$$

where A runs over a class \mathcal{A} of Borel subsets of \mathbb{R}^{d}

- For above indicator function ϕ,

$$
\begin{equation*}
X_{\lambda}(\phi)=\int_{\boldsymbol{t} \in \lambda A} X(\boldsymbol{t}) \mathrm{d} \boldsymbol{t} \quad \text { or } \quad X_{\lambda}(\phi)=\sum_{\boldsymbol{t} \in \lambda A \cap \mathbb{Z}^{d}} X(\boldsymbol{t}) \tag{3}
\end{equation*}
$$

is the empirical mean of $X\left(\right.$ times $\left.\operatorname{Leb}_{d}(\lambda A)=\lambda^{d} \operatorname{Leb}_{d}(A)\right)$

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- The limit in (2) strongly depends on the class Φ of test functions
- In the theory of generalized RFs ('random Schwartz distributions') Φ is Schwartz space $\mathcal{D}\left(\mathbb{R}^{d}\right)$ or $\mathcal{S}\left(\mathbb{R}^{d}\right)$ of very smooth (infinitely differentiable) functions, which is justified by applications in mathematical physics (quantum field theory)
- In spatial statistics, $\Phi=\{\phi\}$ may consist of indicator functions

$$
\phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A), \quad \boldsymbol{t} \in \mathbb{R}^{d}
$$

where A runs over a class \mathcal{A} of Borel subsets of \mathbb{R}^{d}

- For above indicator function ϕ,

$$
\begin{equation*}
X_{\lambda}(\phi)=\int_{\boldsymbol{t} \in \lambda A} X(\boldsymbol{t}) \mathrm{d} \boldsymbol{t} \quad \text { or } \quad X_{\lambda}(\phi)=\sum_{\boldsymbol{t} \in \lambda A \cap \mathbb{Z}^{d}} X(\boldsymbol{t}) \tag{3}
\end{equation*}
$$

is the empirical mean of X (times $\operatorname{Leb}_{d}(\lambda A)=\lambda^{d} \operatorname{Leb}_{d}(A)$) given observations of X over 'inflated' set λA whose limit distribution in (2) is of interest

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- The limit in (2) strongly depends on the class Φ of test functions
- In the theory of generalized RFs ('random Schwartz distributions') Φ is Schwartz space $\mathcal{D}\left(\mathbb{R}^{d}\right)$ or $\mathcal{S}\left(\mathbb{R}^{d}\right)$ of very smooth (infinitely differentiable) functions, which is justified by applications in mathematical physics (quantum field theory)
- In spatial statistics, $\Phi=\{\phi\}$ may consist of indicator functions

$$
\phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A), \quad \boldsymbol{t} \in \mathbb{R}^{d}
$$

where A runs over a class \mathcal{A} of Borel subsets of \mathbb{R}^{d}

- For above indicator function ϕ,

$$
\begin{equation*}
X_{\lambda}(\phi)=\int_{\boldsymbol{t} \in \lambda A} X(\boldsymbol{t}) \mathrm{d} \boldsymbol{t} \quad \text { or } \quad X_{\lambda}(\phi)=\sum_{\boldsymbol{t} \in \lambda A \cap \mathbb{Z}^{d}} X(\boldsymbol{t}) \tag{3}
\end{equation*}
$$

is the empirical mean of X (times $\left.\operatorname{Leb}_{d}(\lambda A)=\lambda^{d} \operatorname{Leb}_{d}(A)\right)$ given observations of X over 'inflated' set λA whose limit distribution in (2) is of interest

- The limit distribution of empirical mean in (3) may be difficult if A has irregular boundary ('edge effects')
Lahiri, S.N. and Robinson, P.M. (2016) Central limit theorems for long range dependent spatial linear processes.
Bernoulli 22, 345-375

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Popular approach in limit theorems for RFs: integration/summation on rectangles:

$$
\left.\left.\left.\left.\left.\left.\boldsymbol{\Phi}_{\mathrm{rec}, d}:=\{\mathbb{I}(\boldsymbol{t} \in] \mathbf{0}, \boldsymbol{s}]\right) ; \boldsymbol{s} \in \mathbb{R}_{+}^{d}\right\}, \quad\right] \mathbf{0}, \boldsymbol{s}\right]:=\prod_{i=1}^{d}\right] 0, s_{i}\right]
$$

Then $X_{\lambda}(\boldsymbol{s})=\sum_{\boldsymbol{t} \in] \mathbf{0}, \lambda \boldsymbol{s}]} X(\boldsymbol{t})$ is a RF indexed by points $\boldsymbol{s} \in \mathbb{R}_{+}^{d}$ d-dimensional analog of the partial sums process of time series

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Popular approach in limit theorems for RFs: integration/summation on rectangles:

$$
\left.\left.\left.\left.\left.\Phi_{\mathrm{rec}, d}:=\{\mathbb{I}(\boldsymbol{t} \in] \mathbf{0}, \boldsymbol{s}]\right) ; \boldsymbol{s} \in \mathbb{R}_{+}^{d}\right\}, \quad \quad \mathbf{0}, \boldsymbol{s}\right]:=\prod_{i=1}^{d}\right] 0, s_{i}\right]
$$

Then $X_{\lambda}(\boldsymbol{s})=\sum_{\boldsymbol{t} \in] \mathbf{0}, \lambda \boldsymbol{s}]} X(\boldsymbol{t})$ is a RF indexed by points $\boldsymbol{s} \in \mathbb{R}_{+}^{d}$ d-dimensional analog of the partial sums process of time series

- Weak dependent X under mixing conditions ('rectangles' = 'blocks'):

Dedecker, J., Doukhan, P., Lang, G., León, J.R., Louhichi, S. and Prieur, C. (2007) Weak Dependendence. With Examples and Applications. Lecture Notes Statist. vol. 190. Springer

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Popular approach in limit theorems for RFs: integration/summation on rectangles:

$$
\left.\left.\left.\left.\Phi_{\mathrm{rec}, d}:=\{\mathbb{I}(\boldsymbol{t} \in] \mathbf{0}, \boldsymbol{s}]\right) ; \boldsymbol{s} \in \mathbb{R}_{+}^{d}\right\}, \quad\right] \mathbf{0}, \boldsymbol{s}\right]:=\prod_{i=1}^{a}\left[0, s_{i}\right]
$$

Then $X_{\lambda}(\boldsymbol{s})=\sum_{\boldsymbol{t} \in[\mathbf{0}, \lambda \boldsymbol{s}]} X(\boldsymbol{t})$ is a RF indexed by points $\boldsymbol{s} \in \mathbb{R}_{+}^{d}$ d-dimensional analog of the partial sums process of time series

- Weak dependent X under mixing conditions ('rectangles' $=$ 'blocks'):

Dedecker, J., Doukhan, P., Lang, G., León, J.R., Louhichi, S. and Prieur, C. (2007) Weak Dependendence. With Examples and Applications. Lecture Notes Statist. vol. 190. Springer

- Functional convergence \& tightness ignored in this talk

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Popular approach in limit theorems for RFs: integration/summation on rectangles:

$$
\left.\left.\left.\left.\left.\left.\Phi_{\mathrm{rec}, d}:=\{\mathbb{I}(\boldsymbol{t} \in] \mathbf{0}, \boldsymbol{s}]\right) ; \boldsymbol{s} \in \mathbb{R}_{+}^{d}\right\}, \quad\right] \mathbf{0}, \boldsymbol{s}\right]:=\prod_{i=1}^{d}\right] 0, s_{i}\right]
$$

Then $X_{\lambda}(\boldsymbol{s})=\sum_{\boldsymbol{t} \in] 0, \lambda \boldsymbol{s}]} X(\boldsymbol{t})$ is a RF indexed by points $\boldsymbol{s} \in \mathbb{R}_{+}^{d}$ d-dimensional analog of the partial sums process of time series

- Weak dependent X under mixing conditions ('rectangles' = 'blocks'):

Dedecker, J., Doukhan, P., Lang, G., León, J.R., Louhichi, S. and Prieur, C. (2007) Weak Dependendence. With Examples and Applications. Lecture Notes Statist. vol. 190. Springer

- Functional convergence \& tightness ignored in this talk
- Isotropic or uniform scaling $\boldsymbol{t} \rightarrow \boldsymbol{t} / \lambda$ in (1) can be replaced by anisotropic or operator scaling $\boldsymbol{t} \rightarrow \lambda^{-\Gamma} \boldsymbol{t}$ where Γ is a $d \times d$-matrix, particularly, a diagonal matrix

$$
\Gamma=\operatorname{diag}\left(\gamma_{1}, \cdots, \gamma_{d}\right), \quad\left(\gamma_{1}, \cdots, \gamma_{d}\right)=\gamma \in \mathbb{R}_{+}^{d}
$$

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Popular approach in limit theorems for RFs: integration/summation on rectangles:

$$
\left.\left.\left.\left.\left.\left.\Phi_{\mathrm{rec}, d}:=\{\mathbb{I}(\boldsymbol{t} \in] \mathbf{0}, \boldsymbol{s}]\right) ; \boldsymbol{s} \in \mathbb{R}_{+}^{d}\right\}, \quad\right] \mathbf{0}, \boldsymbol{s}\right]:=\prod_{i=1}^{d}\right] 0, s_{i}\right]
$$

Then $X_{\lambda}(\boldsymbol{s})=\sum_{\boldsymbol{t} \in] 0, \lambda \boldsymbol{s}]} X(\boldsymbol{t})$ is a RF indexed by points $\boldsymbol{s} \in \mathbb{R}_{+}^{d}$ d-dimensional analog of the partial sums process of time series

- Weak dependent X under mixing conditions ('rectangles' = 'blocks'):

Dedecker, J., Doukhan, P., Lang, G., León, J.R., Louhichi, S. and Prieur, C. (2007) Weak Dependendence. With Examples and Applications. Lecture Notes Statist. vol. 190. Springer

- Functional convergence \& tightness ignored in this talk
- Isotropic or uniform scaling $\boldsymbol{t} \rightarrow \boldsymbol{t} / \lambda$ in (1) can be replaced by anisotropic or operator scaling $\boldsymbol{t} \rightarrow \lambda^{-\Gamma} \boldsymbol{t}$ where Γ is a $d \times d$-matrix, particularly, a diagonal matrix

$$
\Gamma=\operatorname{diag}\left(\gamma_{1}, \cdots, \gamma_{d}\right), \quad\left(\gamma_{1}, \cdots, \gamma_{d}\right)=\gamma \in \mathbb{R}_{+}^{d}
$$

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Popular approach in limit theorems for RFs: integration/summation on rectangles:

$$
\left.\left.\left.\left.\left.\Phi_{\mathrm{rec}, d}:=\{\mathbb{I}(\boldsymbol{t} \in] \mathbf{0}, \boldsymbol{s}]\right) ; \boldsymbol{s} \in \mathbb{R}_{+}^{d}\right\}, \quad \quad \mathbf{0}, \boldsymbol{s}\right]:=\prod_{i=1}^{d}\right] 0, s_{i}\right]
$$

Then $X_{\lambda}(\boldsymbol{s})=\sum_{\boldsymbol{t} \in] \mathbf{0}, \lambda \boldsymbol{s}]} X(\boldsymbol{t})$ is a RF indexed by points $\boldsymbol{s} \in \mathbb{R}_{+}^{d}$ d-dimensional analog of the partial sums process of time series

- Weak dependent X under mixing conditions ('rectangles' = 'blocks'):

Dedecker, J., Doukhan, P., Lang, G., León, J.R., Louhichi, S. and Prieur, C. (2007) Weak Dependendence. With Examples and Applications. Lecture Notes Statist. vol. 190. Springer

- Functional convergence \& tightness ignored in this talk
- Isotropic or uniform scaling $\boldsymbol{t} \rightarrow \boldsymbol{t} / \lambda$ in (1) can be replaced by anisotropic or operator scaling $\boldsymbol{t} \rightarrow \lambda^{-\Gamma} \boldsymbol{t}$ where Γ is a $d \times d$-matrix, particularly, a diagonal matrix

$$
\Gamma=\operatorname{diag}\left(\gamma_{1}, \cdots, \gamma_{d}\right), \quad\left(\gamma_{1}, \cdots, \gamma_{d}\right)=\gamma \in \mathbb{R}_{+}^{d}
$$

- Operator scaling RF (OSRF):

[^0]1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- We can consider the limit distribution of RF $X_{\lambda, \Gamma}(\phi)=\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}} X(\boldsymbol{t}) \phi\left(\lambda^{-\Gamma} \boldsymbol{t}\right)$ or the anisotropically rescaled partial sums RF:

$$
\begin{equation*}
X_{\lambda, \gamma}(\boldsymbol{s})=\sum_{\boldsymbol{t} \in] \mathbf{0}, \lambda\ulcorner\boldsymbol{s}]} X(\boldsymbol{t}), \quad \lambda^{\ulcorner } \boldsymbol{s}=\left(\lambda^{\gamma_{1}} s_{1}, \cdots, \lambda^{\gamma_{d}} \boldsymbol{s}_{d}\right) \tag{4}
\end{equation*}
$$

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- We can consider the limit distribution of $\mathrm{RF} X_{\lambda, \Gamma}(\phi)=\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}} X(\boldsymbol{t}) \phi\left(\lambda^{-\Gamma} \boldsymbol{t}\right)$ or the anisotropically rescaled partial sums RF:

$$
\begin{equation*}
X_{\lambda, \gamma}(\boldsymbol{s})=\sum_{\left.\boldsymbol{t} \in] 0, \lambda^{\ulcorner } \boldsymbol{s}\right]} X(\boldsymbol{t}), \quad \lambda^{\Gamma} \boldsymbol{s}=\left(\lambda^{\gamma_{1}} \boldsymbol{s}_{1}, \cdots, \lambda^{\gamma_{d}} \boldsymbol{s}_{d}\right) \tag{4}
\end{equation*}
$$

- Rectangle $\left.] \mathbf{0}, \lambda^{\ulcorner } \boldsymbol{s}\right]$ grow at different rate $\lambda^{\gamma_{j}}$ in j th direction

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- We can consider the limit distribution of RF $X_{\lambda, \Gamma}(\phi)=\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}} X(\boldsymbol{t}) \phi\left(\lambda^{-\Gamma} \boldsymbol{t}\right)$ or the anisotropically rescaled partial sums RF:

$$
\begin{equation*}
X_{\lambda, \gamma}(\boldsymbol{s})=\sum_{\boldsymbol{t} \in] 0, \lambda\ulcorner\boldsymbol{s}]} X(\boldsymbol{t}), \quad \lambda^{\ulcorner } \boldsymbol{s}=\left(\lambda^{\gamma_{1}} \boldsymbol{s}_{1}, \cdots, \lambda^{\gamma_{d}} \boldsymbol{s}_{d}\right) \tag{4}
\end{equation*}
$$

- Rectangle $\left.\mathbf{0 0}, \lambda^{\ulcorner } \boldsymbol{s}\right]$ grow at different rate $\lambda^{\gamma_{j}}$ in j th direction
- For i.i.d. RF X the presence of γ_{j} does not make any difference of the limit which is a stable sheet on \mathbb{R}_{+}^{d} (except for a change of normalization)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- We can consider the limit distribution of RF $X_{\lambda, \Gamma}(\phi)=\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}} X(\boldsymbol{t}) \phi\left(\lambda^{-\Gamma} \boldsymbol{t}\right)$ or the anisotropically rescaled partial sums RF:

$$
\begin{equation*}
X_{\lambda, \gamma}(\boldsymbol{s})=\sum_{\boldsymbol{t} \in] 0, \lambda\ulcorner\boldsymbol{s}]} X(\boldsymbol{t}), \quad \lambda^{\ulcorner } \boldsymbol{s}=\left(\lambda^{\gamma_{1}} s_{1}, \cdots, \lambda^{\gamma_{d}} \boldsymbol{s}_{d}\right) \tag{4}
\end{equation*}
$$

- Rectangle $\mathbf{0 0}, \lambda^{\ulcorner } \boldsymbol{s}$] grow at different rate $\lambda^{\gamma_{j}}$ in j th direction
- For i.i.d. RF X the presence of γ_{j} does not make any difference of the limit which is a stable sheet on \mathbb{R}_{+}^{d} (except for a change of normalization)
- The same indifference to γ_{j} of the limit in (4) is expected under weak dependence

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- We can consider the limit distribution of RF $X_{\lambda, \Gamma}(\phi)=\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}} X(\boldsymbol{t}) \phi\left(\lambda^{-\Gamma} \boldsymbol{t}\right)$ or the anisotropically rescaled partial sums RF:

$$
\begin{equation*}
X_{\lambda, \gamma}(\boldsymbol{s})=\sum_{\left.\boldsymbol{t} \in] \mathbf{0}, \lambda^{\ulcorner } \boldsymbol{s}\right]} X(\boldsymbol{t}), \quad \lambda^{\ulcorner } \boldsymbol{s}=\left(\lambda^{\gamma_{1}} \boldsymbol{s}_{1}, \cdots, \lambda^{\gamma_{d}} \boldsymbol{s}_{d}\right) \tag{4}
\end{equation*}
$$

- Rectangle $\left.\mathbf{0 0}, \lambda^{\ulcorner } \boldsymbol{s}\right]$ grow at different rate $\lambda^{\gamma_{j}}$ in j th direction
- For i.i.d. RF X the presence of γ_{j} does not make any difference of the limit which is a stable sheet on \mathbb{R}_{+}^{d} (except for a change of normalization)
- The same indifference to γ_{j} of the limit in (4) is expected under weak dependence
- Surprising: for a large class of $L R D X$ scaling limits of (4) exist for any γ and depend on $\gamma \in \mathbb{R}_{+}^{d}$, moreover the number of different limits is finite.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- We can consider the limit distribution of RF $X_{\lambda, \Gamma}(\phi)=\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}} X(\boldsymbol{t}) \phi\left(\lambda^{-\Gamma} \boldsymbol{t}\right)$ or the anisotropically rescaled partial sums RF:

$$
\begin{equation*}
X_{\lambda, \gamma}(\boldsymbol{s})=\sum_{\left.\boldsymbol{t} \in] \mathbf{0}, \lambda^{\ulcorner } \boldsymbol{s}\right]} X(\boldsymbol{t}), \quad \lambda^{\ulcorner } \boldsymbol{s}=\left(\lambda^{\gamma_{1}} s_{1}, \cdots, \lambda^{\gamma_{d}} \boldsymbol{s}_{d}\right) \tag{4}
\end{equation*}
$$

- Rectangle $\left.\mathbf{0 0}, \lambda^{\ulcorner } \boldsymbol{s}\right]$ grow at different rate $\lambda^{\gamma_{j}}$ in j th direction
- For i.i.d. RF X the presence of γ_{j} does not make any difference of the limit which is a stable sheet on \mathbb{R}_{+}^{d} (except for a change of normalization)
- The same indifference to γ_{j} of the limit in (4) is expected under weak dependence
- Surprising: for a large class of $L R D X$ scaling limits of (4) exist for any γ and depend on $\gamma \in \mathbb{R}_{+}^{d}$, moreover the number of different limits is finite.
In dimension $d=2$ this number is 3: there exists $\gamma_{0}>0$ such that the limits do not depend on $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ for $\frac{\gamma_{2}}{\gamma_{1}}>\gamma_{0}$ and $\frac{\gamma_{2}}{\gamma_{1}}<\gamma_{0}$

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- We can consider the limit distribution of RF $X_{\lambda, \Gamma}(\phi)=\sum_{\boldsymbol{t} \in \mathbb{Z}^{d}} X(\boldsymbol{t}) \phi\left(\lambda^{-\Gamma} \boldsymbol{t}\right)$ or the anisotropically rescaled partial sums RF:

$$
\begin{equation*}
X_{\lambda, \gamma}(\boldsymbol{s})=\sum_{\left.\boldsymbol{t} \in] \mathbf{0}, \lambda^{\ulcorner } \boldsymbol{s}\right]} X(\boldsymbol{t}), \quad \lambda^{\ulcorner } \boldsymbol{s}=\left(\lambda^{\gamma_{1}} s_{1}, \cdots, \lambda^{\gamma_{d}} \boldsymbol{s}_{d}\right) \tag{4}
\end{equation*}
$$

- Rectangle $\left.\mathbf{0 0}, \lambda^{\ulcorner } \boldsymbol{s}\right]$ grow at different rate $\lambda^{\gamma_{j}}$ in j th direction
- For i.i.d. RF X the presence of γ_{j} does not make any difference of the limit which is a stable sheet on \mathbb{R}_{+}^{d} (except for a change of normalization)
- The same indifference to γ_{j} of the limit in (4) is expected under weak dependence
- Surprising: for a large class of $L R D X$ scaling limits of (4) exist for any γ and depend on $\gamma \in \mathbb{R}_{+}^{d}$, moreover the number of different limits is finite.
In dimension $d=2$ this number is 3: there exists $\gamma_{0}>0$ such that the limits do not depend on $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ for $\frac{\gamma_{2}}{\gamma_{1}}>\gamma_{0}$ and $\frac{\gamma_{2}}{\gamma_{1}}<\gamma_{0}$
We say that scaling transition occurs at critical $\frac{\gamma_{2}}{\gamma_{1}}=\gamma_{0}$ (ratio of scaling exponents on different axes of \mathbb{R}^{2})

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Some ref.:

Puplinskaitė, D. \& S.D. (2015) Scaling transition for long-range dependent Gaussian random fields. Stoch. Proc. Appl. 125
Puplinskaité, D. \& S.D. (2016) Aggregation of autoregressive random fields and anisotropic long-range dependence.
Bernoulli 22
Pilipauskaité, V. \& S.D. (2017) Scaling transition for nonlinear random fields with long-range dependence. Stoch. Proc. Appl. 127
Biermé, H., Durieu, O. \& Wang, Y. (2017) Invariance principles for operator-scaling Gaussian random fields. Ann. Appl. Prob. 27
S.D. (2019) Anisotropic scaling limits of long-range dependent linear random fields on \mathbb{Z}^{3}. J. Math. Anal. Appl. 472
S.D. (2020) Scaling transition and edge effects for negatively dependent linear random fields on \mathbb{Z}^{2}. Stoch. Proc. Appl. 130
Damarackas, J. \& Paulauskas, V. (2021) On Lamperti type limit theorem and scaling transition for random fields. J. Math. Anal. Appl. 497
S.D. (2022) Scaling transition for singular linear random fields on \mathbb{Z}^{2} : spectral approach. Preprint.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Some ref.:

Puplinskaité, D. \& S.D. (2015) Scaling transition for long-range dependent Gaussian random fields. Stoch. Proc. Appl. 125
Puplinskaité, D. \& S.D. (2016) Aggregation of autoregressive random fields and anisotropic long-range dependence.
Bernoulli 22
Pilipauskaitè, V. \& S.D. (2017) Scaling transition for nonlinear random fields with long-range dependence. Stoch. Proc. Appl. 127
Biermé, H., Durieu, O. \& Wang, Y. (2017) Invariance principles for operator-scaling Gaussian random fields. Ann. Appl. Prob. 27
S.D. (2019) Anisotropic scaling limits of long-range dependent linear random fields on \mathbb{Z}^{3}. J. Math. Anal. Appl. 472
S.D. (2020) Scaling transition and edge effects for negatively dependent linear random fields on \mathbb{Z}^{2}. Stoch. Proc. Appl. 130
Damarackas, J. \& Paulauskas, V. (2021) On Lamperti type limit theorem and scaling transition for random fields. J. Math. Anal. Appl. 497
S.D. (2022) Scaling transition for singular linear random fields on \mathbb{Z}^{2} : spectral approach. Preprint.

- Extension: (isotropic) scaling with aggregation: the limit distribution of a sum of M independent copies of (1):

$$
\begin{equation*}
X_{\lambda, M}(\phi):=\sum_{j=1}^{M} \int_{\mathbb{R}^{d}} X_{j}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t} \tag{5}
\end{equation*}
$$

as $M \rightarrow \infty$ and $\lambda \rightarrow \infty$

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- Some ref.:

Puplinskaité, D. \& S.D. (2015) Scaling transition for long-range dependent Gaussian random fields. Stoch. Proc. Appl. 125
Puplinskaité, D. \& S.D. (2016) Aggregation of autoregressive random fields and anisotropic long-range dependence.
Bernoulli 22
Pilipauskaitè, V. \& S.D. (2017) Scaling transition for nonlinear random fields with long-range dependence. Stoch. Proc. Appl. 127
Biermé, H., Durieu, O. \& Wang, Y. (2017) Invariance principles for operator-scaling Gaussian random fields. Ann. Appl. Prob. 27
S.D. (2019) Anisotropic scaling limits of long-range dependent linear random fields on \mathbb{Z}^{3}. J. Math. Anal. Appl. 472
S.D. (2020) Scaling transition and edge effects for negatively dependent linear random fields on \mathbb{Z}^{2}. Stoch. Proc. Appl. 130
Damarackas, J. \& Paulauskas, V. (2021) On Lamperti type limit theorem and scaling transition for random fields. J. Math. Anal. Appl. 497
S.D. (2022) Scaling transition for singular linear random fields on \mathbb{Z}^{2} : spectral approach. Preprint.

- Extension: (isotropic) scaling with aggregation: the limit distribution of a sum of M independent copies of (1):

$$
\begin{equation*}
X_{\lambda, M}(\phi):=\sum_{j=1}^{M} \int_{\mathbb{R}^{d}} X_{j}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t} \tag{5}
\end{equation*}
$$

as $M \rightarrow \infty$ and $\lambda \rightarrow \infty$

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- For $d=1$ and $\phi(t)=\mathbb{I}(t \in] 0, s]), s \geq 0$ (5) represent the aggregated sum

$$
\begin{equation*}
X_{\lambda, M}(s)=\sum_{j=1}^{M} \int_{0}^{\lambda s} X_{j}(t) \mathrm{d} t, \quad s \geq 0 \tag{6}
\end{equation*}
$$

of integrated independent and identically distributed 'input' processes $X_{j}=\left\{X_{j}(t) ; t \in \mathbb{R}\right\}$ with LRD 'induced by heavy tails',

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- For $d=1$ and $\phi(t)=\mathbb{I}(t \in] 0, s]), s \geq 0$ (5) represent the aggregated sum

$$
\begin{equation*}
X_{\lambda, M}(s)=\sum_{j=1}^{M} \int_{0}^{\lambda s} X_{j}(t) \mathrm{d} t, \quad s \geq 0 \tag{6}
\end{equation*}
$$

of integrated independent and identically distributed 'input' processes $X_{j}=\left\{X_{j}(t) ; t \in \mathbb{R}\right\}$ with LRD 'induced by heavy tails', M referred to as the 'connection rate'

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- For $d=1$ and $\phi(t)=\mathbb{I}(t \in] 0, s]), s \geq 0$ (5) represent the aggregated sum

$$
\begin{equation*}
X_{\lambda, M}(s)=\sum_{j=1}^{M} \int_{0}^{\lambda s} X_{j}(t) \mathrm{d} t, \quad s \geq 0 \tag{6}
\end{equation*}
$$

of integrated independent and identically distributed 'input' processes $X_{j}=\left\{X_{j}(t) ; t \in \mathbb{R}\right\}$ with LRD 'induced by heavy tails', M referred to as the 'connection rate'

- Applications in telecommunications ($X_{\lambda, M}(s)$ 'aggregated workload from M independent sources') and econometrics ($X_{\lambda, M}(s)$ averaged panel data from M individual 'micro time series')

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- For $d=1$ and $\phi(t)=\mathbb{I}(t \in] 0, s]), s \geq 0$ (5) represent the aggregated sum

$$
\begin{equation*}
X_{\lambda, M}(s)=\sum_{j=1}^{M} \int_{0}^{\lambda s} X_{j}(t) \mathrm{d} t, \quad s \geq 0 \tag{6}
\end{equation*}
$$

of integrated independent and identically distributed 'input' processes $X_{j}=\left\{X_{j}(t) ; t \in \mathbb{R}\right\}$ with LRD 'induced by heavy tails', M referred to as the 'connection rate'

- Applications in telecommunications ($X_{\lambda, M}(s)$ 'aggregated workload from M independent sources') and econometrics ($X_{\lambda, M}(s)$ averaged panel data from M individual 'micro time series')
- 'Typical' result in the heavy-tailed aggregated traffic research says that there exists a critical 'connection rate' $M_{0}=M_{0}(\lambda) \rightarrow \infty(\lambda \rightarrow \infty)$ such that the (normalized) 'aggregated input' $X_{\lambda, M}(s)$ tends to an α-stable Lévy process or a Fractional Brownian Motion depending on whether M / M_{0} tends to 0 or ∞; the critical growth $M / M_{0} \rightarrow c \in(0, \infty)$ results in a different 'intermediate' limit which is neither Gaussian nor stable

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- For $d=1$ and $\phi(t)=\mathbb{I}(t \in] 0, s]), s \geq 0$ (5) represent the aggregated sum

$$
\begin{equation*}
X_{\lambda, M}(s)=\sum_{j=1}^{M} \int_{0}^{\lambda s} X_{j}(t) \mathrm{d} t, \quad s \geq 0 \tag{6}
\end{equation*}
$$

of integrated independent and identically distributed 'input' processes $X_{j}=\left\{X_{j}(t) ; t \in \mathbb{R}\right\}$ with LRD 'induced by heavy tails', M referred to as the 'connection rate'

- Applications in telecommunications ($X_{\lambda, M}(s)$ 'aggregated workload from M independent sources') and econometrics ($X_{\lambda, M}(s)$ averaged panel data from M individual 'micro time series')
- 'Typical' result in the heavy-tailed aggregated traffic research says that there exists a critical 'connection rate' $M_{0}=M_{0}(\lambda) \rightarrow \infty(\lambda \rightarrow \infty)$ such that the (normalized) 'aggregated input' $X_{\lambda, M}(s)$ tends to an α-stable Lévy process or a Fractional Brownian Motion depending on whether M / M_{0} tends to 0 or ∞; the critical growth $M / M_{0} \rightarrow c \in(0, \infty)$ results in a different 'intermediate' limit which is neither Gaussian nor stable

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- 'Iterated limits': first $M \rightarrow \infty$ then $\lambda \rightarrow \infty$ or vice versa:

Willinger, W., Taqqu, M.S., Leland, M. \& Wilson, D. (1997) Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. Networking 5
Taqqu, M.S., Willinger, W. \& Sherman, R. (1997) Proof of a fundamental result in self-similar traffic modeling. Comput. Commun. Rev. 27
Lévy, J.B. \& Taqqu, M.S. (2000) Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards. Bernoulli 6
Zaffaroni, P. (2004) Contemporaneous aggregation of linear dynamic models in large economies. J. Econometrics 120 Puplinskaite, D. and S.D. (2010) Aggregation of random coefficient AR1(1) process with infinite variance and idiosyncratic innovations. Adv. Appl. Probab. 42
Barczy, M., Nedényi, F. \& Pap, G. (2017) Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations. J. Math. Anal. Appl. 451

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- 'Iterated limits': first $M \rightarrow \infty$ then $\lambda \rightarrow \infty$ or vice versa:

Willinger, W., Taqqu, M.S., Leland, M. \& Wilson, D. (1997) Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. Networking 5
Taqqu, M.S., Willinger, W. \& Sherman, R. (1997) Proof of a fundamental result in self-similar traffic modeling.
Comput. Commun. Rev. 27
Lévy, J.B. \& Taqqu, M.S. (2000) Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards. Bernoulli 6
Zaffaroni, P. (2004) Contemporaneous aggregation of linear dynamic models in large economies. J. Econometrics 120
Puplinskaite, D. and S.D. (2010) Aggregation of random coefficient AR1(1) process with infinite variance and idiosyncratic innovations. Adv. Appl. Probab. 42
Barczy, M., Nedényi, F. \& Pap, G. (2017) Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations. J. Math. Anal. Appl. 451

- 'Joint limits': $M=M(\lambda) \rightarrow \infty$ together with $\lambda \rightarrow \infty$:

Mikosch, T., Resnick, S., Rootzén, H. \& Stegeman, A. (2002) Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12
Gaigalas, R. \& Kaj, I. (2003) Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9
Pipiras, V., Taqqu, M.S. \& Levy, L.B. (2004) Slow, fast, and arbitrary growth conditions for renewal reward processes when the renewals and the rewards are heavy-tailed. Bernoulli 10
Kaj, I. \& Taqqu, M.S. (2008) Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In: M.E. Vares and V. Sidoravicius (Eds.) In and Out of Equilibrium 2. Progress in Probability, vol. 60
Pilipauskaite, V. \& S.D. (2014) Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes. Stoch. Process. Appl. 124
Pilipauskaite, V., Skorniakov, V. \& S.D. (2020) Joint temporal and contemporaneous aggregation of random-coefficient $\mathrm{AR}(1)$ processes with infinite variance. Adv. Appl. Probab. 52
Leipus, R., Pilipauskaité, V. \& S.D. (2023) Aggregation of network traffic and anisotropic scaling of random fields. Th. Probab. Math. Statist.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- 'Iterated limits': first $M \rightarrow \infty$ then $\lambda \rightarrow \infty$ or vice versa:

Willinger, W., Taqqu, M.S., Leland, M. \& Wilson, D. (1997) Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. Networking 5
Taqqu, M.S., Willinger, W. \& Sherman, R. (1997) Proof of a fundamental result in self-similar traffic modeling.
Comput. Commun. Rev. 27
Lévy, J.B. \& Taqqu, M.S. (2000) Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards. Bernoulli 6
Zaffaroni, P. (2004) Contemporaneous aggregation of linear dynamic models in large economies. J. Econometrics 120
Puplinskaite, D. and S.D. (2010) Aggregation of random coefficient AR1(1) process with infinite variance and idiosyncratic innovations. Adv. Appl. Probab. 42
Barczy, M., Nedényi, F. \& Pap, G. (2017) Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations. J. Math. Anal. Appl. 451

- 'Joint limits': $M=M(\lambda) \rightarrow \infty$ together with $\lambda \rightarrow \infty$:

Mikosch, T., Resnick, S., Rootzén, H. \& Stegeman, A. (2002) Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12
Gaigalas, R. \& Kaj, I. (2003) Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9
Pipiras, V., Taqqu, M.S. \& Levy, L.B. (2004) Slow, fast, and arbitrary growth conditions for renewal reward processes when the renewals and the rewards are heavy-tailed. Bernoulli 10
Kaj, I. \& Taqqu, M.S. (2008) Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In: M.E. Vares and V. Sidoravicius (Eds.) In and Out of Equilibrium 2. Progress in Probability, vol. 60
Pilipauskaite, V. \& S.D. (2014) Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes. Stoch. Process. Appl. 124
Pilipauskaite, V., Skorniakov, V. \& S.D. (2020) Joint temporal and contemporaneous aggregation of random-coefficient $\mathrm{AR}(1)$ processes with infinite variance. Adv. Appl. Probab. 52
Leipus, R., Pilipauskaité, V. \& S.D. (2023) Aggregation of network traffic and anisotropic scaling of random fields. Th. Probab. Math. Statist.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- In these works, the critical 'connection rate' $M_{0}=M_{0}(\lambda)$ separating Gaussian ('fast connection rate') and stable ('slow connection rate') limits grows as $M_{0}=O\left(\lambda^{\gamma_{0}}\right)$ with some $\gamma_{0}>0$ (up to slowly varying factor).

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- In these works, the critical 'connection rate' $M_{0}=M_{0}(\lambda)$ separating Gaussian ('fast connection rate') and stable ('slow connection rate') limits grows as $M_{0}=O\left(\lambda^{\gamma_{0}}\right)$ with some $\gamma_{0}>0$ (up to slowly varying factor).
We argue that these works fit into the previous set-up of 'scaling limit with aggregation' for $\operatorname{RF} X^{\prime}(t, j):=X_{j}(t)$ on $(t, j) \in \mathbb{R} \times \mathbb{Z}$.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- In these works, the critical 'connection rate' $M_{0}=M_{0}(\lambda)$ separating Gaussian ('fast connection rate') and stable ('slow connection rate') limits grows as $M_{0}=O\left(\lambda^{\gamma_{0}}\right)$ with some $\gamma_{0}>0$ (up to slowly varying factor).
We argue that these works fit into the previous set-up of 'scaling limit with aggregation' for $\operatorname{RF} X^{\prime}(t, j):=X_{j}(t)$ on $(t, j) \in \mathbb{R} \times \mathbb{Z}$.
The trichotomy of scaling limits can be interpreted as scaling transition for RF X^{\prime}.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- In these works, the critical 'connection rate' $M_{0}=M_{0}(\lambda)$ separating Gaussian ('fast connection rate') and stable ('slow connection rate') limits grows as $M_{0}=O\left(\lambda^{\gamma_{0}}\right)$ with some $\gamma_{0}>0$ (up to slowly varying factor).
We argue that these works fit into the previous set-up of 'scaling limit with aggregation' for RF $X^{\prime}(t, j):=X_{j}(t)$ on $(t, j) \in \mathbb{R} \times \mathbb{Z}$.
The trichotomy of scaling limits can be interpreted as scaling transition for RF X^{\prime}.
- Unsurprisingly, most existing results on scaling limits of LRD RFs $(d \geq 2)$ (with or without aggregation) apply to linear models.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- In these works, the critical 'connection rate' $M_{0}=M_{0}(\lambda)$ separating Gaussian ('fast connection rate') and stable ('slow connection rate') limits grows as $M_{0}=O\left(\lambda^{\gamma_{0}}\right)$ with some $\gamma_{0}>0$ (up to slowly varying factor).
We argue that these works fit into the previous set-up of 'scaling limit with aggregation' for $\operatorname{RF} X^{\prime}(t, j):=X_{j}(t)$ on $(t, j) \in \mathbb{R} \times \mathbb{Z}$.
The trichotomy of scaling limits can be interpreted as scaling transition for RF X^{\prime}.
- Unsurprisingly, most existing results on scaling limits of LRD RFs $(d \geq 2)$ (with or without aggregation) apply to linear models.
A notable exception is Gaussian subordinated RFs (written as a nonlinear function $G(X(t))$ of a Gaussian LRD RF $X)$ treated via Hermite expansion 'Dobrushin-Major-Taqqu [DMT] theory'.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- In these works, the critical 'connection rate' $M_{0}=M_{0}(\lambda)$ separating Gaussian ('fast connection rate') and stable ('slow connection rate') limits grows as $M_{0}=O\left(\lambda^{\gamma_{0}}\right)$ with some $\gamma_{0}>0$ (up to slowly varying factor).
We argue that these works fit into the previous set-up of 'scaling limit with aggregation' for $\operatorname{RF} X^{\prime}(t, j):=X_{j}(t)$ on $(t, j) \in \mathbb{R} \times \mathbb{Z}$.
The trichotomy of scaling limits can be interpreted as scaling transition for RF X^{\prime}.
- Unsurprisingly, most existing results on scaling limits of LRD RFs $(d \geq 2)$ (with or without aggregation) apply to linear models.
A notable exception is Gaussian subordinated RFs (written as a nonlinear function $G(X(\boldsymbol{t}))$ of a Gaussian LRD RF $X)$ treated via Hermite expansion 'Dobrushin-Major-Taqqu [DMT] theory'.
This is in contrast to the one-dimensional case $d=1$, where the martingale approach developed in Ho, H.-C. \& Hsing, T. (1997) Limit theorems for functionals of moving averages. Ann. Probab. 25 is applicable to nonlinear functions and statistics of causal LRD moving averages.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- In these works, the critical 'connection rate' $M_{0}=M_{0}(\lambda)$ separating Gaussian ('fast connection rate') and stable ('slow connection rate') limits grows as $M_{0}=O\left(\lambda^{\gamma_{0}}\right)$ with some $\gamma_{0}>0$ (up to slowly varying factor).
We argue that these works fit into the previous set-up of 'scaling limit with aggregation' for $\operatorname{RF} X^{\prime}(t, j):=X_{j}(t)$ on $(t, j) \in \mathbb{R} \times \mathbb{Z}$.
The trichotomy of scaling limits can be interpreted as scaling transition for RF X^{\prime}.
- Unsurprisingly, most existing results on scaling limits of LRD RFs $(d \geq 2)$ (with or without aggregation) apply to linear models.
A notable exception is Gaussian subordinated RFs (written as a nonlinear function $G(X(\boldsymbol{t}))$ of a Gaussian LRD RF $X)$ treated via Hermite expansion 'Dobrushin-Major-Taqqu [DMT] theory'.
This is in contrast to the one-dimensional case $d=1$, where the martingale approach developed in Ho, H.-C. \& Hsing, T. (1997) Limit theorems for functionals of moving averages. Ann. Probab. 25 is applicable to nonlinear functions and statistics of causal LRD moving averages.
Nonlinear models are important since most statistics are nonlinear.

1. Spatial long-range dependence (LRD) and limit theorems (scaling limits)

- In these works, the critical 'connection rate' $M_{0}=M_{0}(\lambda)$ separating Gaussian ('fast connection rate') and stable ('slow connection rate') limits grows as $M_{0}=O\left(\lambda^{\gamma_{0}}\right)$ with some $\gamma_{0}>0$ (up to slowly varying factor).
We argue that these works fit into the previous set-up of 'scaling limit with aggregation' for $\operatorname{RF} X^{\prime}(t, j):=X_{j}(t)$ on $(t, j) \in \mathbb{R} \times \mathbb{Z}$.
The trichotomy of scaling limits can be interpreted as scaling transition for RF X^{\prime}.
- Unsurprisingly, most existing results on scaling limits of LRD RFs $(d \geq 2)$ (with or without aggregation) apply to linear models.
A notable exception is Gaussian subordinated RFs (written as a nonlinear function $G(X(\boldsymbol{t}))$ of a Gaussian LRD RF $X)$ treated via Hermite expansion 'Dobrushin-Major-Taqqu [DMT] theory'.
This is in contrast to the one-dimensional case $d=1$, where the martingale approach developed in Ho, H.-C. \& Hsing, T. (1997) Limit theorems for functionals of moving averages. Ann. Probab. 25 is applicable to nonlinear functions and statistics of causal LRD moving averages.
Nonlinear models are important since most statistics are nonlinear.

2. Random grain (RG) model

2. Random grain (RG) model

- Causality not very natural in spatial context \& HH (1997) method hard to adopt in noncausal case.

2. Random grain (RG) model

- Causality not very natural in spatial context \& HH (1997) method hard to adopt in noncausal case. But:

Doukhan, P., Lang, G. \& S.D. (2002) Asymptotics of weighted empirical processes of linear random fields with long range dependence. Ann. Inst. H. Poincaré 38 for $G(x)=\mathbb{I}(x \leq y)$.

2. Random grain (RG) model

- Causality not very natural in spatial context \& HH (1997) method hard to adopt in noncausal case. But:

Doukhan, P., Lang, G. \& S.D. (2002) Asymptotics of weighted empirical processes of linear random fields with long range dependence. Ann. Inst. H. Poincaré 38 for $G(x)=\mathbb{I}(x \leq y)$.
This result was applied to goodness-of-fit testing
Koul, H.L., Mimoto, N. \& S.D. (2016) Goodness-of-fit tests for marginal distribution of linear random fields with long memory. Metrika 79

2. Random grain (RG) model

- Causality not very natural in spatial context \& HH (1997) method hard to adopt in noncausal case. But:

Doukhan, P., Lang, G. \& S.D. (2002) Asymptotics of weighted empirical processes of linear random fields with long range dependence. Ann. Inst. H. Poincaré 38 for $G(x)=\mathbb{I}(x \leq y)$.
This result was applied to goodness-of-fit testing
Koul, H.L., Mimoto, N. \& S.D. (2016) Goodness-of-fit tests for marginal distribution of linear random fields with long memory. Metrika 79

2. Random grain model

2. Random grain (RG) model

- Causality not very natural in spatial context \& HH (1997) method hard to adopt in noncausal case. But:

Doukhan, P., Lang, G. \& S.D. (2002) Asymptotics of weighted empirical processes of linear random fields with long range dependence. Ann. Inst. H. Poincaré 38 for $G(x)=\mathbb{I}(x \leq y)$.
This result was applied to goodness-of-fit testing
Koul, H.L., Mimoto, N. \& S.D. (2016) Goodness-of-fit tests for marginal distribution of linear random fields with long memory. Metrika 79

2. Random grain model

A 'superposition of uniformly scattered in $\mathbb{R}^{d \prime}$ and randomly dilated grains:

$$
\begin{equation*}
X(\boldsymbol{t}):=\sum_{j=1}^{\infty} \mathbb{I}\left(\boldsymbol{t} \in\left(\boldsymbol{u}_{j}+\bar{\Xi}_{j}\right)\right), \quad \boldsymbol{t} \in \mathbb{R}^{d} \tag{7}
\end{equation*}
$$

where:

- $\left\{\boldsymbol{u}_{j}\right\} \subset \mathbb{R}^{d}:$ Poisson process of 'centers' or 'germs' with uniform intensity $\mathrm{d} \boldsymbol{u}$

2. Random grain (RG) model

- Causality not very natural in spatial context \& HH (1997) method hard to adopt in noncausal case. But:
Doukhan, P., Lang, G. \& S.D. (2002) Asymptotics of weighted empirical processes of linear random fields with long range dependence. Ann. Inst. H. Poincaré 38 for $G(x)=\mathbb{I}(x \leq y)$.
This result was applied to goodness-of-fit testing
Koul, H.L., Mimoto, N. \& S.D. (2016) Goodness-of-fit tests for marginal distribution of linear random fields with long memory. Metrika 79

2. Random grain model

A 'superposition of uniformly scattered in $\mathbb{R}^{d \prime}$ and randomly dilated grains:

$$
\begin{equation*}
X(\boldsymbol{t}):=\sum_{j=1}^{\infty} \mathbb{I}\left(\boldsymbol{t} \in\left(\boldsymbol{u}_{j}+\Xi_{j}\right)\right), \quad \boldsymbol{t} \in \mathbb{R}^{d} \tag{7}
\end{equation*}
$$

where:

- $\left\{\boldsymbol{u}_{j}\right\} \subset \mathbb{R}^{d}:$ Poisson process of 'centers' or 'germs' with uniform intensity $\mathrm{d} \boldsymbol{u}$
- $\Xi_{j}=R_{j}^{1 / d} \Xi^{0},\left\{R, R_{j}>0\right\}$ i.i.d. with $F(\mathrm{~d} r):=\mathrm{P}(R \in \mathrm{~d} r)$ independent of $\left\{\boldsymbol{u}_{j}\right\}$, \bar{E}^{0} ('generic grain'): a deterministic bounded Borel subset of \mathbb{R}^{d}

2. Random grain (RG) model

- Causality not very natural in spatial context \& HH (1997) method hard to adopt in noncausal case. But:
Doukhan, P., Lang, G. \& S.D. (2002) Asymptotics of weighted empirical processes of linear random fields with long range dependence. Ann. Inst. H. Poincaré 38 for $G(x)=\mathbb{I}(x \leq y)$.
This result was applied to goodness-of-fit testing
Koul, H.L., Mimoto, N. \& S.D. (2016) Goodness-of-fit tests for marginal distribution of linear random fields with long memory. Metrika 79

2. Random grain model

A 'superposition of uniformly scattered in $\mathbb{R}^{d \prime}$ and randomly dilated grains:

$$
\begin{equation*}
X(\boldsymbol{t}):=\sum_{j=1}^{\infty} \mathbb{I}\left(\boldsymbol{t} \in\left(\boldsymbol{u}_{j}+\Xi_{j}\right)\right), \quad \boldsymbol{t} \in \mathbb{R}^{d} \tag{7}
\end{equation*}
$$

where:

- $\left\{\boldsymbol{u}_{j}\right\} \subset \mathbb{R}^{d}:$ Poisson process of 'centers' or 'germs' with uniform intensity $\mathrm{d} \boldsymbol{u}$
- $\Xi_{j}=R_{j}^{1 / d} \Xi^{0},\left\{R, R_{j}>0\right\}$ i.i.d. with $F(\mathrm{~d} r):=\mathrm{P}(R \in \mathrm{~d} r)$ independent of $\left\{\boldsymbol{u}_{j}\right\}$, \bar{E}^{0} ('generic grain'): a deterministic bounded Borel subset of \mathbb{R}^{d}

2. Random grain (RG) model

2. Random grain (RG) model

- $\operatorname{Leb} b_{d}\left(\bar{\Xi}_{j}\right)=R_{j} L e b_{d}\left(\bar{\Xi}^{0}\right)$: dilates $L e b_{d}\left(\bar{\Xi}^{0}\right)$ by random factor R_{j}

2. Random grain (RG) model

- $\operatorname{Leb}_{d}\left(\bar{\Xi}_{j}\right)=R_{j} L e b_{d}\left(\bar{\Xi}^{0}\right)$: dilates $L e b_{d}\left(\bar{\Xi}^{0}\right)$ by random factor R_{j}
- $X(\boldsymbol{t})$ in (7) counts the number of random grains which cover $\boldsymbol{t} \in \mathbb{R}^{d}$

2. Random grain (RG) model

- $\operatorname{Leb} b_{d}\left(\Xi_{j}\right)=R_{j} \operatorname{Leb}{ }_{d}\left(\bar{\Xi}^{0}\right)$: dilates $L e b_{d}\left(\bar{\Xi}^{0}\right)$ by random factor R_{j}
- $X(\boldsymbol{t})$ in (7) counts the number of random grains which cover $\boldsymbol{t} \in \mathbb{R}^{d}$
- $X(t)$ has marginal Poisson distribution with mean

$$
\mu=\mathrm{E} X(\boldsymbol{t})=\int_{\mathbb{R}^{d}} \mathrm{P}\left(\boldsymbol{t}-\boldsymbol{u} \in R^{1 / d} \Xi^{0}\right) \mathrm{d} \boldsymbol{u}=\operatorname{Leb}_{d}\left(\bar{\Xi}^{0}\right) \mathrm{E} R<\infty
$$

2. Random grain (RG) model

- $\operatorname{Leb} b_{d}\left(\Xi_{j}\right)=R_{j} L e b_{d}\left(\bar{\Xi}^{0}\right)$: dilates $L e b_{d}\left(\bar{\Xi}^{0}\right)$ by random factor R_{j}
- $X(\boldsymbol{t})$ in (7) counts the number of random grains which cover $\boldsymbol{t} \in \mathbb{R}^{d}$
- $X(\boldsymbol{t})$ has marginal Poisson distribution with mean

$$
\mu=\mathrm{EX}(\boldsymbol{t})=\int_{\mathbb{R}^{d}} \mathrm{P}\left(\boldsymbol{t}-\boldsymbol{u} \in R^{1 / d} \bar{\Xi}^{0}\right) \mathrm{d} \boldsymbol{u}=\operatorname{Leb}_{d}\left(\bar{\Xi}^{0}\right) \mathrm{E} R<\infty
$$

and stochastic integral representation

$$
\begin{equation*}
X(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}(\mathrm{d} \boldsymbol{u}, \mathrm{~d} r), \quad \boldsymbol{t} \in \mathbb{R}^{d} \tag{8}
\end{equation*}
$$

$\mathcal{N}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r):$ Poisson random measure with $\mathrm{EN}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r)=\mathrm{d} \boldsymbol{u} F(\mathrm{~d} r)$

2. Random grain (RG) model

- $\operatorname{Leb} b_{d}\left(\Xi_{j}\right)=R_{j} L e b_{d}\left(\bar{\Xi}^{0}\right)$: dilates $L e b_{d}\left(\bar{\Xi}^{0}\right)$ by random factor R_{j}
- $X(\boldsymbol{t})$ in (7) counts the number of random grains which cover $\boldsymbol{t} \in \mathbb{R}^{d}$
- $X(\boldsymbol{t})$ has marginal Poisson distribution with mean

$$
\mu=\mathrm{EX}(\boldsymbol{t})=\int_{\mathbb{R}^{d}} \mathrm{P}\left(\boldsymbol{t}-\boldsymbol{u} \in R^{1 / d} \bar{\Xi}^{0}\right) \mathrm{d} \boldsymbol{u}=\operatorname{Leb}_{d}\left(\bar{\Xi}^{0}\right) \mathrm{E} R<\infty
$$

and stochastic integral representation

$$
\begin{equation*}
X(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}(\mathrm{d} \boldsymbol{u}, \mathrm{~d} r), \quad \boldsymbol{t} \in \mathbb{R}^{d} \tag{8}
\end{equation*}
$$

$\mathcal{N}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r):$ Poisson random measure with $\mathrm{EN}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r)=\mathrm{d} \boldsymbol{u} F(\mathrm{~d} r)$

- Closely related object: the (random) Boolean set:

$$
\begin{equation*}
\mathcal{X}:=\bigcup_{j=1}^{\infty}\left(\boldsymbol{u}_{j}+R_{j}^{1 / d} \Xi^{0}\right) \quad \subset \mathbb{R}^{d} \tag{9}
\end{equation*}
$$

2. Random grain (RG) model

- $\operatorname{Leb} b_{d}\left(\Xi_{j}\right)=R_{j} L e b_{d}\left(\bar{\Xi}^{0}\right)$: dilates $L e b_{d}\left(\bar{\Xi}^{0}\right)$ by random factor R_{j}
- $X(\boldsymbol{t})$ in (7) counts the number of random grains which cover $\boldsymbol{t} \in \mathbb{R}^{d}$
- $X(\boldsymbol{t})$ has marginal Poisson distribution with mean

$$
\mu=\mathrm{EX}(\boldsymbol{t})=\int_{\mathbb{R}^{d}} \mathrm{P}\left(\boldsymbol{t}-\boldsymbol{u} \in R^{1 / d} \bar{\Xi}^{0}\right) \mathrm{d} \boldsymbol{u}=\operatorname{Leb}_{d}\left(\bar{\Xi}^{0}\right) \mathrm{E} R<\infty
$$

and stochastic integral representation

$$
\begin{equation*}
X(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}(\mathrm{d} \boldsymbol{u}, \mathrm{~d} r), \quad \boldsymbol{t} \in \mathbb{R}^{d} \tag{8}
\end{equation*}
$$

$\mathcal{N}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r):$ Poisson random measure with $\mathrm{EN}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r)=\mathrm{d} \boldsymbol{u} F(\mathrm{~d} r)$

- Closely related object: the (random) Boolean set:

$$
\begin{equation*}
\mathcal{X}:=\bigcup_{j=1}^{\infty}\left(\boldsymbol{u}_{j}+R_{j}^{1 / d} \Xi^{0}\right) \quad \subset \mathbb{R}^{d} \tag{9}
\end{equation*}
$$

- Boolean model is basic in stochastic geometry and stereology

2. Random grain (RG) model

2. Random grain (RG) model

- $\Xi^{0}=\{\|\boldsymbol{t}\| \leq 1\}$ unit ball: random ball model

2. Random grain (RG) model

- $\Xi^{0}=\{\|\boldsymbol{t}\| \leq 1\}$ unit ball: random ball model
- Trajectories of RG model very different from Gaussian:

Isotropically scaled random ball model, $\gamma=1, \alpha=3 / 2$. Left: $\lambda=5$, right: $\lambda=10$

2. Random grain (RG) model

2. Random grain (RG) model

Same anisotropically $(\gamma=3)$ scaled random ball model. Left: $\lambda=5$, right: $\lambda=10$

2. Random grain (RG) model

Same anisotropically $(\gamma=3)$ scaled random ball model. Left: $\lambda=5$, right: $\lambda=10$

- Isotropic scaling with aggregation of RG model was discussed in important works:
[KLNS] Kaj, I., Leskelä, L., Norros, I. \& Schmidt, V. (2007) Scaling limits for random fields with long-range dependence. Ann. Probab. 35
[BEK] Biermé, H., Estrade, A. \& Kaj, I. (2010) Self-similar random fields and rescaled random balls models. J.
Theoret. Probab. 23

2. Random grain (RG) model

Same anisotropically $(\gamma=3)$ scaled random ball model. Left: $\lambda=5$, right: $\lambda=10$

- Isotropic scaling with aggregation of RG model was discussed in important works:
[KLNS] Kaj, I., Leskelä, L., Norros, I. \& Schmidt, V. (2007) Scaling limits for random fields with long-range dependence. Ann. Probab. 35
[BEK] Biermé, H., Estrade, A. \& Kaj, I. (2010) Self-similar random fields and rescaled random balls models. J.
Theoret. Probab. 23
- Anisotropic scaling without aggregation of RG model $(d=2)$:

Pilipauskaite, V. \& S.D. (2016) Anisotropic scaling of random grain model with application to network traffic. J. Appl.
Probab. 53

2. Random grain (RG) model

Same anisotropically $(\gamma=3)$ scaled random ball model. Left: $\lambda=5$, right: $\lambda=10$

- Isotropic scaling with aggregation of RG model was discussed in important works:
[KLNS] Kaj, I., Leskelä, L., Norros, I. \& Schmidt, V. (2007) Scaling limits for random fields with long-range dependence. Ann. Probab. 35
[BEK] Biermé, H., Estrade, A. \& Kaj, I. (2010) Self-similar random fields and rescaled random balls models. J.
Theoret. Probab. 23
- Anisotropic scaling without aggregation of RG model $(d=2)$:

Pilipauskaite, V. \& S.D. (2016) Anisotropic scaling of random grain model with application to network traffic. J. Appl.
Probab. 53

2. Random grain (RG) model

2. Random grain (RG) model

Covariance $r_{X}(\boldsymbol{t})=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$ of RG model writes as

$$
r x(\boldsymbol{t})=\int_{0}^{\infty} L e b_{d}\left(\bar{\Xi}^{0} \cap\left(\bar{\Xi}^{0}-r^{-1 / d} \boldsymbol{t}\right)\right) r F(\mathrm{~d} r) .
$$

Well-known: RG is LRD [$=$ nonintegrable covariance] if $P(R>r)=F(r, \infty)$ varies regularly at ∞ with exponent $\alpha \in(1,2)$.

2. Random grain (RG) model

Covariance $r_{X}(\boldsymbol{t})=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$ of RG model writes as

$$
r x(\boldsymbol{t})=\int_{0}^{\infty} L e b_{d}\left(\bar{\Xi}^{0} \cap\left(\bar{\Xi}^{0}-r^{-1 / d} \boldsymbol{t}\right)\right) r F(\mathrm{~d} r) .
$$

Well-known: RG is LRD [= nonintegrable covariance] if $P(R>r)=F(r, \infty)$ varies regularly at ∞ with exponent $\alpha \in(1,2)$.
Assumption LRD $\Xi^{0} \subset \mathbb{R}^{d}$ is a bounded Borel set whereas $F(\mathrm{~d} r)=f(r) \mathrm{d} r$ has density function s.t.

$$
\begin{equation*}
f(r) \sim c_{f} r^{-1-\alpha}, \quad r \rightarrow \infty \quad\left(\exists c_{f}>0, \quad \alpha \in(1,2)\right) . \tag{10}
\end{equation*}
$$

Moreover, $(r, z) \mapsto \operatorname{Leb}_{d}\left(\bar{\Xi}^{0} \cap\left(\bar{\Xi}^{0}-r^{-1 / d} \boldsymbol{z}\right)\right)$ is continuous on $(r, z) \in \mathbb{R}_{+} \times\{\|z\|=1\}$.

- mild regularity of boundary $\partial \Xi^{0}$

2. Random grain (RG) model

Covariance $r_{X}(\boldsymbol{t})=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))$ of RG model writes as

$$
r x(\boldsymbol{t})=\int_{0}^{\infty} \operatorname{Leb}_{d}\left(\bar{\Xi}^{0} \cap\left(\bar{\Xi}^{0}-r^{-1 / d} \boldsymbol{t}\right)\right) r F(\mathrm{~d} r) .
$$

Well-known: RG is LRD [= nonintegrable covariance] if $P(R>r)=F(r, \infty)$ varies regularly at ∞ with exponent $\alpha \in(1,2)$.
Assumption LRD $\Xi^{0} \subset \mathbb{R}^{d}$ is a bounded Borel set whereas $F(\mathrm{~d} r)=f(r) \mathrm{d} r$ has density function s.t.

$$
\begin{equation*}
f(r) \sim c_{f} r^{-1-\alpha}, \quad r \rightarrow \infty \quad\left(\exists c_{f}>0, \quad \alpha \in(1,2)\right) \tag{10}
\end{equation*}
$$

Moreover, $(r, z) \mapsto \operatorname{Leb}_{d}\left(\Xi^{0} \cap\left(\Xi^{0}-r^{-1 / d} z\right)\right)$ is continuous on $(r, z) \in \mathbb{R}_{+} \times\{\|z\|=1\}$.

- mild regularity of boundary $\partial \Xi^{0}$
- Under Assumption LRD

$$
\begin{equation*}
r_{X}(\boldsymbol{t}) \sim\|\boldsymbol{t}\|^{-d(\alpha-1)} \ell\left(\frac{\boldsymbol{t}}{\|\boldsymbol{t}\|}\right), \quad|\boldsymbol{t}| \rightarrow \infty, \quad 1<\alpha<2 \tag{11}
\end{equation*}
$$

where $\ell(z),\|z\|=1$ is a bdd cont. (angular) function

$$
\ell(z):=c_{f} \int_{0}^{\infty} L e b_{d}\left(\bar{\Xi}^{0} \cap\left(\bar{\Xi}^{0}-r^{-1 / d} z\right)\right) r^{-\alpha} \mathrm{d} r .
$$

2. Random grain (RG) model

2. Random grain (RG) model

- LRD property holds for $1<\alpha<2$ and does not hold for $\alpha>2, \alpha>1$ necessary for $\mathrm{E} X(\boldsymbol{t})<\infty$ and existence of X

2. Random grain (RG) model

- LRD property holds for $1<\alpha<2$ and does not hold for $\alpha>2, \alpha>1$ necessary for $\mathrm{E} X(\boldsymbol{t})<\infty$ and existence of X
- For $d=1, \Xi^{0}=[0,1], X=\{X(t) ; t \in \mathbb{R}\}$ is stationary $\mathrm{M} / \mathrm{G} / \infty$ queue:

$$
X(t)=\sum_{u_{j} \leq t} \mathbb{I}\left(t-u_{j} \leq R_{j}\right)
$$

2. Random grain (RG) model

- LRD property holds for $1<\alpha<2$ and does not hold for $\alpha>2, \alpha>1$ necessary for $\mathrm{EX}(\boldsymbol{t})<\infty$ and existence of X
- For $d=1, \bar{\Xi}^{0}=[0,1], X=\{X(t) ; t \in \mathbb{R}\}$ is stationary $\mathrm{M} / \mathrm{G} / \infty$ queue:

$$
X(t)=\sum_{u_{j} \leq t} \mathbb{I}\left(t-u_{j} \leq R_{j}\right)
$$

counting the number of customers at time t at a queueing system with standard Poisson arrivals u_{j}, service times R_{j} and infinite waiting room,

2. Random grain (RG) model

- LRD property holds for $1<\alpha<2$ and does not hold for $\alpha>2, \alpha>1$ necessary for $\mathrm{EX}(\boldsymbol{t})<\infty$ and existence of X
- For $d=1, \bar{\Xi}^{0}=[0,1], X=\{X(t) ; t \in \mathbb{R}\}$ is stationary $\mathrm{M} / \mathrm{G} / \infty$ queue:

$$
X(t)=\sum_{u_{j} \leq t} \mathbb{I}\left(t-u_{j} \leq R_{j}\right)
$$

counting the number of customers at time t at a queueing system with standard Poisson arrivals u_{j}, service times R_{j} and infinite waiting room, also called the infinite source Poisson model.

2. Random grain (RG) model

- LRD property holds for $1<\alpha<2$ and does not hold for $\alpha>2, \alpha>1$ necessary for $\mathrm{EX}(\boldsymbol{t})<\infty$ and existence of X
- For $d=1, \bar{\Xi}^{0}=[0,1], X=\{X(t) ; t \in \mathbb{R}\}$ is stationary $\mathrm{M} / \mathrm{G} / \infty$ queue:

$$
X(t)=\sum_{u_{j} \leq t} \mathbb{I}\left(t-u_{j} \leq R_{j}\right)
$$

counting the number of customers at time t at a queueing system with standard Poisson arrivals u_{j}, service times R_{j} and infinite waiting room, also called the infinite source Poisson model.
Then $r_{X}(t)=\int_{t}^{\infty} \mathrm{P}(R>r) \mathrm{d} r=O\left(t^{-(\alpha-1)}\right)$ is LRD for $\alpha \in(1,2)$

2. Random grain (RG) model

- LRD property holds for $1<\alpha<2$ and does not hold for $\alpha>2, \alpha>1$ necessary for $\mathrm{EX}(\boldsymbol{t})<\infty$ and existence of X
- For $d=1, \bar{\Xi}^{0}=[0,1], X=\{X(t) ; t \in \mathbb{R}\}$ is stationary $\mathrm{M} / \mathrm{G} / \infty$ queue:

$$
X(t)=\sum_{u_{j} \leq t} \mathbb{I}\left(t-u_{j} \leq R_{j}\right)
$$

counting the number of customers at time t at a queueing system with standard Poisson arrivals u_{j}, service times R_{j} and infinite waiting room, also called the infinite source Poisson model.
Then $r_{X}(t)=\int_{t}^{\infty} \mathrm{P}(R>r) \mathrm{d} r=O\left(t^{-(\alpha-1)}\right)$ is LRD for $\alpha \in(1,2)$

- (11) implies the asymptotics of the variance of $X_{\lambda}(\phi)=\int_{\mathbb{R}^{d}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$: for any $\phi \in \Phi=L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\begin{equation*}
\operatorname{Var}\left(X_{\lambda}(\phi)\right) \sim \lambda^{d(3-\alpha)} c(\phi), \quad \lambda \rightarrow \infty \tag{12}
\end{equation*}
$$

2. Random grain (RG) model

- LRD property holds for $1<\alpha<2$ and does not hold for $\alpha>2, \alpha>1$ necessary for $\mathrm{EX}(\boldsymbol{t})<\infty$ and existence of X
- For $d=1, \bar{\Xi}^{0}=[0,1], X=\{X(t) ; t \in \mathbb{R}\}$ is stationary $M / G / \infty$ queue:

$$
X(t)=\sum_{u_{j} \leq t} \mathbb{I}\left(t-u_{j} \leq R_{j}\right)
$$

counting the number of customers at time t at a queueing system with standard Poisson arrivals u_{j}, service times R_{j} and infinite waiting room, also called the infinite source Poisson model.
Then $r_{X}(t)=\int_{t}^{\infty} \mathrm{P}(R>r) \mathrm{d} r=O\left(t^{-(\alpha-1)}\right)$ is LRD for $\alpha \in(1,2)$

- (11) implies the asymptotics of the variance of $X_{\lambda}(\phi)=\int_{\mathbb{R}^{d}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$: for any $\phi \in \Phi=L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\begin{equation*}
\operatorname{Var}\left(X_{\lambda}(\phi)\right) \sim \lambda^{d(3-\alpha)} c(\phi), \quad \lambda \rightarrow \infty \tag{12}
\end{equation*}
$$

where

$$
c(\phi):=\int_{\mathbb{R}^{2 d}} \phi\left(\boldsymbol{t}_{1}\right) \phi\left(\boldsymbol{t}_{2}\right) \ell\left(\frac{\boldsymbol{t}_{1}-\boldsymbol{t}_{2}}{\left\|\boldsymbol{t}_{1}-\boldsymbol{t}_{2}\right\|}\right) \frac{\mathrm{d} \boldsymbol{t}_{1} \mathrm{~d} \boldsymbol{t}_{2}}{\left\|\boldsymbol{t}_{1}-\boldsymbol{t}_{2}\right\|^{d(\alpha-1)}}
$$

2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

2. Random grain (RG) model $([$ KLNS $]=$ Kaj et al (2007))

- Scaling limits with aggregation for sums $X_{\lambda, M}(\phi):=\sum_{j=1}^{M} \int_{\mathbb{R}^{d}} X_{j}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ of independent RG models.

2. Random grain (RG) model $([$ KLNS $]=$ Kaj et al (2007))

- Scaling limits with aggregation for sums $X_{\lambda, M}(\phi):=\sum_{j=1}^{M} \int_{\mathbb{R}^{d}} X_{j}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ of independent RG models. These can be identified as integral

$$
\begin{gathered}
X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { where } \\
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
\end{gathered}
$$

w.r.t. Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=\operatorname{Md} \boldsymbol{u} F(\mathrm{~d} r)$

2. Random grain (RG) model $([$ KLNS $]=$ Kaj et al (2007))

- Scaling limits with aggregation for sums $X_{\lambda, M}(\phi):=\sum_{j=1}^{M} \int_{\mathbb{R}^{d}} X_{j}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ of independent RG models. These can be identified as integral

$$
\begin{gathered}
X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { where } \\
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \exists^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
\end{gathered}
$$

w.r.t. Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$

- For Poisson based models, aggregation amounts to multiplication of intensity

2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

- Scaling limits with aggregation for sums $X_{\lambda, M}(\phi):=\sum_{j=1}^{M} \int_{\mathbb{R}^{d}} X_{j}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ of independent RG models. These can be identified as integral

$$
\begin{gathered}
X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { where } \\
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
\end{gathered}
$$

w.r.t. Poisson measure with $\mathrm{E} \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$

- For Poisson based models, aggregation amounts to multiplication of intensity
- [KLNS] discuss scaling limit of $X_{\lambda, M}(\phi)$ indexed by signed (Riesz) measures ϕ.

2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

- Scaling limits with aggregation for sums $X_{\lambda, M}(\phi):=\sum_{j=1}^{M} \int_{\mathbb{R}^{d}} X_{j}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ of independent RG models. These can be identified as integral

$$
\begin{gathered}
X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { where } \\
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
\end{gathered}
$$

w.r.t. Poisson measure with $\mathrm{E} \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$

- For Poisson based models, aggregation amounts to multiplication of intensity
- [KLNS] discuss scaling limit of $X_{\lambda, M}(\phi)$ indexed by signed (Riesz) measures ϕ. In this talk:

$$
\phi \in \Phi=L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)
$$

2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

- Scaling limits with aggregation for sums $X_{\lambda, M}(\phi):=\sum_{j=1}^{M} \int_{\mathbb{R}^{d}} X_{j}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ of independent RG models. These can be identified as integral

$$
\begin{gathered}
X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { where } \\
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
\end{gathered}
$$

w.r.t. Poisson measure with $\mathrm{E} \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$

- For Poisson based models, aggregation amounts to multiplication of intensity
- [KLNS] discuss scaling limit of $X_{\lambda, M}(\phi)$ indexed by signed (Riesz) measures ϕ. In this talk:

$$
\phi \in \Phi=L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)
$$

- What happens when $M \rightarrow \infty$ together with $\lambda \rightarrow \infty$?

2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

- Scaling limits with aggregation for sums $X_{\lambda, M}(\phi):=\sum_{j=1}^{M} \int_{\mathbb{R}^{d}} X_{j}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ of independent RG models. These can be identified as integral

$$
\begin{gathered}
X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { where } \\
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
\end{gathered}
$$

w.r.t. Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$

- For Poisson based models, aggregation amounts to multiplication of intensity
- [KLNS] discuss scaling limit of $X_{\lambda, M}(\phi)$ indexed by signed (Riesz) measures ϕ. In this talk:

$$
\phi \in \Phi=L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right) .
$$

- What happens when $M \rightarrow \infty$ together with $\lambda \rightarrow \infty$? For fixed $\boldsymbol{t} \in \mathbb{R}^{d}$ clearly $\left(X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})\right) / M^{1 / 2} \xrightarrow{\mathrm{~d}} N(0, \mu)(M \rightarrow \infty)$ with $\mu=\mathrm{E} X(\boldsymbol{t})=\operatorname{Var}(X(\boldsymbol{t}))$ by CLT

2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

2. Random grain (RG) model $([K L N S]=$ Kaj et al (2007))

Theorem (1)

Let Assumption LRD hold, $M=\lambda^{\gamma}(\gamma>0)$. Then for any $\phi \in \Phi$

$$
\lambda^{-H(\gamma)}\left(X_{\lambda, M}(\phi)-\mathrm{E} X_{\lambda, M}(\phi)\right) \quad \xrightarrow{\mathrm{d}} \quad \begin{cases}B_{\alpha}(\phi), & \gamma>d(\alpha-1), H(\gamma)=\frac{\gamma+(3-\alpha) d}{2}, \\ L_{\alpha}(\phi), & \gamma<d(\alpha-1), H(\gamma)=\frac{\gamma+d}{\alpha}, \\ J_{\alpha}(\phi), & \gamma=d(\alpha-1), H(\gamma)=d .\end{cases}
$$

- Thm essentially due to [KLNS]

2. Random grain (RG) model $([K L N S]=$ Kaj et al (2007))

Theorem (1)

Let Assumption LRD hold, $M=\lambda^{\gamma}(\gamma>0)$. Then for any $\phi \in \Phi$

$$
\lambda^{-H(\gamma)}\left(X_{\lambda, M}(\phi)-\mathrm{E} X_{\lambda, M}(\phi)\right) \quad \xrightarrow{\mathrm{d}} \quad \begin{cases}B_{\alpha}(\phi), & \gamma>d(\alpha-1), H(\gamma)=\frac{\gamma+(3-\alpha) d}{2}, \\ L_{\alpha}(\phi), & \gamma<d(\alpha-1), H(\gamma)=\frac{\gamma+d}{\alpha}, \\ J_{\alpha}(\phi), & \gamma=d(\alpha-1), H(\gamma)=d .\end{cases}
$$

- Thm essentially due to [KLNS]
- $B_{\alpha}(\phi)$: Gaussian $R F$ with $\operatorname{Var}\left(B_{\lambda}(\phi)\right)=c(\phi)$ in (12).

2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

Theorem (1)

Let Assumption LRD hold, $M=\lambda^{\gamma}(\gamma>0)$. Then for any $\phi \in \Phi$

$$
\lambda^{-H(\gamma)}\left(X_{\lambda, M}(\phi)-\mathrm{E} X_{\lambda, M}(\phi)\right) \quad \stackrel{\mathrm{d}}{\longrightarrow} \begin{cases}B_{\alpha}(\phi), & \gamma>d(\alpha-1), H(\gamma)=\frac{\gamma+(3-\alpha) d}{2} \\ L_{\alpha}(\phi), & \gamma<d(\alpha-1), H(\gamma)=\frac{\gamma+d}{\alpha} \\ J_{\alpha}(\phi), & \gamma=d(\alpha-1), H(\gamma)=d\end{cases}
$$

- Thm essentially due to [KLNS]
- $B_{\alpha}(\phi)$: Gaussian RF with $\operatorname{Var}\left(B_{\lambda}(\phi)\right)=c(\phi)$ in (12). It is represented as integral $B_{\alpha}(\phi)=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} W_{\alpha}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r) \int_{\mathbb{R}^{d}} \phi(\boldsymbol{t}) \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathrm{d} \boldsymbol{t}$ w.r.t. Gaussian noise with $\mathrm{E} W_{\alpha}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r)^{2}=c_{f} r^{-1-\alpha} \mathrm{d} r \mathrm{~d} \boldsymbol{u}$

2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

Theorem (1)

Let Assumption LRD hold, $M=\lambda^{\gamma}(\gamma>0)$. Then for any $\phi \in \Phi$

$$
\lambda^{-H(\gamma)}\left(X_{\lambda, M}(\phi)-\mathrm{E} X_{\lambda, M}(\phi)\right) \quad \stackrel{\mathrm{d}}{\longrightarrow} \begin{cases}B_{\alpha}(\phi), & \gamma>d(\alpha-1), H(\gamma)=\frac{\gamma+(3-\alpha) d}{2} \\ L_{\alpha}(\phi), & \gamma<d(\alpha-1), H(\gamma)=\frac{\gamma+d}{\alpha} \\ J_{\alpha}(\phi), & \gamma=d(\alpha-1), H(\gamma)=d\end{cases}
$$

- Thm essentially due to [KLNS]
- $B_{\alpha}(\phi)$: Gaussian RF with $\operatorname{Var}\left(B_{\lambda}(\phi)\right)=c(\phi)$ in (12). It is represented as integral $B_{\alpha}(\phi)=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} W_{\alpha}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r) \int_{\mathbb{R}^{d}} \phi(\boldsymbol{t}) \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathrm{d} \boldsymbol{t}$ w.r.t. Gaussian noise with $\mathrm{E} W_{\alpha}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r)^{2}=c_{f} r^{-1-\alpha} \mathrm{d} r \mathrm{~d} \boldsymbol{u}$
- $L_{\alpha}(\phi): \alpha$-stable RF written as stochastic integral $L_{\alpha}(\phi)=\int_{\mathbb{R}^{d}} \phi(\boldsymbol{t}) L_{\alpha}(\mathrm{d} \boldsymbol{t})$ w.r.t. α-stable random measure L_{α}

2. Random grain (RG) model ([KLNS] = Kaj et al (2007))

Theorem (1)

Let Assumption LRD hold, $M=\lambda^{\gamma}(\gamma>0)$. Then for any $\phi \in \Phi$

$$
\lambda^{-H(\gamma)}\left(X_{\lambda, M}(\phi)-\mathrm{E} X_{\lambda, M}(\phi)\right) \quad \stackrel{\mathrm{d}}{\longrightarrow} \begin{cases}B_{\alpha}(\phi), & \gamma>d(\alpha-1), H(\gamma)=\frac{\gamma+(3-\alpha) d}{2} \\ L_{\alpha}(\phi), & \gamma<d(\alpha-1), H(\gamma)=\frac{\gamma+d}{\alpha} \\ J_{\alpha}(\phi), & \gamma=d(\alpha-1), H(\gamma)=d\end{cases}
$$

- Thm essentially due to [KLNS]
- $B_{\alpha}(\phi)$: Gaussian RF with $\operatorname{Var}\left(B_{\lambda}(\phi)\right)=c(\phi)$ in (12). It is represented as integral $B_{\alpha}(\phi)=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} W_{\alpha}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r) \int_{\mathbb{R}^{d}} \phi(\boldsymbol{t}) \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathrm{d} \boldsymbol{t}$ w.r.t. Gaussian noise with $\mathrm{E} W_{\alpha}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r)^{2}=c_{f} r^{-1-\alpha} \mathrm{d} r \mathrm{~d} \boldsymbol{u}$
- $L_{\alpha}(\phi)$: α-stable RF written as stochastic integral $L_{\alpha}(\phi)=\int_{\mathbb{R}^{d}} \phi(\boldsymbol{t}) L_{\alpha}(\mathrm{d} \boldsymbol{t})$ w.r.t. α-stable random measure L_{α}
- $J_{\alpha}(\phi)$: 'intermediate Poisson' RF written as stochastic integral $J_{\alpha}(\phi)=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \tilde{N}_{\alpha}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r) \int_{\mathbb{R}^{d}} \phi(\boldsymbol{t}) \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \bar{\Xi}^{0}\right) \mathrm{d} \boldsymbol{t}$ w.r.t. centered Poisson random measure with variance $\mathrm{E} \tilde{N}_{\alpha}(\mathrm{d} \boldsymbol{u}, \mathrm{d} r)^{2}=c_{f} r^{-1-\alpha} \mathrm{d} r \mathrm{~d} \boldsymbol{u}$ (the same as W_{α})

2. Random grain (RG) model

2. Random grain (RG) model

- Stochastic representations of $B_{\alpha}(\phi), L_{\alpha}(\phi), J_{\alpha}(\phi)$ mimic the structure of the original RG model except for a change of random measure

2. Random grain (RG) model

- Stochastic representations of $B_{\alpha}(\phi), L_{\alpha}(\phi), J_{\alpha}(\phi)$ mimic the structure of the original RG model except for a change of random measure
- Thm obtains trichotomy of scaling limits of $X_{M}(\phi)$ at $\gamma_{0}=d(\alpha-1)$ (scaling transition)

2. Random grain (RG) model

- Stochastic representations of $B_{\alpha}(\phi), L_{\alpha}(\phi), J_{\alpha}(\phi)$ mimic the structure of the original RG model except for a change of random measure
- Thm obtains trichotomy of scaling limits of $X_{M}(\phi)$ at $\gamma_{0}=d(\alpha-1)$ (scaling transition)
- For $d=1, \Xi^{0}=[0,1]$ (infinite source Poisson model) Thm agrees with:

Mikosch, T., Resnick, S., Rootzén, H. \& Stegeman, A. (2002) Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12
Kaj, I. \& Taqqu, M.S. (2008) Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In: M.E. Vares and V. Sidoravicius (Eds.) In and Out of Equilibrium 2. Progress in Probability, vol. 60
Leipus, R., Pilipauskaitè, V. \& S.D. (2023) Aggregation of network traffic and anisotropic scaling of random fields.
Th. Probab. Math. Statist.

2. Random grain (RG) model

- Stochastic representations of $B_{\alpha}(\phi), L_{\alpha}(\phi), J_{\alpha}(\phi)$ mimic the structure of the original RG model except for a change of random measure
- Thm obtains trichotomy of scaling limits of $X_{M}(\phi)$ at $\gamma_{0}=d(\alpha-1)$ (scaling transition)
- For $d=1, \bar{\Xi}^{0}=[0,1]$ (infinite source Poisson model) Thm agrees with:

Mikosch, T., Resnick, S., Rootzén, H. \& Stegeman, A. (2002) Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12
Kaj, I. \& Taqqu, M.S. (2008) Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In: M.E. Vares and V. Sidoravicius (Eds.) In and Out of Equilibrium 2. Progress in Probability, vol. 60
Leipus, R., Pilipauskaitė, V. \& S.D. (2023) Aggregation of network traffic and anisotropic scaling of random fields. Th. Probab. Math. Statist.

- Rather short proof using characteristic function

2. Random grain (RG) model

- Stochastic representations of $B_{\alpha}(\phi), L_{\alpha}(\phi), J_{\alpha}(\phi)$ mimic the structure of the original RG model except for a change of random measure
- Thm obtains trichotomy of scaling limits of $X_{M}(\phi)$ at $\gamma_{0}=d(\alpha-1)$ (scaling transition)
- For $d=1, \bar{\Xi}^{0}=[0,1]$ (infinite source Poisson model) Thm agrees with:

Mikosch, T., Resnick, S., Rootzén, H. \& Stegeman, A. (2002) Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12
Kaj, I. \& Taqqu, M.S. (2008) Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In: M.E. Vares and V. Sidoravicius (Eds.) In and Out of Equilibrium 2. Progress in Probability, vol. 60
Leipus, R., Pilipauskaitè, V. \& S.D. (2023) Aggregation of network traffic and anisotropic scaling of random fields. Th. Probab. Math. Statist.

- Rather short proof using characteristic function
- Intuitive explanation of different limits for $\gamma>\gamma_{0}$ and $\gamma<\gamma_{0}$:

2. Random grain (RG) model

- Stochastic representations of $B_{\alpha}(\phi), L_{\alpha}(\phi), J_{\alpha}(\phi)$ mimic the structure of the original RG model except for a change of random measure
- Thm obtains trichotomy of scaling limits of $X_{M}(\phi)$ at $\gamma_{0}=d(\alpha-1)$ (scaling transition)
- For $d=1, \Xi^{0}=[0,1]$ (infinite source Poisson model) Thm agrees with:

Mikosch, T., Resnick, S., Rootzén, H. \& Stegeman, A. (2002) Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12
Kaj, I. \& Taqqu, M.S. (2008) Convergence to fractional Brownian motion and to the Telecom process: the integral
representation approach. In: M.E. Vares and V. Sidoravicius (Eds.) In and Out of Equilibrium 2. Progress in Probability, vol. 60
Leipus, R., Pilipauskaitè, V. \& S.D. (2023) Aggregation of network traffic and anisotropic scaling of random fields.
Th. Probab. Math. Statist.

- Rather short proof using characteristic function
- Intuitive explanation of different limits for $\gamma>\gamma_{0}$ and $\gamma<\gamma_{0}$: For $\phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in] \mathbf{0}, \mathbf{1}]), M=\lambda^{\gamma}$

$$
\left.\left.X_{M}(\phi) \approx \sum_{j} \operatorname{Leb}_{d}\left(\left(\boldsymbol{u}_{j, M}+R_{j} \bar{\Xi}^{0}\right) \cap\right] 0, \lambda\right]^{d}\right)
$$

where $\left\{\boldsymbol{u}_{j, M}\right\}$ is Poisson process with intensity $M \mathrm{~d} \boldsymbol{u}=\lambda^{\gamma} \mathrm{d} \boldsymbol{u}$

2. Random grain (RG) model

2. Random grain (RG) model

- Intuition (ctnd): If random grain $\left.\left.\boldsymbol{u}_{j, M}+R_{j} \equiv^{0} \subset\right] 0, \lambda\right]^{d}$ then the corresponding $\left.\left.\operatorname{Leb}_{d}\left(\left(\boldsymbol{u}_{j, M}+R_{j}^{1 / d} \Xi^{0}\right) \cap\right] 0, \lambda\right]^{d}\right)=\operatorname{Leb}_{d}\left(R_{j}^{1 / d} \Xi^{0}\right) \propto R_{j}$ which are independent and α-tailed r.v.

2. Random grain (RG) model

- Intuition (ctnd): If random grain $\left.\left.\boldsymbol{u}_{j, M}+R_{j} \equiv^{0} \subset\right] 0, \lambda\right]^{d}$ then the corresponding $\left.\left.\operatorname{Leb}_{d}\left(\left(\boldsymbol{u}_{j, M}+R_{j}^{1 / d} \Xi^{0}\right) \cap\right] 0, \lambda\right]^{d}\right)=\operatorname{Leb}_{d}\left(R_{j}^{1 / d} \Xi^{0}\right) \propto R_{j}$ which are independent and α-tailed r.v.
The number of Poisson points $\left.\left.\boldsymbol{u}_{j, M} \subset\right] 0, \lambda\right]^{d}$ grows as $M \lambda^{d}=\lambda^{\gamma+d}$

2. Random grain (RG) model

- Intuition (ctnd): If random grain $\left.\left.\boldsymbol{u}_{j, M}+R_{j} \equiv^{0} \subset\right] 0, \lambda\right]^{d}$ then the corresponding $\left.\left.\operatorname{Leb}_{d}\left(\left(\boldsymbol{u}_{j, M}+R_{j}^{1 / d} \Xi^{0}\right) \cap\right] 0, \lambda\right]^{d}\right)=\operatorname{Leb}_{d}\left(R_{j}^{1 / d} \Xi^{0}\right) \propto R_{j}$ which are independent and α-tailed r.v.
The number of Poisson points $\left.\left.\boldsymbol{u}_{j, M} \subset\right] 0, \lambda\right]^{d}$ grows as $M \lambda^{d}=\lambda^{\gamma+d}$
Therefore, $X_{M}(\phi) \approx \sum_{j=1}^{\lambda^{d+\gamma}} R_{j} \wedge \lambda^{d}$ behaves as a sum of α-tailed i.i.d. r.v.s 'truncated' at level λ^{d}

2. Random grain (RG) model

- Intuition (ctnd): If random grain $\left.\left.\boldsymbol{u}_{j, M}+R_{j} \equiv^{0} \subset\right] 0, \lambda\right]^{d}$ then the corresponding $\left.\left.\operatorname{Leb}_{d}\left(\left(\boldsymbol{u}_{j, M}+R_{j}^{1 / d} \Xi^{0}\right) \cap\right] 0, \lambda\right]^{d}\right)=\operatorname{Leb}_{d}\left(R_{j}^{1 / d} \Xi^{0}\right) \propto R_{j}$ which are independent and α-tailed r.v.
The number of Poisson points $\left.\left.\boldsymbol{u}_{j, M} \subset\right] 0, \lambda\right]^{d}$ grows as $M \lambda^{d}=\lambda^{\gamma+d}$
Therefore, $X_{M}(\phi) \approx \sum_{j=1}^{\lambda^{d+\gamma}} R_{j} \wedge \lambda^{d}$ behaves as a sum of α-tailed i.i.d. r.v.s 'truncated' at level λ^{d}

Chakrabarty, A. and Samorodnitsky, G. (2012) Tails in a bounded world or, is a truncated heavy tail heavy or not? Stoch. Models 28
discussed limit distribution of sums of $n \alpha$-tailed r.v.s truncated at level $c_{n} \rightarrow \infty$

2. Random grain (RG) model

- Intuition (ctnd): If random grain $\left.\left.\boldsymbol{u}_{j, M}+R_{j} \equiv^{0} \subset\right] 0, \lambda\right]^{d}$ then the corresponding $\left.\left.\operatorname{Leb}_{d}\left(\left(\boldsymbol{u}_{j, M}+R_{j}^{1 / d} \Xi^{0}\right) \cap\right] 0, \lambda\right]^{d}\right)=\operatorname{Leb}_{d}\left(R_{j}^{1 / d} \Xi^{0}\right) \propto R_{j}$ which are independent and α-tailed r.v.
The number of Poisson points $\left.\left.\boldsymbol{u}_{j, M} \subset\right] 0, \lambda\right]^{d}$ grows as $M \lambda^{d}=\lambda^{\gamma+d}$
Therefore, $X_{M}(\phi) \approx \sum_{j=1}^{\lambda^{d+\gamma}} R_{j} \wedge \lambda^{d}$ behaves as a sum of α-tailed i.i.d. r.v.s 'truncated' at level λ^{d}

Chakrabarty, A. and Samorodnitsky, G. (2012) Tails in a bounded world or, is a truncated heavy tail heavy or not? Stoch. Models 28 discussed limit distribution of sums of $n \alpha$-tailed r.v.s truncated at level $c_{n} \rightarrow \infty$

- They show that the limit distribution of such sums is Gaussian for when $c_{n} / n^{1 / \alpha} \rightarrow 0$ and α-stable when $c_{n} / n^{1 / \alpha} \rightarrow \infty$

2. Random grain (RG) model

- Intuition (ctnd): If random grain $\left.\left.\boldsymbol{u}_{j, M}+R_{j} \equiv^{0} \subset\right] 0, \lambda\right]^{d}$ then the corresponding $\left.\left.\operatorname{Leb}_{d}\left(\left(\boldsymbol{u}_{j, M}+R_{j}^{1 / d} \Xi^{0}\right) \cap\right] 0, \lambda\right]^{d}\right)=\operatorname{Leb}_{d}\left(R_{j}^{1 / d} \Xi^{0}\right) \propto R_{j}$ which are independent and α-tailed r.v.
The number of Poisson points $\left.\left.\boldsymbol{u}_{j, M} \subset\right] 0, \lambda\right]^{d}$ grows as $M \lambda^{d}=\lambda^{\gamma+d}$
Therefore, $X_{M}(\phi) \approx \sum_{j=1}^{\lambda^{d+\gamma}} R_{j} \wedge \lambda^{d}$ behaves as a sum of α-tailed i.i.d. r.v.s 'truncated' at level λ^{d}

Chakrabarty, A. and Samorodnitsky, G. (2012) Tails in a bounded world or, is a truncated heavy tail heavy or not? Stoch. Models 28 discussed limit distribution of sums of $n \alpha$-tailed r.v.s truncated at level $c_{n} \rightarrow \infty$

- They show that the limit distribution of such sums is Gaussian for when $c_{n} / n^{1 / \alpha} \rightarrow 0$ and α-stable when $c_{n} / n^{1 / \alpha} \rightarrow \infty$ The boundary truncation level $c_{n}=n^{1 / \alpha}$ results in 'intermediate' infinitely divisible limit

2. Random grain (RG) model

- Intuition (ctnd): If random grain $\left.\left.\boldsymbol{u}_{j, M}+R_{j} \equiv^{0} \subset\right] 0, \lambda\right]^{d}$ then the corresponding $\left.\left.\operatorname{Leb}_{d}\left(\left(\boldsymbol{u}_{j, M}+R_{j}^{1 / d} \Xi^{0}\right) \cap\right] 0, \lambda\right]^{d}\right)=\operatorname{Leb}_{d}\left(R_{j}^{1 / d} \Xi^{0}\right) \propto R_{j}$ which are independent and α-tailed r.v.
The number of Poisson points $\left.\left.\boldsymbol{u}_{j, M} \subset\right] 0, \lambda\right]^{d}$ grows as $M \lambda^{d}=\lambda^{\gamma+d}$
Therefore, $X_{M}(\phi) \approx \sum_{j=1}^{\lambda^{d+\gamma}} R_{j} \wedge \lambda^{d}$ behaves as a sum of α-tailed i.i.d. r.v.s 'truncated' at level λ^{d}

Chakrabarty, A. and Samorodnitsky, G. (2012) Tails in a bounded world or, is a truncated heavy tail heavy or not? Stoch. Models 28
discussed limit distribution of sums of $n \alpha$-tailed r.v.s truncated at level $c_{n} \rightarrow \infty$

- They show that the limit distribution of such sums is Gaussian for when $c_{n} / n^{1 / \alpha} \rightarrow 0$ and α-stable when $c_{n} / n^{1 / \alpha} \rightarrow \infty$ The boundary truncation level $c_{n}=n^{1 / \alpha}$ results in 'intermediate' infinitely divisible limit
- In our case $n=\lambda^{d+\gamma}, c_{n}=\lambda^{d}, c_{n} / n^{1 / \alpha}=\lambda^{d-\frac{d+\gamma}{\alpha}}$ and $d-\frac{d+\gamma}{\alpha}=0$ is equivalent to $\gamma=\gamma_{0}=d(\alpha-1)$ exactly as in the above theorem.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.1. (Classics:) Gaussian distribution, Hermite polynomials and Mehler's formula.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.1. (Classics:) Gaussian distribution, Hermite polynomials and Mehler's formula.

- Hermite polynomials $H_{k}(x), x \in \mathbb{R}, k \in \mathbb{N}$ related $Z \sim N(0,1)$ are defined by power series

$$
\mathrm{e}^{\mathrm{i} u x+u^{2} / 2}=\sum_{k=0}^{\infty} \frac{(\mathrm{i} u)^{k}}{k!} H_{k}(x), \quad x, u \in \mathbb{R} .
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.1. (Classics:) Gaussian distribution, Hermite polynomials and Mehler's formula.

- Hermite polynomials $H_{k}(x), x \in \mathbb{R}, k \in \mathbb{N}$ related $Z \sim N(0,1)$ are defined by power series

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} u x+u^{2} / 2}=\sum_{k=0}^{\infty} \frac{(\mathrm{i} u)^{k}}{k!} H_{k}(x), \quad x, u \in \mathbb{R} \tag{13}
\end{equation*}
$$

The r.v.s $H_{k}(Z), k \geq N$ are orthogonal:

$$
\mathrm{E} H_{k}(Z)=0, \quad \mathrm{E} H_{k}(Z)^{2}=k!, \quad \mathrm{E} H_{k}(Z) H_{\ell}(Z)=0, \quad k \neq \ell=0,1, \cdots
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.1. (Classics:) Gaussian distribution, Hermite polynomials and Mehler's formula.

- Hermite polynomials $H_{k}(x), x \in \mathbb{R}, k \in \mathbb{N}$ related $Z \sim N(0,1)$ are defined by power series

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} u x+u^{2} / 2}=\sum_{k=0}^{\infty} \frac{(\mathrm{i} u)^{k}}{k!} H_{k}(x), \quad x, u \in \mathbb{R} \tag{13}
\end{equation*}
$$

The r.v.s $H_{k}(Z), k \geq N$ are orthogonal:

$$
\mathrm{E} H_{k}(Z)=0, \quad \mathrm{E} H_{k}(Z)^{2}=k!, \quad \mathrm{E} H_{k}(Z) H_{\ell}(Z)=0, \quad k \neq \ell=0,1, \cdots
$$

Any $G \in L^{2}$ can be expanded in Hermite polynomials:

$$
G(x)=\sum_{k=0}^{\infty} \frac{h_{G}(k)}{k!} H_{k}(x), \quad h_{G}(k):=\mathrm{E} G(Z) H_{k}(Z), \quad j=0,1, \cdots
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.1. (Classics:) Gaussian distribution, Hermite polynomials and Mehler's formula.

- Hermite polynomials $H_{k}(x), x \in \mathbb{R}, k \in \mathbb{N}$ related $Z \sim N(0,1)$ are defined by power series

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} u x+u^{2} / 2}=\sum_{k=0}^{\infty} \frac{(\mathrm{i} u)^{k}}{k!} H_{k}(x), \quad x, u \in \mathbb{R} \tag{13}
\end{equation*}
$$

The r.v.s $H_{k}(Z), k \geq N$ are orthogonal:

$$
\mathrm{E} H_{k}(Z)=0, \quad \mathrm{E} H_{k}(Z)^{2}=k!, \quad \mathrm{E} H_{k}(Z) H_{\ell}(Z)=0, \quad k \neq \ell=0,1, \cdots
$$

Any $G \in L^{2}$ can be expanded in Hermite polynomials:

$$
G(x)=\sum_{k=0}^{\infty} \frac{h_{G}(k)}{k!} H_{k}(x), \quad h_{G}(k):=\mathrm{E} G(Z) H_{k}(Z), \quad j=0,1, \cdots
$$

$h_{G}(k)$ are called Hermite coefficients of G.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.1. (Classics:) Gaussian distribution, Hermite polynomials and Mehler's formula.

- Hermite polynomials $H_{k}(x), x \in \mathbb{R}, k \in \mathbb{N}$ related $Z \sim N(0,1)$ are defined by power series

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} u x+u^{2} / 2}=\sum_{k=0}^{\infty} \frac{(\mathrm{i} u)^{k}}{k!} H_{k}(x), \quad x, u \in \mathbb{R} \tag{13}
\end{equation*}
$$

The r.v.s $H_{k}(Z), k \geq N$ are orthogonal:

$$
\mathrm{E} H_{k}(Z)=0, \quad \mathrm{E} H_{k}(Z)^{2}=k!, \quad \mathrm{E} H_{k}(Z) H_{\ell}(Z)=0, \quad k \neq \ell=0,1, \cdots
$$

Any $G \in L^{2}$ can be expanded in Hermite polynomials:

$$
G(x)=\sum_{k=0}^{\infty} \frac{h_{G}(k)}{k!} H_{k}(x), \quad h_{G}(k):=\mathrm{E} G(Z) H_{k}(Z), \quad j=0,1, \cdots
$$

$h_{G}(k)$ are called Hermite coefficients of G. Note $h_{G}(0)=\mathrm{E} G(Z)$ and $\operatorname{EG}(Z)^{2}=\sum_{k=0}^{\infty} \frac{h_{G}^{2}(k)}{k!}$.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.1. (Classics:) Gaussian distribution, Hermite polynomials and Mehler's formula.

- Hermite polynomials $H_{k}(x), x \in \mathbb{R}, k \in \mathbb{N}$ related $Z \sim N(0,1)$ are defined by power series

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} u x+u^{2} / 2}=\sum_{k=0}^{\infty} \frac{(\mathrm{i} u)^{k}}{k!} H_{k}(x), \quad x, u \in \mathbb{R} \tag{13}
\end{equation*}
$$

The r.v.s $H_{k}(Z), k \geq N$ are orthogonal:

$$
\mathrm{E} H_{k}(Z)=0, \quad \mathrm{E} H_{k}(Z)^{2}=k!, \quad \mathrm{E} H_{k}(Z) H_{\ell}(Z)=0, \quad k \neq \ell=0,1, \cdots
$$

Any $G \in L^{2}$ can be expanded in Hermite polynomials:

$$
G(x)=\sum_{k=0}^{\infty} \frac{h_{G}(k)}{k!} H_{k}(x), \quad h_{G}(k):=\mathrm{E} G(Z) H_{k}(Z), \quad j=0,1, \cdots
$$

$h_{G}(k)$ are called Hermite coefficients of G. Note $h_{G}(0)=E G(Z)$ and $\operatorname{E} G(Z)^{2}=\sum_{k=0}^{\infty} \frac{h_{G}^{2}(k)}{k!}$.

- Let $\left(Z_{1}, Z_{2}\right)$ have bivariate normal distribution with mean zero, unit variances and correlation coefficient $\rho \in(-1,1)$, with the joint density

$$
\phi(x, y)=\left(2 \pi \sqrt{1-\rho^{2}}\right)^{-1} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(x^{2}+y^{2}-2 \rho x y\right)\right\} \quad x, y \in \mathbb{R}
$$

and marginal density $\phi(x)=(2 \pi)^{-1 / 2} \mathrm{e}^{-x^{2} / 2}$. Then:

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.1. (Classics:) Gaussian distribution, Hermite polynomials and Mehler's formula.

- Hermite polynomials $H_{k}(x), x \in \mathbb{R}, k \in \mathbb{N}$ related $Z \sim N(0,1)$ are defined by power series

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} u x+u^{2} / 2}=\sum_{k=0}^{\infty} \frac{(\mathrm{i} u)^{k}}{k!} H_{k}(x), \quad x, u \in \mathbb{R} \tag{13}
\end{equation*}
$$

The r.v.s $H_{k}(Z), k \geq N$ are orthogonal:

$$
\mathrm{E} H_{k}(Z)=0, \quad \mathrm{E} H_{k}(Z)^{2}=k!, \quad \mathrm{E} H_{k}(Z) H_{\ell}(Z)=0, \quad k \neq \ell=0,1, \cdots
$$

Any $G \in L^{2}$ can be expanded in Hermite polynomials:

$$
G(x)=\sum_{k=0}^{\infty} \frac{h_{G}(k)}{k!} H_{k}(x), \quad h_{G}(k):=\mathrm{E} G(Z) H_{k}(Z), \quad j=0,1, \cdots
$$

$h_{G}(k)$ are called Hermite coefficients of G. Note $h_{G}(0)=E G(Z)$ and $\operatorname{E} G(Z)^{2}=\sum_{k=0}^{\infty} \frac{h_{G}^{2}(k)}{k!}$.

- Let $\left(Z_{1}, Z_{2}\right)$ have bivariate normal distribution with mean zero, unit variances and correlation coefficient $\rho \in(-1,1)$, with the joint density

$$
\phi(x, y)=\left(2 \pi \sqrt{1-\rho^{2}}\right)^{-1} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(x^{2}+y^{2}-2 \rho x y\right)\right\} \quad x, y \in \mathbb{R}
$$

and marginal density $\phi(x)=(2 \pi)^{-1 / 2} \mathrm{e}^{-x^{2} / 2}$. Then:

3.1. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

3.1. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

(i) (Orthogonality property): For any $k, \ell \in \mathbb{N}$

$$
E H_{k}\left(Z_{1}\right) H_{\ell}\left(Z_{2}\right)= \begin{cases}0, & k \neq \ell \\ \rho^{k} k!, & k=\ell\end{cases}
$$

3.1. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

(i) (Orthogonality property): For any $k, \ell \in \mathbb{N}$

$$
\mathrm{E} H_{k}\left(Z_{1}\right) H_{\ell}\left(Z_{2}\right)= \begin{cases}0, & k \neq \ell, \\ \rho^{k} k!, & k=\ell,\end{cases}
$$

(ii) Let $G_{i}=G_{i}(x), x \in \mathbb{R}, i=1,2$ be given functions, $E G_{i}^{2}\left(Z_{i}\right)<\infty, i=1,2$. Then

$$
\begin{equation*}
E G_{1}\left(Z_{1}\right) G_{2}\left(Z_{2}\right)=\sum_{k=0}^{\infty} \frac{\frac{h_{G_{1}}(k) h G_{2}(k)}{k!} \rho^{k} .}{} . \tag{14}
\end{equation*}
$$

(iii) (Mehler's formula):

$$
\phi(x, y)=\sum_{k=0}^{\infty} \frac{\rho^{k}!}{k!} \phi^{(k)}(x) \phi^{(k)}(y)=\phi(x) \phi(y) \sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} H_{k}(x) H_{k}(y) .
$$

3.1. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

(i) (Orthogonality property): For any $k, \ell \in \mathbb{N}$

$$
E H_{k}\left(Z_{1}\right) H_{\ell}\left(Z_{2}\right)= \begin{cases}0, & k \neq \ell, \\ \rho^{k} k!, & k=\ell,\end{cases}
$$

(ii) Let $G_{i}=G_{i}(x), x \in \mathbb{R}, i=1,2$ be given functions, $E G_{i}^{2}\left(Z_{i}\right)<\infty, i=1,2$. Then

$$
\begin{equation*}
E G_{1}\left(Z_{1}\right) G_{2}\left(Z_{2}\right)=\sum_{k=0}^{\infty} \frac{\frac{h_{G_{1}}(k) h G_{2}(k)}{k!} \rho^{k} .}{} . \tag{14}
\end{equation*}
$$

(iii) (Mehler's formula):

$$
\phi(x, y)=\sum_{k=0}^{\infty} \frac{\rho^{k}!}{k!} \phi^{(k)}(x) \phi^{(k)}(y)=\phi(x) \phi(y) \sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} H_{k}(x) H_{k}(y) .
$$

Proof of (i): Multiply generating functions $\mathrm{e}^{\mathrm{i} u Z_{1}+u^{2} / 2}$ and $\mathrm{e}^{\mathrm{i} \nu Z_{2}+v^{2} / 2}$ and take expectation to obtain

$$
\begin{aligned}
\sum_{k, \ell=0}^{\infty} \frac{(\mathrm{i} u)^{k}(\mathrm{i} v)^{\ell}}{k!\ell!} \mathrm{E} H_{k}\left(Z_{1}\right) H_{\ell}\left(Z_{2}\right) & =\mathrm{Ee}^{\mathrm{i}\left(u Z_{1}+v Z_{2}\right)} \mathrm{e}^{\left(u^{2}+v^{2}\right) / 2} \\
& =\mathrm{e}^{-\rho u v}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \rho^{k} u^{k} v^{k}
\end{aligned}
$$

(i) follows from this equality by comparing coefficients of powers $u^{k} v^{\ell}$ on both sides.

3.1. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

(i) (Orthogonality property): For any $k, \ell \in \mathbb{N}$

$$
E H_{k}\left(Z_{1}\right) H_{\ell}\left(Z_{2}\right)= \begin{cases}0, & k \neq \ell, \\ \rho^{k} k!, & k=\ell,\end{cases}
$$

(ii) Let $G_{i}=G_{i}(x), x \in \mathbb{R}, i=1,2$ be given functions, $E G_{i}^{2}\left(Z_{i}\right)<\infty, i=1,2$. Then

$$
\begin{equation*}
E G_{1}\left(Z_{1}\right) G_{2}\left(Z_{2}\right)=\sum_{k=0}^{\infty} \frac{\frac{h_{G_{1}}(k) h G_{2}(k)}{k!} \rho^{k} .}{} . \tag{14}
\end{equation*}
$$

(iii) (Mehler's formula):

$$
\phi(x, y)=\sum_{k=0}^{\infty} \frac{\rho^{k}!}{k!} \phi^{(k)}(x) \phi^{(k)}(y)=\phi(x) \phi(y) \sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} H_{k}(x) H_{k}(y) .
$$

Proof of (i): Multiply generating functions $\mathrm{e}^{\mathrm{i} u Z_{1}+u^{2} / 2}$ and $\mathrm{e}^{\mathrm{i} \nu Z_{2}+v^{2} / 2}$ and take expectation to obtain

$$
\begin{aligned}
\sum_{k, \ell=0}^{\infty} \frac{(\mathrm{i} u)^{k}(\mathrm{i} v)^{\ell}}{k!\ell!} \mathrm{E} H_{k}\left(Z_{1}\right) H_{\ell}\left(Z_{2}\right) & =\mathrm{Ee}^{\mathrm{i}\left(u Z_{1}+v Z_{2}\right)} \mathrm{e}^{\left(u^{2}+v^{2}\right) / 2} \\
& =\mathrm{e}^{-\rho u v}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \rho^{k} u^{k} v^{k}
\end{aligned}
$$

(i) follows from this equality by comparing coefficients of powers $u^{k} v^{\ell}$ on both sides.

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2} .
$$

Show this equality remains valid with $\phi(x, y)$ replaced by the r.h.s. of Mehler's formula, denoted by $\tilde{\phi}(x, y)$.

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2} .
$$

Show this equality remains valid with $\phi(x, y)$ replaced by the r.h.s. of Mehler's formula, denoted by $\tilde{\phi}(x, y)$. We have

$$
I:=\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \tilde{\phi}(x, y) \mathrm{d} x \mathrm{~d} y
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

Show this equality remains valid with $\phi(x, y)$ replaced by the r.h.s. of Mehler's formula, denoted by $\tilde{\phi}(x, y)$. We have

$$
I:=\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \tilde{\phi}(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} y v} \phi^{(k)}(y) \mathrm{d} y
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

Show this equality remains valid with $\phi(x, y)$ replaced by the r.h.s. of Mehler's formula, denoted by $\tilde{\phi}(x, y)$. We have

$$
I:=\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \tilde{\phi}(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} y v} \phi^{(k)}(y) \mathrm{d} y .
$$

Integrating by parts, $\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x=(\mathrm{i} u)^{k} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi(x) \mathrm{d} x=(\mathrm{i} u)^{k} \mathrm{e}^{-u^{2} / 2}$, hence

$$
I=\mathrm{e}^{-\left(u^{2}+v^{2}\right) / 2} \sum_{k=0}^{\infty} \frac{\rho^{k}}{k!}(\mathrm{i} u)^{k}(\mathrm{i} v)^{k}=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

completing the proof of (iii).

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

Show this equality remains valid with $\phi(x, y)$ replaced by the r.h.s. of Mehler's formula, denoted by $\tilde{\phi}(x, y)$. We have

$$
I:=\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \tilde{\phi}(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} y v} \phi^{(k)}(y) \mathrm{d} y .
$$

Integrating by parts, $\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x=(\mathrm{i} u)^{k} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi(x) \mathrm{d} x=(\mathrm{i} u)^{k} \mathrm{e}^{-u^{2} / 2}$, hence

$$
I=\mathrm{e}^{-\left(u^{2}+v^{2}\right) / 2} \sum_{k=0}^{\infty} \frac{\rho^{k}}{k!}(\mathrm{i} u)^{k}(\mathrm{i} v)^{k}=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

completing the proof of (iii).

- Mehler's formula: classical tool in mathematics \& physics (O-U evolution, harmonic oscillators ...)

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

Show this equality remains valid with $\phi(x, y)$ replaced by the r.h.s. of Mehler's formula, denoted by $\tilde{\phi}(x, y)$. We have

$$
I:=\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \tilde{\phi}(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} y v} \phi^{(k)}(y) \mathrm{d} y .
$$

Integrating by parts, $\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x=(\mathrm{i} u)^{k} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi(x) \mathrm{d} x=(\mathrm{i} u)^{k} \mathrm{e}^{-u^{2} / 2}$, hence

$$
I=\mathrm{e}^{-\left(u^{2}+v^{2}\right) / 2} \sum_{k=0}^{\infty} \frac{\rho^{k}}{k!}(\mathrm{i} u)^{k}(\mathrm{i} v)^{k}=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

completing the proof of (iii).

- Mehler's formula: classical tool in mathematics \& physics (O-U evolution, harmonic oscillators ...) Google search: $>300,000$

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

Show this equality remains valid with $\phi(x, y)$ replaced by the r.h.s. of Mehler's formula, denoted by $\tilde{\phi}(x, y)$. We have

$$
I:=\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \tilde{\phi}(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} y v} \phi^{(k)}(y) \mathrm{d} y .
$$

Integrating by parts, $\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x=(\mathrm{i} u)^{k} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi(x) \mathrm{d} x=(\mathrm{i} u)^{k} \mathrm{e}^{-u^{2} / 2}$, hence

$$
I=\mathrm{e}^{-\left(u^{2}+v^{2}\right) / 2} \sum_{k=0}^{\infty} \frac{\rho^{k}}{k!}(\mathrm{i} u)^{k}(\mathrm{i} v)^{k}=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

completing the proof of (iii).

- Mehler's formula: classical tool in mathematics \& physics (O-U evolution, harmonic oscillators ...) Google search: $>300,000$

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

Show this equality remains valid with $\phi(x, y)$ replaced by the r.h.s. of Mehler's formula, denoted by $\tilde{\phi}(x, y)$. We have

$$
I:=\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \tilde{\phi}(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} y v} \phi^{(k)}(y) \mathrm{d} y .
$$

Integrating by parts, $\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x=(\mathrm{i} u)^{k} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi(x) \mathrm{d} x=(\mathrm{i} u)^{k} \mathrm{e}^{-u^{2} / 2}$, hence

$$
I=\mathrm{e}^{-\left(u^{2}+v^{2}\right) / 2} \sum_{k=0}^{\infty} \frac{\rho^{k}}{k!}(\mathrm{i} u)^{k}(\mathrm{i} v)^{k}=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

completing the proof of (iii).

- Mehler's formula: classical tool in mathematics \& physics (O-U evolution, harmonic oscillators ...) Google search: $>300,000$
- Hermite rank $k_{H}(G)$ of an G : the index of the first non-zero coefficient $h_{G}(k)$ in the Hermite expansion (14): $G(x)-\operatorname{E} G(Z)=\sum_{k=k_{H}(G)}^{\infty} h_{G}(k) H_{k}(x) / k$!

3. Poisson distribution, Charlier polynomials \& Mehler's formula (Gaussian case)

Proof of (ii): immediate from (i) and $G_{i}\left(Z_{i}\right)=\sum_{j=0}^{\infty} \frac{h_{G_{i}}(j)}{j!} H_{j}\left(Z_{i}\right)$.
Proof of (iii): bivariate ch.f. of $\left(Z_{1}, Z_{2}\right)$:

$$
\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \phi(x, y) \mathrm{d} x \mathrm{~d} y=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

Show this equality remains valid with $\phi(x, y)$ replaced by the r.h.s. of Mehler's formula, denoted by $\tilde{\phi}(x, y)$. We have

$$
I:=\int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i}(x u+y v)} \tilde{\phi}(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} y v} \phi^{(k)}(y) \mathrm{d} y .
$$

Integrating by parts, $\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi^{(k)}(x) \mathrm{d} x=(\mathrm{i} u)^{k} \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} x u} \phi(x) \mathrm{d} x=(\mathrm{i} u)^{k} \mathrm{e}^{-u^{2} / 2}$, hence

$$
I=\mathrm{e}^{-\left(u^{2}+v^{2}\right) / 2} \sum_{k=0}^{\infty} \frac{\rho^{k}}{k!}(\mathrm{i} u)^{k}(\mathrm{i} v)^{k}=\mathrm{e}^{-\left(u^{2}-2 \rho u v+v^{2}\right) / 2}
$$

completing the proof of (iii).

- Mehler's formula: classical tool in mathematics \& physics (O-U evolution, harmonic oscillators ...) Google search: $>300,000$
- Hermite rank $k_{H}(G)$ of an G : the index of the first non-zero coefficient $h_{G}(k)$ in the Hermite expansion (14): $G(x)-\operatorname{E} G(Z)=\sum_{k=k_{H}(G)}^{\infty} h_{G}(k) H_{k}(x) / k$!

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- (ii) and Cauchy-Schwarz imply

$$
\operatorname{Cov}\left(G_{1}\left(Z_{1}\right), G_{2}\left(Z_{2}\right)\right) \leq|\rho|^{k_{H}^{*}} \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2} \leq|\rho| \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2}
$$

where $k_{H}^{*}:=k_{H}\left(G_{1}\right) \vee k_{H}\left(G_{2}\right) \geq 1, \rho=\mathrm{E} Z_{1} Z_{2}=$ correlation coefficient

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- (ii) and Cauchy-Schwarz imply

$$
\operatorname{Cov}\left(G_{1}\left(Z_{1}\right), G_{2}\left(Z_{2}\right)\right) \leq|\rho|^{k_{H}^{*}} \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2} \leq|\rho| \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2}
$$

where $k_{H}^{*}:=k_{H}\left(G_{1}\right) \vee k_{H}\left(G_{2}\right) \geq 1, \rho=\mathrm{E} Z_{1} Z_{2}=$ correlation coefficient
Arcones, M.A. (1994) Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors, Ann. Probab. 22, 2242-2274.

Gebelein, H. (1941) Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung. Z. Angew. Math. Mech. 21.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- (ii) and Cauchy-Schwarz imply

$$
\operatorname{Cov}\left(G_{1}\left(Z_{1}\right), G_{2}\left(Z_{2}\right)\right) \leq|\rho|^{k_{H}^{*}} \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2} \leq|\rho| \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2}
$$

where $k_{H}^{*}:=k_{H}\left(G_{1}\right) \vee k_{H}\left(G_{2}\right) \geq 1, \rho=\mathrm{E} Z_{1} Z_{2}=$ correlation coefficient
Arcones, M.A. (1994) Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors, Ann. Probab. 22, 2242-2274.

Gebelein, H. (1941) Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung. Z. Angew. Math. Mech. 21.

- If G has Hermite rank $k_{H}(G)=1$ then (linear) Gaussian $R F\left\{G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ and (nonlinear) Gaussian subordinated RF $Y(\boldsymbol{t}):=G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}$ have the same $L R D$ properties and scaling limits:

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- (ii) and Cauchy-Schwarz imply

$$
\operatorname{Cov}\left(G_{1}\left(Z_{1}\right), G_{2}\left(Z_{2}\right)\right) \leq|\rho|^{k_{H}^{*}} \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2} \leq|\rho| \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2}
$$

where $k_{H}^{*}:=k_{H}\left(G_{1}\right) \vee k_{H}\left(G_{2}\right) \geq 1, \rho=\mathrm{E} Z_{1} Z_{2}=$ correlation coefficient
Arcones, M.A. (1994) Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors, Ann. Probab. 22, 2242-2274.

Gebelein, H. (1941) Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung. Z. Angew. Math. Mech. 21.

- If G has Hermite rank $k_{H}(G)=1$ then (linear) Gaussian RF $\left\{G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ and (nonlinear) Gaussian subordinated RF $Y(\boldsymbol{t}):=G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}$ have the same $L R D$ properties and scaling limits: $Y(\boldsymbol{t})=h_{G}(1) X(\boldsymbol{t})+Y^{*}(\boldsymbol{t})$ where 'remainder' $Y^{*}(\boldsymbol{t})$ is negligible

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- (ii) and Cauchy-Schwarz imply

$$
\operatorname{Cov}\left(G_{1}\left(Z_{1}\right), G_{2}\left(Z_{2}\right)\right) \leq|\rho|^{k_{H}^{*}} \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2} \leq|\rho| \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2}
$$

where $k_{H}^{*}:=k_{H}\left(G_{1}\right) \vee k_{H}\left(G_{2}\right) \geq 1, \rho=\mathrm{E} Z_{1} Z_{2}=$ correlation coefficient
Arcones, M.A. (1994) Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors, Ann. Probab. 22, 2242-2274.

Gebelein, H. (1941) Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung. Z. Angew. Math. Mech. 21.

- If G has Hermite rank $k_{H}(G)=1$ then (linear) Gaussian RF $\left\{G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ and (nonlinear) Gaussian subordinated RF $Y(\boldsymbol{t}):=G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}$ have the same $L R D$ properties and scaling limits: $Y(\boldsymbol{t})=h_{G}(1) X(\boldsymbol{t})+Y^{*}(\boldsymbol{t})$ where 'remainder' $Y^{*}(\boldsymbol{t})$ is negligible
- Dobrushin-Major-Taqqu theory treats the general case of LRD Gaussian subordinated RF $Y(\boldsymbol{t})=G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}$ of arbitrary Hermite rank $k_{H}(G) \geq 1$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- (ii) and Cauchy-Schwarz imply

$$
\operatorname{Cov}\left(G_{1}\left(Z_{1}\right), G_{2}\left(Z_{2}\right)\right) \leq|\rho|^{k_{H}^{*}} \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2} \leq|\rho| \prod_{i=1}^{2} \operatorname{Var}\left(G\left(Z_{i}\right)\right)^{1 / 2}
$$

where $k_{H}^{*}:=k_{H}\left(G_{1}\right) \vee k_{H}\left(G_{2}\right) \geq 1, \rho=\mathrm{E} Z_{1} Z_{2}=$ correlation coefficient
Arcones, M.A. (1994) Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors, Ann. Probab. 22, 2242-2274.

Gebelein, H. (1941) Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung. Z. Angew. Math. Mech. 21.

- If G has Hermite rank $k_{H}(G)=1$ then (linear) Gaussian RF $\left\{G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}\right\}$ and (nonlinear) Gaussian subordinated RF $Y(\boldsymbol{t}):=G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}$ have the same $L R D$ properties and scaling limits: $Y(\boldsymbol{t})=h_{G}(1) X(\boldsymbol{t})+Y^{*}(\boldsymbol{t})$ where 'remainder' $Y^{*}(\boldsymbol{t})$ is negligible
- Dobrushin-Major-Taqqu theory treats the general case of LRD Gaussian subordinated RF $Y(\boldsymbol{t})=G(X(\boldsymbol{t})), \boldsymbol{t} \in \mathbb{R}^{d}$ of arbitrary Hermite rank $k_{H}(G) \geq 1$ (scaling limits written through Gaussian polynomial chaos or multiple Wiener-Itô integrals)

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.2. Poisson distribution \& Charlier polynomials

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.2. Poisson distribution \& Charlier polynomials

- $N=$ Poisson r.v. with mean $\mu=\mathrm{EN}$ and distribution $p(x ; \mu)=\mathrm{e}^{-\mu \frac{\mu^{x}}{x!}}, x \in \mathbb{N}$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.2. Poisson distribution \& Charlier polynomials

- $N=$ Poisson r.v. with mean $\mu=\mathrm{E} N$ and distribution $p(x ; \mu)=\mathrm{e}^{-\mu \frac{\mu^{x}}{x!}}, x \in \mathbb{N}$
- Charlier polynomials $P_{k}(x ; \mu)$ of discrete variable $x \in \mathbb{N}$ defined through generating function:

$$
P(u ; X, \mu):=\sum_{k=0}^{\infty} \frac{u^{k}}{k!} P_{k}(X: \mu)=(1+u)^{x} e^{-u \mu}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.2. Poisson distribution \& Charlier polynomials

- $N=$ Poisson r.v. with mean $\mu=\mathrm{E} N$ and distribution $p(x ; \mu)=\mathrm{e}^{-\mu \frac{\mu^{x}}{x!}}, x \in \mathbb{N}$
- Charlier polynomials $P_{k}(x ; \mu)$ of discrete variable $x \in \mathbb{N}$ defined through generating function:

$$
\begin{array}{r}
\mathcal{P}(u ; x, \mu):=\sum_{k=0}^{\infty} \frac{u^{k}}{k!} P_{k}(x ; \mu)=(1+u)^{x} \mathrm{e}^{-u \mu}, \tag{15}\\
P_{0}(x ; \mu)=1, P_{1}(x ; \mu)=x-\mu, P_{2}(x ; \mu)=x^{2}-(2 \mu+1) x+\mu^{2},
\end{array}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.2. Poisson distribution \& Charlier polynomials

- $N=$ Poisson r.v. with mean $\mu=\mathrm{E} N$ and distribution $p(x ; \mu)=\mathrm{e}^{-\mu \frac{\mu^{x}}{x!}}, x \in \mathbb{N}$
- Charlier polynomials $P_{k}(x ; \mu)$ of discrete variable $x \in \mathbb{N}$ defined through generating function:

$$
\begin{array}{r}
\mathcal{P}(u ; x, \mu):=\sum_{k=0}^{\infty} \frac{u^{k}}{k!} P_{k}(x ; \mu)=(1+u)^{x} \mathrm{e}^{-u \mu}, \\
P_{0}(x ; \mu)=1, P_{1}(x ; \mu)=x-\mu, P_{2}(x ; \mu)=x^{2}-(2 \mu+1) x+\mu^{2}, \\
P_{k}(x ; \mu)=(-1)^{k} \mu^{k} p(x ; \mu)^{-1} D_{-}^{k} p(x ; \mu), \quad k \in \mathbb{N} \tag{16}
\end{array}
$$

where $D_{-}^{k}:=D_{-} D_{-}^{k-1}$ is the backward difference operator, $D_{-} G(x):=G(x)-G(x-1) \mathbb{I}(x \geq 1), D_{-}^{0} G(x)=G(x)$

- Orthogonality relations for Charlier polynomials

$$
\mathrm{E} P_{k}(N ; \mu)=0, \quad \mathrm{E} P_{k}(N)^{2}=k!\mu^{k}, \quad \mathrm{E} P_{k}(N ; \mu) P_{\ell}(N ; \mu)=0, \quad k \neq \ell
$$

follow from multiplying the series in (15) at the points u and v and taking the expectation of the product:

$$
\sum_{k, \ell=0}^{\infty} \frac{u^{k} v \ell!}{k!!!} E P_{k}(N ; \mu) P_{\ell}(N ; \mu)=\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[((1+u)(1+v))^{N}\right]
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3.2. Poisson distribution \& Charlier polynomials

- $N=$ Poisson r.v. with mean $\mu=\mathrm{E} N$ and distribution $p(x ; \mu)=\mathrm{e}^{-\mu \frac{\mu^{x}}{x!}}, x \in \mathbb{N}$
- Charlier polynomials $P_{k}(x ; \mu)$ of discrete variable $x \in \mathbb{N}$ defined through generating function:

$$
\begin{array}{r}
\mathcal{P}(u ; x, \mu):=\sum_{k=0}^{\infty} \frac{u^{k}}{k!} P_{k}(x ; \mu)=(1+u)^{x} \mathrm{e}^{-u \mu}, \\
P_{0}(x ; \mu)=1, P_{1}(x ; \mu)=x-\mu, P_{2}(x ; \mu)=x^{2}-(2 \mu+1) x+\mu^{2}, \\
P_{k}(x ; \mu)=(-1)^{k} \mu^{k} p(x ; \mu)^{-1} D_{-}^{k} p(x ; \mu), \quad k \in \mathbb{N} \tag{16}
\end{array}
$$

where $D_{-}^{k}:=D_{-} D_{-}^{k-1}$ is the backward difference operator, $D_{-} G(x):=G(x)-G(x-1) \mathbb{I}(x \geq 1), D_{-}^{0} G(x)=G(x)$

- Orthogonality relations for Charlier polynomials

$$
\mathrm{E} P_{k}(N ; \mu)=0, \quad \mathrm{E} P_{k}(N)^{2}=k!\mu^{k}, \quad \mathrm{E} P_{k}(N ; \mu) P_{\ell}(N ; \mu)=0, \quad k \neq \ell
$$

follow from multiplying the series in (15) at the points u and v and taking the expectation of the product:

$$
\begin{aligned}
\sum_{k, \ell=0}^{\infty} \frac{u^{k} \ell \ell}{k!\ell!} E P_{k}(N ; \mu) P_{\ell}(N ; \mu) & =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[((1+u)(1+v))^{N}\right] \\
& =\mathrm{e}^{\mu u v}=\sum_{k=0}^{\infty} \frac{(\mu u v)^{k}}{k!}
\end{aligned}
$$

and equating the coefficients of $u^{k} v^{\ell}, k, \ell \in \mathbb{N}$ of the power series.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- Any $G=G(x), x \in \mathbb{N}$ with $E G^{2}(N)<\infty$ can be expanded in Charlier polynomials

$$
\begin{equation*}
G(x)=\sum_{k=0}^{\infty} \frac{c_{G}(k)}{k!} P_{k}(x ; \mu), \quad x \in \mathbb{N} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{G}(k):=\mu^{-k} \operatorname{E} G(N) P_{k}(N ; \mu), \quad k \in \mathbb{N} \tag{18}
\end{equation*}
$$

are Charlier coefficients of G in (17).

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- Any $G=G(x), x \in \mathbb{N}$ with $\mathrm{EG}^{2}(N)<\infty$ can be expanded in Charlier polynomials

$$
\begin{equation*}
G(x)=\sum_{k=0}^{\infty} \frac{c_{G}(k)}{k!} P_{k}(x ; \mu), \quad x \in \mathbb{N} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{G}(k):=\mu^{-k} \operatorname{E} G(N) P_{k}(N ; \mu), \quad k \in \mathbb{N} \tag{18}
\end{equation*}
$$

are Charlier coefficients of G in (17). Summation by parts yields

$$
\begin{equation*}
c_{G}(k)=E D_{+}^{k} G(N), \quad k \in \mathbb{N}, \tag{19}
\end{equation*}
$$

where $D_{+} G(x):=G(x+1)-G(x)$ is the forward difference.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- Any $G=G(x), x \in \mathbb{N}$ with $E G^{2}(N)<\infty$ can be expanded in Charlier polynomials

$$
\begin{equation*}
G(x)=\sum_{k=0}^{\infty} \frac{c_{G}(k)}{k!} P_{k}(x ; \mu), \quad x \in \mathbb{N} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{G}(k):=\mu^{-k} E G(N) P_{k}(N ; \mu), \quad k \in \mathbb{N} \tag{18}
\end{equation*}
$$

are Charlier coefficients of G in (17). Summation by parts yields

$$
\begin{equation*}
c_{G}(k)=E D_{+}^{k} G(N), \quad k \in \mathbb{N}, \tag{19}
\end{equation*}
$$

where $D_{+} G(x):=G(x+1)-G(x)$ is the forward difference. (18) and (17) yield the bound

$$
\begin{equation*}
\left|c_{G}(k)\right| \leq \mu^{-k} \sqrt{\mathrm{E}\left[G^{2}(N)\right] \mathrm{E}\left[P_{k}^{2}(N ; \mu)\right]}=C\left(k!/ \mu^{k}\right)^{1 / 2}, \quad C=\sqrt{\mathrm{E} G(N)^{2}} . \tag{20}
\end{equation*}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- Any $G=G(x), x \in \mathbb{N}$ with $E G^{2}(N)<\infty$ can be expanded in Charlier polynomials

$$
\begin{equation*}
G(x)=\sum_{k=0}^{\infty} \frac{c_{G}(k)}{k!} P_{k}(x ; \mu), \quad x \in \mathbb{N} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{G}(k):=\mu^{-k} \operatorname{E} G(N) P_{k}(N ; \mu), \quad k \in \mathbb{N} \tag{18}
\end{equation*}
$$

are Charlier coefficients of G in (17). Summation by parts yields

$$
\begin{equation*}
c_{G}(k)=\mathrm{E} D_{+}^{k} G(N), \quad k \in \mathbb{N} \tag{19}
\end{equation*}
$$

where $D_{+} G(x):=G(x+1)-G(x)$ is the forward difference. (18) and (17) yield the bound

$$
\begin{equation*}
\left|c_{G}(k)\right| \leq \mu^{-k} \sqrt{\mathrm{E}\left[G^{2}(N)\right] \mathrm{E}\left[P_{k}^{2}(N ; \mu)\right]}=C\left(k!/ \mu^{k}\right)^{1 / 2}, \quad C=\sqrt{\mathrm{E} G(N)^{2}} \tag{20}
\end{equation*}
$$

- Charlier rank $k_{C}(G)$ of G : the index of the first non-zero coefficient $c_{G}(k), k \geq 1$ in the Charlier expansion (17)

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- What is bivariate (multivariate) Poisson distribution with dependent components?

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- What is bivariate (multivariate) Poisson distribution with dependent components? Or, when random vector $\left(N_{1}, N_{2}\right)$ taking values in \mathbb{N}^{2} has joint Poisson distribution?

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- What is bivariate (multivariate) Poisson distribution with dependent components? Or, when random vector (N_{1}, N_{2}) taking values in \mathbb{N}^{2} has joint Poisson distribution? Possible answer:

$$
\begin{equation*}
N_{1}=M_{1}+M_{3}, \quad N_{1}=M_{+} M_{3} \tag{21}
\end{equation*}
$$

where $M_{i}, i=1,2,3$ are independent Poisson r.v.s with $E M_{i}=\mu_{i}$.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- What is bivariate (multivariate) Poisson distribution with dependent components? Or, when random vector (N_{1}, N_{2}) taking values in \mathbb{N}^{2} has joint Poisson distribution? Possible answer:

$$
\begin{equation*}
N_{1}=M_{1}+M_{3}, \quad N_{1}=M_{+} M_{3} \tag{21}
\end{equation*}
$$

where $M_{i}, i=1,2,3$ are independent Poisson r.v.s with $E M_{i}=\mu_{i}$.

- Multivariate Poisson $\left(N_{1}, \cdots, N_{p}\right) \in \mathbb{N}^{p}$:

$$
N_{i}=M\left(A_{i}\right), \quad i=1, \cdots, p,
$$

where $M(\mathrm{~d} x)$ is Poisson random measure on measurable space (\mathcal{X}, μ) and $A_{i} \subset \mathcal{X}, \mu\left(A_{i}\right)<\infty$ are any subsets.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- What is bivariate (multivariate) Poisson distribution with dependent components? Or, when random vector (N_{1}, N_{2}) taking values in \mathbb{N}^{2} has joint Poisson distribution? Possible answer:

$$
\begin{equation*}
N_{1}=M_{1}+M_{3}, \quad N_{1}=M_{+} M_{3} \tag{21}
\end{equation*}
$$

where $M_{i}, i=1,2,3$ are independent Poisson r.v.s with $E M_{i}=\mu_{i}$.

- Multivariate Poisson $\left(N_{1}, \cdots, N_{p}\right) \in \mathbb{N}^{p}$:

$$
N_{i}=M\left(A_{i}\right), \quad i=1, \cdots, p,
$$

where $M(\mathrm{~d} x)$ is Poisson random measure on measurable space ($\mathcal{X}, \mu)$ and $A_{i} \subset \mathcal{X}, \mu\left(A_{i}\right)<\infty$ are any subsets. (nonconstructive?)

3. Poisson distribution, Charlier polynomials \& Mehler's formula

- What is bivariate (multivariate) Poisson distribution with dependent components? Or, when random vector $\left(N_{1}, N_{2}\right)$ taking values in \mathbb{N}^{2} has joint Poisson distribution? Possible answer:

$$
\begin{equation*}
N_{1}=M_{1}+M_{3}, \quad N_{1}=M_{+} M_{3} \tag{21}
\end{equation*}
$$

where $M_{i}, i=1,2,3$ are independent Poisson r.v.s with $\mathrm{EM} M_{i}=\mu_{i}$.

- Multivariate Poisson $\left(N_{1}, \cdots, N_{p}\right) \in \mathbb{N}^{p}$:

$$
N_{i}=M\left(A_{i}\right), \quad i=1, \cdots, p
$$

where $M(\mathrm{~d} x)$ is Poisson random measure on measurable space (\mathcal{X}, μ) and $A_{i} \subset \mathcal{X}, \mu\left(A_{i}\right)<\infty$ are any subsets. (nonconstructive?)

Examples of random processes with multivariate Poisson distribution: random grain model, trawl process with Poisson seed:

Barndorff-Nielsen, O.E., Lunde, A., Shepard, N. \& Veraart, A.E.D. (2014) Integer-valued trawl processes: a class of stationary infinitely divisible processes. Scand. J. Statist. 41, 693-724.

Doukhan, P., Jakubowski, A., Lopes, S.R.C. \& S.D. (2019) Discrete-time trawl processes. Stoch. Proc. Appl. 129

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Let $M_{i}, i=1,2,3$, be independent Poisson r.v.s, $\mu_{i}:=\mathrm{E} M_{i}, i=1,2,3, \mu_{1}=\mu_{2}$ and $N_{1}:=M_{1}+M_{3}, N_{2}:=M_{2}+M_{3}, \mu:=\mu_{1}+\mu_{3}=\mathrm{E} N_{1}=\mu_{2}+\mu_{3}=\mathrm{E} N_{2}$,

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Let $M_{i}, i=1,2,3$, be independent Poisson r.v.s, $\mu_{i}:=\mathrm{E} M_{i}, i=1,2,3, \mu_{1}=\mu_{2}$ and $N_{1}:=M_{1}+M_{3}, N_{2}:=M_{2}+M_{3}, \mu:=\mu_{1}+\mu_{3}=\mathrm{E} N_{1}=\mu_{2}+\mu_{3}=\mathrm{E} N_{2}$,

$$
p(x, y ; \mu):=\mathrm{P}\left(N_{1}=x, N_{2}=y\right), \quad(x, y) \in \mathbb{N}^{2}
$$

- joint distribution of $\left(N_{1}, N_{2}\right)$;

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Let $M_{i}, i=1,2,3$, be independent Poisson r.v.s, $\mu_{i}:=\mathrm{E} M_{i}, i=1,2,3, \mu_{1}=\mu_{2}$ and $N_{1}:=M_{1}+M_{3}, N_{2}:=M_{2}+M_{3}, \mu:=\mu_{1}+\mu_{3}=\mathrm{E} N_{1}=\mu_{2}+\mu_{3}=\mathrm{E} N_{2}$,

$$
p(x, y ; \mu):=\mathrm{P}\left(N_{1}=x, N_{2}=y\right), \quad(x, y) \in \mathbb{N}^{2}
$$

- joint distribution of $\left(N_{1}, N_{2}\right)$;

$$
\operatorname{Var}\left(N_{1}\right)=\operatorname{Var}\left(N_{2}\right)=\mu, \quad \operatorname{Cov}\left(N_{1}, N_{2}\right)=\mu_{3}, \quad \operatorname{Corr}\left(N_{1}, N_{2}\right)=\frac{\mu_{3}}{\mu} ;
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Let $M_{i}, i=1,2,3$, be independent Poisson r.v.s, $\mu_{i}:=\mathrm{E} M_{i}, i=1,2,3, \mu_{1}=\mu_{2}$ and $N_{1}:=M_{1}+M_{3}, N_{2}:=M_{2}+M_{3}, \mu:=\mu_{1}+\mu_{3}=\mathrm{E} N_{1}=\mu_{2}+\mu_{3}=\mathrm{E} N_{2}$,

$$
p(x, y ; \mu):=\mathrm{P}\left(N_{1}=x, N_{2}=y\right), \quad(x, y) \in \mathbb{N}^{2}
$$

- joint distribution of (N_{1}, N_{2});

$$
\operatorname{Var}\left(N_{1}\right)=\operatorname{Var}\left(N_{2}\right)=\mu, \quad \operatorname{Cov}\left(N_{1}, N_{2}\right)=\mu_{3}, \quad \operatorname{Corr}\left(N_{1}, N_{2}\right)=\frac{\mu_{3}}{\mu} ;
$$

$P_{k}(x ; \mu), k \in \mathbb{N}$: Charlier polynomials

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Let $M_{i}, i=1,2,3$, be independent Poisson r.v.s, $\mu_{i}:=\mathrm{E} M_{i}, i=1,2,3, \mu_{1}=\mu_{2}$ and $N_{1}:=M_{1}+M_{3}, N_{2}:=M_{2}+M_{3}, \mu:=\mu_{1}+\mu_{3}=\mathrm{E} N_{1}=\mu_{2}+\mu_{3}=\mathrm{E} N_{2}$,

$$
p(x, y ; \mu):=\mathrm{P}\left(N_{1}=x, N_{2}=y\right), \quad(x, y) \in \mathbb{N}^{2}
$$

- joint distribution of $\left(N_{1}, N_{2}\right)$;

$$
\operatorname{Var}\left(N_{1}\right)=\operatorname{Var}\left(N_{2}\right)=\mu, \quad \operatorname{Cov}\left(N_{1}, N_{2}\right)=\mu_{3}, \quad \operatorname{Corr}\left(N_{1}, N_{2}\right)=\frac{\mu_{3}}{\mu} ;
$$

$P_{k}(x ; \mu), k \in \mathbb{N}$: Charlier polynomials

Lemma (1)

(i) (orthogonality): For any $k, \ell \in \mathbb{N}$

$$
\mathrm{E} P_{k}\left(N_{1} ; \mu\right) P_{\ell}\left(N_{2} ; \mu\right)= \begin{cases}0, & k \neq \ell \\ \mu_{3}^{k} k!, & k=\ell\end{cases}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Let $M_{i}, i=1,2,3$, be independent Poisson r.v.s, $\mu_{i}:=\mathrm{E} M_{i}, i=1,2,3, \mu_{1}=\mu_{2}$ and $N_{1}:=M_{1}+M_{3}, N_{2}:=M_{2}+M_{3}, \mu:=\mu_{1}+\mu_{3}=\mathrm{E} N_{1}=\mu_{2}+\mu_{3}=\mathrm{E} N_{2}$,

$$
p(x, y ; \mu):=\mathrm{P}\left(N_{1}=x, N_{2}=y\right), \quad(x, y) \in \mathbb{N}^{2}
$$

- joint distribution of $\left(N_{1}, N_{2}\right)$;

$$
\operatorname{Var}\left(N_{1}\right)=\operatorname{Var}\left(N_{2}\right)=\mu, \quad \operatorname{Cov}\left(N_{1}, N_{2}\right)=\mu_{3}, \quad \operatorname{Corr}\left(N_{1}, N_{2}\right)=\frac{\mu_{3}}{\mu} ;
$$

$P_{k}(x ; \mu), k \in \mathbb{N}$: Charlier polynomials

Lemma (1)

(i) (orthogonality): For any $k, \ell \in \mathbb{N}$

$$
\mathrm{E} P_{k}\left(N_{1} ; \mu\right) P_{\ell}\left(N_{2} ; \mu\right)= \begin{cases}0, & k \neq \ell \\ \mu_{3}^{k} k!, & k=\ell\end{cases}
$$

(ii) Let $G_{i}=G_{i}(x), x \in \mathbb{N}, i=1,2, \mathrm{E} G_{i}\left(N_{i}\right)^{2}<\infty, i=1,2$.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Let $M_{i}, i=1,2,3$, be independent Poisson r.v.s, $\mu_{i}:=\mathrm{E} M_{i}, i=1,2,3, \mu_{1}=\mu_{2}$ and $N_{1}:=M_{1}+M_{3}, N_{2}:=M_{2}+M_{3}, \mu:=\mu_{1}+\mu_{3}=\mathrm{E} N_{1}=\mu_{2}+\mu_{3}=\mathrm{E} N_{2}$,

$$
p(x, y ; \mu):=\mathrm{P}\left(N_{1}=x, N_{2}=y\right), \quad(x, y) \in \mathbb{N}^{2}
$$

- joint distribution of $\left(N_{1}, N_{2}\right)$;

$$
\operatorname{Var}\left(N_{1}\right)=\operatorname{Var}\left(N_{2}\right)=\mu, \quad \operatorname{Cov}\left(N_{1}, N_{2}\right)=\mu_{3}, \quad \operatorname{Corr}\left(N_{1}, N_{2}\right)=\frac{\mu_{3}}{\mu} ;
$$

$P_{k}(x ; \mu), k \in \mathbb{N}$: Charlier polynomials

Lemma (1)

(i) (orthogonality): For any $k, \ell \in \mathbb{N}$

$$
\mathrm{E} P_{k}\left(N_{1} ; \mu\right) P_{\ell}\left(N_{2} ; \mu\right)= \begin{cases}0, & k \neq \ell \\ \mu_{3}^{k} k!, & k=\ell\end{cases}
$$

(ii) Let $G_{i}=G_{i}(x), x \in \mathbb{N}, i=1,2, E G_{i}\left(N_{i}\right)^{2}<\infty, i=1,2$. Then

$$
\mathrm{E} G_{1}\left(N_{1}\right) G_{2}\left(N_{2}\right)=\sum_{k=0}^{\infty} \frac{c G_{1}(k) c G_{2}(k)}{k!} \mu_{3}^{k}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Lemma (1, ctnd)

(iii) (Mehler's formula):

$$
p(x, y ; \mu)=\sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{k!} D_{-}^{k} p(x ; \mu) D_{-}^{k} p(y ; \mu)
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Lemma (1, ctnd)

(iii) (Mehler's formula):

$$
\begin{aligned}
p(x, y ; \mu) & =\sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{k!} D_{-}^{k} p(x ; \mu) D_{-}^{k} p(y ; \mu) \\
& =p(x ; \mu) p(y ; \mu) \sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{\mu^{2 k} k!} P_{k}(x ; \mu) P_{k}(y ; \mu)
\end{aligned}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Lemma (1, ctnd)

(iii) (Mehler's formula):

$$
\begin{aligned}
p(x, y ; \mu) & =\sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{k!} D_{-}^{k} p(x ; \mu) D_{-}^{k} p(y ; \mu) \\
& =p(x ; \mu) p(y ; \mu) \sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{\mu^{2 k} k!} P_{k}(x ; \mu) P_{k}(y ; \mu)
\end{aligned}
$$

- For $\mu=1$ (ii) and (iii) provide complete expansions of joint expectations and probabilities in powers $\mu_{3}^{k}\left(\mu_{3}=\operatorname{Corr}\left(N_{1}, N_{2}\right)\right)$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Lemma (1, ctnd)

(iii) (Mehler's formula):

$$
\begin{aligned}
p(x, y ; \mu) & =\sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{k!} D_{-}^{k} p(x ; \mu) D_{-}^{k} p(y ; \mu) \\
& =p(x ; \mu) p(y ; \mu) \sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{\mu^{2 k} k!} P_{k}(x ; \mu) P_{k}(y ; \mu)
\end{aligned}
$$

- For $\mu=1$ (ii) and (iii) provide complete expansions of joint expectations and probabilities in powers $\mu_{3}^{k}\left(\mu_{3}=\operatorname{Corr}\left(N_{1}, N_{2}\right)\right)$
- Nearly complete analogy with Hermite expansions in the Gaussian case...

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Lemma (1, ctnd)

(iii) (Mehler's formula):

$$
\begin{aligned}
p(x, y ; \mu) & =\sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{k!} D_{-}^{k} p(x ; \mu) D_{-}^{k} p(y ; \mu) \\
& =p(x ; \mu) p(y ; \mu) \sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{\mu^{2 k} k!} P_{k}(x ; \mu) P_{k}(y ; \mu)
\end{aligned}
$$

- For $\mu=1$ (ii) and (iii) provide complete expansions of joint expectations and probabilities in powers $\mu_{3}^{k}\left(\mu_{3}=\operatorname{Corr}\left(N_{1}, N_{2}\right)\right)$
- Nearly complete analogy with Hermite expansions in the Gaussian case... (how far?)

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Lemma (1, ctnd)

(iii) (Mehler's formula):

$$
\begin{aligned}
p(x, y ; \mu) & =\sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{k!} D_{-}^{k} p(x ; \mu) D_{-}^{k} p(y ; \mu) \\
& =p(x ; \mu) p(y ; \mu) \sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{\mu^{2 k} k!} P_{k}(x ; \mu) P_{k}(y ; \mu)
\end{aligned}
$$

- For $\mu=1$ (ii) and (iii) provide complete expansions of joint expectations and probabilities in powers $\mu_{3}^{k}\left(\mu_{3}=\operatorname{Corr}\left(N_{1}, N_{2}\right)\right)$
- Nearly complete analogy with Hermite expansions in the Gaussian case... (how far?)
- Stationary Markov process $\left\{N_{t} ; t=0,1, \cdots\right\}$ with marginal Poisson distribution $\mathrm{P}\left(N_{t}=x\right)=p(x ; \mu)$ and transition probabilities $\mathrm{P}\left(N_{t+1}=y \mid N_{t}=x\right)=p(y \mid x ; \mu)$

$$
p(y \mid x ; \mu):=\frac{p(x, y ; \mu)}{p(x ; \mu)}, \quad x, y \in \mathbb{N}
$$

is Poisson $A R(1)$ or $\operatorname{INAR}(1)$ ('Poisson O-U').

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Lemma (1, ctnd)

(iii) (Mehler's formula):

$$
\begin{aligned}
p(x, y ; \mu) & =\sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{k!} D_{-}^{k} p(x ; \mu) D_{-}^{k} p(y ; \mu) \\
& =p(x ; \mu) p(y ; \mu) \sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{\mu^{2 k} k!} P_{k}(x ; \mu) P_{k}(y ; \mu)
\end{aligned}
$$

- For $\mu=1$ (ii) and (iii) provide complete expansions of joint expectations and probabilities in powers $\mu_{3}^{k}\left(\mu_{3}=\operatorname{Corr}\left(N_{1}, N_{2}\right)\right)$
- Nearly complete analogy with Hermite expansions in the Gaussian case... (how far?)
- Stationary Markov process $\left\{N_{t} ; t=0,1, \cdots\right\}$ with marginal Poisson distribution $\mathrm{P}\left(N_{t}=x\right)=p(x ; \mu)$ and transition probabilities $\mathrm{P}\left(N_{t+1}=y \mid N_{t}=x\right)=p(y \mid x ; \mu)$

$$
p(y \mid x ; \mu):=\frac{p(x, y ; \mu)}{p(x ; \mu)}, \quad x, y \in \mathbb{N}
$$

is Poisson $\operatorname{AR}(1)$ or $\operatorname{INAR}(1)$ ('Poisson $\mathrm{O}-\mathrm{U}$ '). (trawl representation?)

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Lemma (1, ctnd)

(iii) (Mehler's formula):

$$
\begin{aligned}
p(x, y ; \mu) & =\sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{k!} D_{-}^{k} p(x ; \mu) D_{-}^{k} p(y ; \mu) \\
& =p(x ; \mu) p(y ; \mu) \sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{\mu^{2 k} k!} P_{k}(x ; \mu) P_{k}(y ; \mu)
\end{aligned}
$$

- For $\mu=1$ (ii) and (iii) provide complete expansions of joint expectations and probabilities in powers $\mu_{3}^{k}\left(\mu_{3}=\operatorname{Corr}\left(N_{1}, N_{2}\right)\right)$
- Nearly complete analogy with Hermite expansions in the Gaussian case... (how far?)
- Stationary Markov process $\left\{N_{t} ; t=0,1, \cdots\right\}$ with marginal Poisson distribution $\mathrm{P}\left(N_{t}=x\right)=p(x ; \mu)$ and transition probabilities $\mathrm{P}\left(N_{t+1}=y \mid N_{t}=x\right)=p(y \mid x ; \mu)$

$$
p(y \mid x ; \mu):=\frac{p(x, y ; \mu)}{p(x ; \mu)}, \quad x, y \in \mathbb{N}
$$

is Poisson $\operatorname{AR}(1)$ or $\operatorname{INAR}(1)$ ('Poisson O-U'). (trawl representation?) Proof: bivariate generating function.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Lemma (1, ctnd)

(iii) (Mehler's formula):

$$
\begin{aligned}
p(x, y ; \mu) & =\sum_{k=0}^{\infty} \frac{\mu_{3}^{k}}{k!} D_{-}^{k} p(x ; \mu) D_{-}^{k} p(y ; \mu) \\
& =p(x ; \mu) p(y ; \mu) \sum_{k=0}^{\infty} \mu_{3}^{\mu_{3}^{k} k!} P_{k}(x ; \mu) P_{k}(y ; \mu) .
\end{aligned}
$$

- For $\mu=1$ (ii) and (iii) provide complete expansions of joint expectations and probabilities in powers $\mu_{3}^{k}\left(\mu_{3}=\operatorname{Corr}\left(N_{1}, N_{2}\right)\right)$
- Nearly complete analogy with Hermite expansions in the Gaussian case... (how far?)
- Stationary Markov process $\left\{N_{t} ; t=0,1, \cdots\right\}$ with marginal Poisson distribution $\mathrm{P}\left(N_{t}=x\right)=p(x ; \mu)$ and transition probabilities $\mathrm{P}\left(N_{t+1}=y \mid N_{t}=x\right)=p(y \mid x ; \mu)$

$$
p(y \mid x ; \mu):=\frac{p(x, y ; \mu)}{p(x ; \mu)}, \quad x, y \in \mathbb{N}
$$

is Poisson $\operatorname{AR}(1)$ or $\operatorname{INAR}(1)$ ('Poisson O-U'). (trawl representation?) Proof: bivariate generating function. Particular case of Markov evolutions of non-interacting particle systems with death and immigration:

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Proof of Lemma 1. (i) Use generating function $\mathcal{P}(u ; x, \mu)=(1+u)^{x} \mathrm{e}^{-\mu \mu}$ of Charlier polynomials in (16):

$$
\mathrm{E} \mathcal{P}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right)=\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{N_{1}}(1+v)^{N_{2}}\right]
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Proof of Lemma 1. (i) Use generating function $\mathcal{P}(u ; x, \mu)=(1+u)^{x} \mathrm{e}^{-\mu \mu}$ of Charlier polynomials in (16):

$$
\begin{aligned}
\mathrm{E} \mathcal{P}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right) & =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{N_{1}}(1+v)^{N_{2}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{M_{1}}\right] \mathrm{E}\left[(1+v)^{M_{2}}\right] \mathrm{E}\left[((1+u)(1+v))^{M_{3}}\right]
\end{aligned}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Proof of Lemma 1. (i) Use generating function $\mathcal{P}(u ; x, \mu)=(1+u)^{x} \mathrm{e}^{-u \mu}$ of Charlier polynomials in (16):

$$
\begin{aligned}
\mathrm{E} \mathcal{P}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right) & =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{N_{1}}(1+v)^{N_{2}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{M_{1}}\right] \mathrm{E}\left[(1+v)^{M_{2}}\right] \mathrm{E}\left[((1+u)(1+v))^{M_{3}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{e}^{\left(\mu-\mu_{3}\right) u} \mathrm{e}^{\left(\mu-\mu_{3}\right) v} \mathrm{e}^{((1+u)(1+v)-1) \mu_{3}}
\end{aligned}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Proof of Lemma 1. (i) Use generating function $\mathcal{P}(u ; x, \mu)=(1+u)^{x} \mathrm{e}^{-\mu \mu}$ of Charlier polynomials in (16):

$$
\begin{aligned}
\mathrm{EP}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right) & =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{N_{1}}(1+v)^{N_{2}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{M_{1}}\right] \mathrm{E}\left[(1+v)^{M_{2}}\right] \mathrm{E}\left[((1+u)(1+v))^{M_{3}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{e}^{\left(\mu-\mu_{3}\right) u} \mathrm{e}^{\left(\mu-\mu_{3}\right) v} \mathrm{e}^{((1+u)(1+v)-1) \mu_{3}} \\
& =\mathrm{e}^{u v \mu_{3}}=\sum_{k=0}^{\infty} \frac{\left(u v \mu_{3}\right)^{k}}{k!}
\end{aligned}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Proof of Lemma 1. (i) Use generating function $\mathcal{P}(u ; x, \mu)=(1+u)^{x} \mathrm{e}^{-\mu \mu}$ of Charlier polynomials in (16):

$$
\begin{aligned}
\mathrm{EP}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right) & =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{N_{1}}(1+v)^{N_{2}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{M_{1}}\right] \mathrm{E}\left[(1+v)^{M_{2}}\right] \mathrm{E}\left[((1+u)(1+v))^{M_{3}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{e}^{\left(\mu-\mu_{3}\right) u} \mathrm{e}^{\left(\mu-\mu_{3}\right) v} \mathrm{e}^{((1+u)(1+v)-1) \mu_{3}} \\
& =\mathrm{e}^{u v \mu_{3}}=\sum_{k=0}^{\infty} \frac{\left(u v \mu_{3}\right)^{k}}{k!}
\end{aligned}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Proof of Lemma 1. (i) Use generating function $\mathcal{P}(u ; x, \mu)=(1+u)^{x} \mathrm{e}^{-\mu \mu}$ of Charlier polynomials in (16):

$$
\begin{aligned}
\mathrm{EP}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right) & =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{N_{1}}(1+v)^{N_{2}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{M_{1}}\right] \mathrm{E}\left[(1+v)^{M_{2}}\right] \mathrm{E}\left[((1+u)(1+v))^{M_{3}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{e}^{\left(\mu-\mu_{3}\right) u} \mathrm{e}^{\left(\mu-\mu_{3}\right) v} \mathrm{e}^{((1+u)(1+v)-1) \mu_{3}} \\
& =\mathrm{e}^{u v \mu_{3}}=\sum_{k=0}^{\infty} \frac{\left(u v \mu_{3}\right)^{k}}{k!}
\end{aligned}
$$

On the other hand,

$$
\mathrm{EP}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right)=\sum_{k, \ell=0}^{\infty} \frac{u^{k} v^{\ell}}{k!\ell!} \mathrm{E}\left[P_{k}\left(N_{1} ; \mu\right) P_{\ell}\left(N_{2} ; \mu\right)\right]
$$

(i) follows by equating the coefficients of the power series on both sides.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Proof of Lemma 1. (i) Use generating function $\mathcal{P}(u ; x, \mu)=(1+u)^{x} \mathrm{e}^{-\mu \mu}$ of Charlier polynomials in (16):

$$
\begin{aligned}
\mathrm{EP}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right) & =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{N_{1}}(1+v)^{N_{2}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{M_{1}}\right] \mathrm{E}\left[(1+v)^{M_{2}}\right] \mathrm{E}\left[((1+u)(1+v))^{M_{3}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{e}^{\left(\mu-\mu_{3}\right) u} \mathrm{e}^{\left(\mu-\mu_{3}\right) v} \mathrm{e}^{((1+u)(1+v)-1) \mu_{3}} \\
& =\mathrm{e}^{u v \mu_{3}}=\sum_{k=0}^{\infty} \frac{\left(u v \mu_{3}\right)^{k}}{k!}
\end{aligned}
$$

On the other hand,

$$
\mathrm{E} \mathcal{P}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right)=\sum_{k, \ell=0}^{\infty} \frac{u^{k} v^{\ell}}{k!\ell!} \mathrm{E}\left[P_{k}\left(N_{1} ; \mu\right) P_{\ell}\left(N_{2} ; \mu\right)\right]
$$

(i) follows by equating the coefficients of the power series on both sides.
(ii) Immediate from (i) and (17).

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Proof of Lemma 1. (i) Use generating function $\mathcal{P}(u ; x, \mu)=(1+u)^{x} \mathrm{e}^{-\mu \mu}$ of Charlier polynomials in (16):

$$
\begin{aligned}
\mathrm{EP}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right) & =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{N_{1}}(1+v)^{N_{2}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{M_{1}}\right] \mathrm{E}\left[(1+v)^{M_{2}}\right] \mathrm{E}\left[((1+u)(1+v))^{M_{3}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{e}^{\left(\mu-\mu_{3}\right) u} \mathrm{e}^{\left(\mu-\mu_{3}\right) v} \mathrm{e}^{((1+u)(1+v)-1) \mu_{3}} \\
& =\mathrm{e}^{u v \mu_{3}}=\sum_{k=0}^{\infty} \frac{\left(u v \mu_{3}\right)^{k}}{k!}
\end{aligned}
$$

On the other hand,

$$
\mathrm{EP}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right)=\sum_{k, \ell=0}^{\infty} \frac{u^{k} v^{\ell}}{k!\ell!} \mathrm{E}\left[P_{k}\left(N_{1} ; \mu\right) P_{\ell}\left(N_{2} ; \mu\right)\right]
$$

(i) follows by equating the coefficients of the power series on both sides.
(ii) Immediate from (i) and (17).
(iii) Apply (ii) to $G_{1}(x):=\mathbb{I}(x=n), G_{2}(x):=\mathbb{I}(x=m)$, for given $n, m \in \mathbb{N}$.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Proof of Lemma 1. (i) Use generating function $\mathcal{P}(u ; x, \mu)=(1+u)^{x} \mathrm{e}^{-u \mu}$ of Charlier polynomials in (16):

$$
\begin{aligned}
\mathrm{EP}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right) & =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{N_{1}}(1+v)^{N_{2}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{E}\left[(1+u)^{M_{1}}\right] \mathrm{E}\left[(1+v)^{M_{2}}\right] \mathrm{E}\left[((1+u)(1+v))^{M_{3}}\right] \\
& =\mathrm{e}^{-(u+v) \mu} \mathrm{e}^{\left(\mu-\mu_{3}\right) u} \mathrm{e}^{\left(\mu-\mu_{3}\right) v} \mathrm{e}^{((1+u)(1+v)-1) \mu_{3}} \\
& =\mathrm{e}^{u v \mu_{3}}=\sum_{k=0}^{\infty} \frac{\left(u v \mu_{3}\right)^{k}}{k!}
\end{aligned}
$$

On the other hand,

$$
\mathrm{EP}\left(u ; N_{1}, \mu\right) \mathcal{P}\left(v ; N_{2}, \mu\right)=\sum_{k, \ell=0}^{\infty} \frac{u^{k} v^{\ell}}{k!\ell!} \mathrm{E}\left[P_{k}\left(N_{1} ; \mu\right) P_{\ell}\left(N_{2} ; \mu\right)\right]
$$

(i) follows by equating the coefficients of the power series on both sides.
(ii) Immediate from (i) and (17).
(iii) Apply (ii) to $G_{1}(x):=\mathbb{I}(x=n), G_{2}(x):=\mathbb{I}(x=m)$, for given $n, m \in \mathbb{N}$. By (19), (16), $c_{G_{1}}(k)=\mathrm{E}\left[D_{+}^{k} \mathbb{I}\left(N_{1}=n\right)\right]=D_{-}^{k} p(n ; \mu)=(-1)^{k} \mu^{-k} P_{k}(n ; \mu) p(n ; \mu)$, $c_{G_{2}}(k)=\mathrm{E}\left[D_{+}^{k} \mathbb{I}\left(N_{2}=m\right)\right]=D_{-}^{k} p(m ; \mu)=(-1)^{k} \mu^{-k} P_{k}(m ; \mu) p(n ; \mu)$, yielding (iii).

3. Poisson distribution, Charlier polynomials \& Mehler's formula

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Corollary (1)

Let $G_{i}, N_{i}, i=1,2$ be as in Lemma $1, k_{c}^{*}\left(G_{i}\right)=$ Charlier rank of G_{i}.

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Corollary (1)

Let $G_{i}, N_{i}, i=1,2$ be as in Lemma 1, $k_{C}^{*}\left(G_{i}\right)=$ Charlier rank of G_{i}. Then

$$
\begin{aligned}
\operatorname{Cov}\left(G_{1}\left(N_{1}\right), G_{2}\left(N_{2}\right)\right) & =\sum_{k=k_{C}^{*}\left(G_{1}\right) \vee k_{C}^{*}\left(G_{2}\right)}^{\infty} \frac{c_{G_{1}}(k) c_{G_{2}}(k)}{k!} \mu_{3}^{k} \\
& =\frac{c_{G_{1}}\left(k_{C}^{*}\right) c_{G_{2}}\left(k^{*}\right)}{k^{*}!} \mu_{3}^{k_{C}^{*}}+R\left(k_{C}^{*}\right)
\end{aligned}
$$

where $k_{C}^{*}:=k_{C}^{*}\left(G_{1}\right) \vee k_{C}^{*}\left(G_{2}\right)$ and

$$
\begin{equation*}
\left|R\left(k_{C}^{*}\right)\right| \leq \frac{\left(\mu_{3} / \mu\right)^{k_{c}^{*}+1}}{1-\left(\mu_{3} / \mu\right)} \prod_{i=1}^{2} \mathrm{E}^{1 / 2} G\left(N_{i}\right)^{2} \tag{22}
\end{equation*}
$$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Corollary (1)

Let $G_{i}, N_{i}, i=1,2$ be as in Lemma 1, $k_{C}^{*}\left(G_{i}\right)=$ Charlier rank of G_{i}. Then

$$
\begin{aligned}
\operatorname{Cov}\left(G_{1}\left(N_{1}\right), G_{2}\left(N_{2}\right)\right) & =\sum_{k=k_{C}^{*}\left(G_{1}\right) \vee k_{C}^{*}\left(G_{2}\right)}^{\infty} \frac{c_{G_{1}}(k) c_{G_{2}}(k)}{k!} \mu_{3}^{k} \\
& =\frac{c_{G_{1}}\left(k_{C}^{*}\right) c_{G_{2}}\left(k^{*}\right)}{k^{*}!} \mu_{3}^{k_{C}^{*}}+R\left(k_{C}^{*}\right)
\end{aligned}
$$

where $k_{C}^{*}:=k_{C}^{*}\left(G_{1}\right) \vee k_{C}^{*}\left(G_{2}\right)$ and

$$
\begin{equation*}
\left|R\left(k_{C}^{*}\right)\right| \leq \frac{\left(\mu_{3} / \mu\right)^{k_{c}^{*}+1}}{1-\left(\mu_{3} / \mu\right)} \prod_{i=1}^{2} \mathrm{E}^{1 / 2} G\left(N_{i}\right)^{2} \tag{22}
\end{equation*}
$$

- $\operatorname{Cov}\left(G_{1}\left(N_{1}\right), G_{2}\left(N_{2}\right)\right)$ decays as $\mu_{3}^{k_{c}^{*}}$ when $\mu_{3} \rightarrow 0$

3. Poisson distribution, Charlier polynomials \& Mehler's formula

Corollary (1)

Let $G_{i}, N_{i}, i=1,2$ be as in Lemma 1, $k_{C}^{*}\left(G_{i}\right)=$ Charlier rank of G_{i}. Then

$$
\begin{aligned}
\operatorname{Cov}\left(G_{1}\left(N_{1}\right), G_{2}\left(N_{2}\right)\right) & =\sum_{k=k_{C}^{*}\left(G_{1}\right) \vee k_{C}^{*}\left(G_{2}\right)}^{\infty} \frac{c_{G_{1}}(k) c_{G_{2}}(k)}{k!} \mu_{3}^{k} \\
& =\frac{c_{G_{1}}\left(k_{C}^{*}\right) c_{G_{2}}\left(k^{*}\right)}{k^{*}!} \mu_{3}^{k_{C}^{*}}+R\left(k_{C}^{*}\right)
\end{aligned}
$$

where $k_{C}^{*}:=k_{C}^{*}\left(G_{1}\right) \vee k_{C}^{*}\left(G_{2}\right)$ and

$$
\begin{equation*}
\left|R\left(k_{C}^{*}\right)\right| \leq \frac{\left(\mu_{3} / \mu\right)^{k_{c}^{*}+1}}{1-\left(\mu_{3} / \mu\right)} \prod_{i=1}^{2} \mathrm{E}^{1 / 2} G\left(N_{i}\right)^{2} \tag{22}
\end{equation*}
$$

- $\operatorname{Cov}\left(G_{1}\left(N_{1}\right), G_{2}\left(N_{2}\right)\right)$ decays as $\mu_{3}^{k_{C}^{*}}$ when $\mu_{3} \rightarrow 0$
- remainder $R\left(k_{C}^{*}\right)=O\left(\mu_{3}^{k_{c}^{*}+1}\right)$

4. Scaling of nonlinear functions of RG model

4. Scaling of nonlinear functions of RG model

- Aggregated RG model:

$$
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
$$

\mathcal{N}_{M} : Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=\operatorname{Md} \boldsymbol{u} F(\mathrm{~d} r)$

4. Scaling of nonlinear functions of RG model

- Aggregated RG model:

$$
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
$$

\mathcal{N}_{M} : Poisson measure with $\mathrm{EN} \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=\operatorname{Md} \boldsymbol{u} F(\mathrm{~d} r)$ $X(\boldsymbol{t}) \equiv X_{1}(\boldsymbol{t})$ (not aggregated)

4. Scaling of nonlinear functions of RG model

- Aggregated RG model:

$$
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
$$

\mathcal{N}_{M} : Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$ $X(\boldsymbol{t}) \equiv X_{1}(\boldsymbol{t})$ (not aggregated)

- Subordinated nonlinear model:

$$
Y_{M}(\boldsymbol{t}):=G\left(\frac{X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})}{M^{1 / 2}}\right), \quad \boldsymbol{t} \in \mathbb{R}^{d},
$$

where $G(x), x \in \mathbb{R}$ is a given nonlinear function;

4. Scaling of nonlinear functions of RG model

- Aggregated RG model:

$$
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
$$

\mathcal{N}_{M} : Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$ $X(\boldsymbol{t}) \equiv X_{1}(\boldsymbol{t})$ (not aggregated)

- Subordinated nonlinear model:

$$
Y_{M}(\boldsymbol{t}):=G\left(\frac{X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})}{M^{1 / 2}}\right), \quad \boldsymbol{t} \in \mathbb{R}^{d},
$$

where $G(x), x \in \mathbb{R}$ is a given nonlinear function; $Y(\boldsymbol{t})=Y_{1}(\boldsymbol{t})$

4. Scaling of nonlinear functions of RG model

- Aggregated RG model:

$$
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \overline{=}^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
$$

\mathcal{N}_{M} : Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$ $X(\boldsymbol{t}) \equiv X_{1}(\boldsymbol{t})$ (not aggregated)

- Subordinated nonlinear model:

$$
Y_{M}(\boldsymbol{t}):=G\left(\frac{X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})}{M^{1 / 2}}\right), \quad \boldsymbol{t} \in \mathbb{R}^{d},
$$

where $G(x), x \in \mathbb{R}$ is a given nonlinear function; $Y(\boldsymbol{t})=Y_{1}(\boldsymbol{t})$

- Re-scaled integrals: $X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$, $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} Y_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, X_{\lambda}(\phi)=X_{\lambda, 1}(\phi), Y_{\lambda}(\phi)=Y_{\lambda, 1}(\phi)$

4. Scaling of nonlinear functions of RG model

- Aggregated RG model:

$$
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \bar{\Xi}^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
$$

\mathcal{N}_{M} : Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$ $X(\boldsymbol{t}) \equiv X_{1}(\boldsymbol{t})$ (not aggregated)

- Subordinated nonlinear model:

$$
Y_{M}(\boldsymbol{t}):=G\left(\frac{X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})}{M^{1 / 2}}\right), \quad \boldsymbol{t} \in \mathbb{R}^{d}
$$

where $G(x), x \in \mathbb{R}$ is a given nonlinear function; $Y(\boldsymbol{t})=Y_{1}(\boldsymbol{t})$

- Re-scaled integrals: $X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$, $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} Y_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, X_{\lambda}(\phi)=X_{\lambda, 1}(\phi), Y_{\lambda}(\phi)=Y_{\lambda, 1}(\phi)$
- Problem: limit distribution of $Y_{\lambda, M}(\phi)$ and $Y_{\lambda}(\phi)$ as $\lambda \rightarrow \infty$ and $M=\lambda^{\gamma} \rightarrow \infty$, for each $\phi \in \Phi=L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)$

4. Scaling of nonlinear functions of RG model

- Aggregated RG model:

$$
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \bar{\Xi}^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
$$

\mathcal{N}_{M} : Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$ $X(\boldsymbol{t}) \equiv X_{1}(\boldsymbol{t})$ (not aggregated)

- Subordinated nonlinear model:

$$
Y_{M}(\boldsymbol{t}):=G\left(\frac{X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})}{M^{1 / 2}}\right), \quad \boldsymbol{t} \in \mathbb{R}^{d}
$$

where $G(x), x \in \mathbb{R}$ is a given nonlinear function; $Y(\boldsymbol{t})=Y_{1}(\boldsymbol{t})$

- Re-scaled integrals: $X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$, $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} Y_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, X_{\lambda}(\phi)=X_{\lambda, 1}(\phi), Y_{\lambda}(\phi)=Y_{\lambda, 1}(\phi)$
- Problem: limit distribution of $Y_{\lambda, M}(\phi)$ and $Y_{\lambda}(\phi)$ as $\lambda \rightarrow \infty$ and $M=\lambda^{\gamma} \rightarrow \infty$, for each $\phi \in \Phi=L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)$
- Under Assumption LRD: $\left(\approx \mathrm{P}(R>r)=F(r, \infty) \sim c_{f} r^{-\alpha}, r \rightarrow \infty, \alpha \in(1,2)\right)$ the limit of linear $X_{\lambda, M}(\phi)$ and $X_{\lambda}(\phi)$ described in Thm 1 [KLNS].

4. Scaling of nonlinear functions of RG model

- Aggregated RG model:

$$
X_{M}(\boldsymbol{t})=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} \mathbb{I}\left(\boldsymbol{t}-\boldsymbol{u} \in r^{1 / d} \Xi^{0}\right) \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)
$$

\mathcal{N}_{M} : Poisson measure with $E \mathcal{N}_{M}(\mathrm{~d} \boldsymbol{u}, \mathrm{~d} r)=M \mathrm{~d} \boldsymbol{u} F(\mathrm{~d} r)$ $X(\boldsymbol{t}) \equiv X_{1}(\boldsymbol{t})$ (not aggregated)

- Subordinated nonlinear model:

$$
Y_{M}(\boldsymbol{t}):=G\left(\frac{X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})}{M^{1 / 2}}\right), \quad \boldsymbol{t} \in \mathbb{R}^{d}
$$

where $G(x), x \in \mathbb{R}$ is a given nonlinear function; $Y(\boldsymbol{t})=Y_{1}(\boldsymbol{t})$

- Re-scaled integrals: $X_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} X_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$, $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} Y_{M}(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, X_{\lambda}(\phi)=X_{\lambda, 1}(\phi), Y_{\lambda}(\phi)=Y_{\lambda, 1}(\phi)$
- Problem: limit distribution of $Y_{\lambda, M}(\phi)$ and $Y_{\lambda}(\phi)$ as $\lambda \rightarrow \infty$ and $M=\lambda^{\gamma} \rightarrow \infty$, for each $\phi \in \Phi=L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)$
- Under Assumption LRD: $\left(\approx \mathrm{P}(R>r)=F(r, \infty) \sim c_{f} r^{-\alpha}, r \rightarrow \infty, \alpha \in(1,2)\right)$ the limit of linear $X_{\lambda, M}(\phi)$ and $X_{\lambda}(\phi)$ described in Thm 1 [KLNS]. Trichotomy of the limit at $\gamma=\alpha-1$

4. Scaling of nonlinear functions of RG model

4. Scaling of nonlinear functions of RG model

'Summary' of this talk:

1. If Hermite rank of G is 1 then the limits of $Y_{\lambda, M}(\phi)$ and $X_{\lambda, M}(\phi), M=\lambda^{\gamma}$ are the same (up to the first Hermite coefficient of G), for any $\gamma>0$

4. Scaling of nonlinear functions of RG model

'Summary' of this talk:

1. If Hermite rank of G is 1 then the limits of $Y_{\lambda, M}(\phi)$ and $X_{\lambda, M}(\phi), M=\lambda^{\gamma}$ are the same (up to the first Hermite coefficient of G), for any $\gamma>0$
2. If Charlier rank of G is 1 then the limits of $Y_{\lambda}(\phi)$ and $X_{\lambda}(\phi)$ are the same (up to the first Charlier coefficient of G)

4. Scaling of nonlinear functions of RG model

'Summary' of this talk:

1. If Hermite rank of G is 1 then the limits of $Y_{\lambda, M}(\phi)$ and $X_{\lambda, M}(\phi), M=\lambda^{\gamma}$ are the same (up to the first Hermite coefficient of G), for any $\gamma>0$
2. If Charlier rank of G is 1 then the limits of $Y_{\lambda}(\phi)$ and $X_{\lambda}(\phi)$ are the same (up to the first Charlier coefficient of G)

- For fixed $\boldsymbol{t} \in \mathbb{R}^{d}, Y_{M}(\boldsymbol{t}) \xrightarrow{\mathrm{d}} Z_{\mu} \sim N(0, \mu)$ as $M \rightarrow \infty$ where $\mu=\mathrm{E} X(\boldsymbol{t})=\operatorname{Var}(X(\boldsymbol{t}))=\operatorname{Leb}_{d}\left(\bar{\Xi}^{0}\right) \mathrm{E} R$

4. Scaling of nonlinear functions of RG model

'Summary' of this talk:

1. If Hermite rank of G is 1 then the limits of $Y_{\lambda, M}(\phi)$ and $X_{\lambda, M}(\phi), M=\lambda^{\gamma}$ are the same (up to the first Hermite coefficient of G), for any $\gamma>0$
2. If Charlier rank of G is 1 then the limits of $Y_{\lambda}(\phi)$ and $X_{\lambda}(\phi)$ are the same (up to the first Charlier coefficient of G)

- For fixed $\boldsymbol{t} \in \mathbb{R}^{d}, Y_{M}(\boldsymbol{t}) \xrightarrow{\mathrm{d}} Z_{\mu} \sim N(0, \mu)$ as $M \rightarrow \infty$ where $\mu=\mathrm{E} X(\boldsymbol{t})=\operatorname{Var}(X(\boldsymbol{t}))=\operatorname{Leb}_{d}\left(\bar{\Xi}^{0}\right) \mathrm{ER}$
- Expand $G(x)=\sum_{k=0}^{\infty} \frac{h_{G, \mu}(k)}{k!} H_{k}(x ; \mu)$ in Hermite polynomials $H_{k}(x ; \mu)$ with generating function $\sum_{k=0}^{\infty}\left(u^{k} / k!\right) H_{k}(x ; \mu)=\mathrm{e}^{\mu x-\mu u^{2} / 2}$ and coefficients

$$
h_{G, \mu}(k)=\mu^{-k} \operatorname{E} G\left(Z_{\mu}\right) H_{k}\left(Z_{\mu} ; \mu\right), \quad k \in \mathbb{N}
$$

4. Scaling of nonlinear functions of RG model

'Summary' of this talk:

1. If Hermite rank of G is 1 then the limits of $Y_{\lambda, M}(\phi)$ and $X_{\lambda, M}(\phi), M=\lambda^{\gamma}$ are the same (up to the first Hermite coefficient of G), for any $\gamma>0$
2. If Charlier rank of G is 1 then the limits of $Y_{\lambda}(\phi)$ and $X_{\lambda}(\phi)$ are the same (up to the first Charlier coefficient of G)

- For fixed $\boldsymbol{t} \in \mathbb{R}^{d}, Y_{M}(\boldsymbol{t}) \xrightarrow{\mathrm{d}} Z_{\mu} \sim N(0, \mu)$ as $M \rightarrow \infty$ where $\mu=\mathrm{EX}(\boldsymbol{t})=\operatorname{Var}(X(\boldsymbol{t}))=\operatorname{Leb}_{d}\left(\bar{\Xi}^{0}\right) \mathrm{ER}$
- Expand $G(x)=\sum_{k=0}^{\infty} \frac{h_{G, \mu}(k)}{k!} H_{k}(x ; \mu)$ in Hermite polynomials $H_{k}(x ; \mu)$ with generating function $\sum_{k=0}^{\infty}\left(u^{k} / k!\right) H_{k}(x ; \mu)=\mathrm{e}^{\mu x-\mu u^{2} / 2}$ and coefficients

$$
h_{G, \mu}(k)=\mu^{-k} \operatorname{E} G\left(Z_{\mu}\right) H_{k}\left(Z_{\mu} ; \mu\right), \quad k \in \mathbb{N} .
$$

- $h_{G, \mu}(1)=\mu^{-1} \mathrm{E} G\left(Z_{\mu}\right) Z_{\mu}$

4. Scaling of nonlinear functions of RG model

4. Scaling of nonlinear functions of RG model

Theorem (2)

1. Let $X_{M}(\boldsymbol{t})$ satisfy the conditions of Theorem 1,

4. Scaling of nonlinear functions of RG model

Theorem (2)

1. Let $X_{M}(\boldsymbol{t})$ satisfy the conditions of Theorem $1, G=G(x), x \in \mathbb{R}$ is an $\mathrm{d} x$-a.e. continuous function such that $\operatorname{EG}\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}<\infty(\forall M>0)$ and

$$
\lim _{M \rightarrow \infty} \operatorname{E} G\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}=\operatorname{E} G\left(Z_{\mu}\right)^{2}<\infty .
$$

4. Scaling of nonlinear functions of RG model

Theorem (2)

1. Let $X_{M}(\boldsymbol{t})$ satisfy the conditions of Theorem $1, G=G(x), x \in \mathbb{R}$ is an $\mathrm{d} x$-a.e. continuous function such that $\operatorname{EG}\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}<\infty(\forall M>0)$ and

$$
\lim _{M \rightarrow \infty} \mathrm{E} G\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}=\mathrm{E} G\left(Z_{\mu}\right)^{2}<\infty
$$

Let $M=\lambda^{\gamma}$ for some $\gamma>0$.

4. Scaling of nonlinear functions of RG model

Theorem (2)

1. Let $X_{M}(\boldsymbol{t})$ satisfy the conditions of Theorem $1, G=G(x), x \in \mathbb{R}$ is an $\mathrm{d} x$-a.e. continuous function such that $\operatorname{EG}\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}<\infty(\forall M>0)$ and

$$
\lim _{M \rightarrow \infty} \operatorname{E} G\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}=\mathrm{E} G\left(Z_{\mu}\right)^{2}<\infty
$$

Let $M=\lambda^{\gamma}$ for some $\gamma>0$. Then for any $\phi \in \Phi$ as $\lambda \rightarrow \infty$

$$
\lambda^{(\gamma / 2)-H(\gamma)}\left(Y_{\lambda, M}(\phi)-\mathrm{E} Y_{\lambda, M}(\phi)\right) \stackrel{\mathrm{d}}{\longrightarrow} h_{G, \mu}(1) \begin{cases}B_{\alpha}(\phi), & \gamma>d(\alpha-1), \\ L_{\alpha}(\phi), & \gamma<d(\alpha-1), \\ J_{\alpha}(\phi), & \gamma=d(\alpha-1),\end{cases}
$$

4. Scaling of nonlinear functions of RG model

Theorem (2)

1. Let $X_{M}(\boldsymbol{t})$ satisfy the conditions of Theorem $1, G=G(x), x \in \mathbb{R}$ is an $\mathrm{d} x$-a.e. continuous function such that $\operatorname{EG}\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}<\infty(\forall M>0)$ and

$$
\lim _{M \rightarrow \infty} \operatorname{EG}\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}=\mathrm{E} G\left(Z_{\mu}\right)^{2}<\infty
$$

Let $M=\lambda^{\gamma}$ for some $\gamma>0$. Then for any $\phi \in \Phi$ as $\lambda \rightarrow \infty$

$$
\lambda^{(\gamma / 2)-H(\gamma)}\left(Y_{\lambda, M}(\phi)-\mathrm{E} Y_{\lambda, M}(\phi)\right) \stackrel{\mathrm{d}}{\longrightarrow} h_{G, \mu}(1) \begin{cases}B_{\alpha}(\phi), & \gamma>d(\alpha-1) \\ L_{\alpha}(\phi), & \gamma<d(\alpha-1), \\ J_{\alpha}(\phi), & \gamma=d(\alpha-1)\end{cases}
$$

where $H(\gamma), B_{\alpha}(\phi), L_{\alpha}(\phi), J_{\alpha}(\phi)$ are the same as in Thm 1.

4. Scaling of nonlinear functions of RG model

Theorem (2)

1. Let $X_{M}(\boldsymbol{t})$ satisfy the conditions of Theorem $1, G=G(x), x \in \mathbb{R}$ is an $\mathrm{d} x$-a.e. continuous function such that $\operatorname{EG}\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}<\infty(\forall M>0)$ and

$$
\lim _{M \rightarrow \infty} \operatorname{E} G\left(Y_{\lambda, M}(\mathbf{0})\right)^{2}=\operatorname{E} G\left(Z_{\mu}\right)^{2}<\infty
$$

Let $M=\lambda^{\gamma}$ for some $\gamma>0$. Then for any $\phi \in \Phi$ as $\lambda \rightarrow \infty$

$$
\lambda^{(\gamma / 2)-H(\gamma)}\left(Y_{\lambda, M}(\phi)-\mathrm{E} Y_{\lambda, M}(\phi)\right) \stackrel{\mathrm{d}}{\longrightarrow} h_{G, \mu}(1) \begin{cases}B_{\alpha}(\phi), & \gamma>d(\alpha-1) \\ L_{\alpha}(\phi), & \gamma<d(\alpha-1) \\ J_{\alpha}(\phi), & \gamma=d(\alpha-1)\end{cases}
$$

where $H(\gamma), B_{\alpha}(\phi), L_{\alpha}(\phi), J_{\alpha}(\phi)$ are the same as in Thm 1.
2. Let $Y(\boldsymbol{t})=G(X(\boldsymbol{t}))$, where $X(\boldsymbol{t})$ is as in Thm 1 and $\mathrm{E} Y(\boldsymbol{t})^{2}<\infty$. Then for any $\phi \in \Phi$ as $\lambda \rightarrow \infty$

$$
\lambda^{-d / \alpha}\left(Y_{\lambda}(\phi)-\mathrm{E} Y_{\lambda}(\phi)\right) \xrightarrow{\mathrm{d}} c_{G, \mu}(1) L_{\alpha}(\phi),
$$

where $c_{G, \mu}(1)=\operatorname{EG}(X(\mathbf{0}))(X(\mathbf{0})-\mathrm{EX}(\mathbf{0}))$ is the first Charlier coefficient of G and $L_{\alpha}(\phi)$ is the same α-stable RF as in part 1.

4. Scaling of nonlinear functions of RG model

4. Scaling of nonlinear functions of RG model

Example (Boolean model)

The Boolean model $\hat{X}(\boldsymbol{t})=X(\boldsymbol{t}) \wedge 1$ corresponds to $Y(\boldsymbol{t})=G(X(\boldsymbol{t}))$ with $G(x)=x \wedge 1, x \in \mathbb{N}$.

4. Scaling of nonlinear functions of RG model

Example (Boolean model)

The Boolean model $\hat{X}(\boldsymbol{t})=X(\boldsymbol{t}) \wedge 1$ corresponds to $Y(\boldsymbol{t})=G(X(\boldsymbol{t}))$ with $G(x)=x \wedge 1, x \in \mathbb{N}$.
For $\phi(\boldsymbol{x})=\mathbb{I}(x \in A), Y_{\lambda}(\phi)=\operatorname{Leb}_{d}(\mathcal{X} \cap \lambda A)=: \hat{X}_{\lambda}(A)(=$ volume of $\{X(\boldsymbol{t})=1\} \cap \lambda A)$

4. Scaling of nonlinear functions of RG model

Example (Boolean model)

The Boolean model $\hat{X}(\boldsymbol{t})=X(\boldsymbol{t}) \wedge 1$ corresponds to $Y(\boldsymbol{t})=G(X(\boldsymbol{t}))$ with $G(x)=x \wedge 1, x \in \mathbb{N}$.
For $\phi(\boldsymbol{x})=\mathbb{I}(x \in A), Y_{\lambda}(\phi)=\operatorname{Leb}_{d}(\mathcal{X} \cap \lambda A)=: \hat{X}_{\lambda}(A)(=$ volume of $\{X(\boldsymbol{t})=1\} \cap \lambda A)$ Charlier coefficients: $c_{G, \mu}(0)=1-\mathrm{e}^{-\mu}, c_{G, \mu}(k)=(-1)^{k+1} \mathrm{e}^{-\mu}(k \geq 1)$

4. Scaling of nonlinear functions of RG model

Example (Boolean model)

The Boolean model $\hat{X}(\boldsymbol{t})=X(\boldsymbol{t}) \wedge 1$ corresponds to $Y(\boldsymbol{t})=G(X(\boldsymbol{t}))$ with $G(x)=x \wedge 1, x \in \mathbb{N}$.
For $\phi(\boldsymbol{x})=\mathbb{I}(x \in A), Y_{\lambda}(\phi)=\operatorname{Leb}_{d}(\mathcal{X} \cap \lambda A)=: \hat{X}_{\lambda}(A)(=$ volume of $\{X(\boldsymbol{t})=1\} \cap \lambda A)$ Charlier coefficients: $c_{G, \mu}(0)=1-\mathrm{e}^{-\mu}, c_{G, \mu}(k)=(-1)^{k+1} \mathrm{e}^{-\mu}(k \geq 1)$

Corollary (1)

Let $A \subset \mathbb{R}^{d}$ be a bounded Borel set and $X(t) R G$ model as in Thm 1. Then

$$
\lambda^{-d / \alpha}\left(\hat{X}_{\lambda}(A)-\mathrm{E} \hat{X}_{\lambda}(A)\right) \xrightarrow{\mathrm{d}} \mathrm{e}^{-\mu} L_{\alpha}(A), \quad \lambda \rightarrow \infty
$$

where $L_{\alpha}(A)$ is asymmetric α-stable r.v. with
$\operatorname{Ee}^{\mathrm{i} \theta L_{\alpha}(A)}=\exp \left\{-\sigma_{\alpha}|\theta|^{\alpha} \operatorname{Leb}_{d}(A)(1-\mathrm{i} \operatorname{sgn}(\theta) \tan (\pi \alpha / 2))\right\}, \theta \in \mathbb{R}$.

4. Scaling of nonlinear functions of RG model

4. Scaling of nonlinear functions of RG model

Example (Exponential model)

$$
\mathcal{E}_{M}(\boldsymbol{t}):=\mathrm{e}^{\mathrm{a}\left(X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})\right) / M^{1 / 2}}, \quad \mathcal{E}_{\lambda, M}(\phi):=\int_{\mathbb{R}^{d}} \phi(\boldsymbol{t} / \lambda) \mathcal{E}_{M}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t} .
$$

4. Scaling of nonlinear functions of RG model

Example (Exponential model)

$$
\mathcal{E}_{M}(\boldsymbol{t}):=\mathrm{e}^{\mathrm{a}\left(X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})\right) / M^{1 / 2}}, \quad \mathcal{E}_{\lambda, M}(\phi):=\int_{\mathbb{R}^{d}} \phi(\boldsymbol{t} / \lambda) \mathcal{E}_{M}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}
$$

Particular case of (23) corresponding to $G(x)=\mathrm{e}^{a x}$. Note $D_{+}^{k} G(x)=\left(\mathrm{e}^{a}-1\right)^{k} \mathrm{e}^{a x}$ and $c_{G, \mu}(k)=\left(\mathrm{e}^{a}-1\right)^{k} \mathrm{e}^{\left(\mathrm{e}^{a}-1\right) \mu}, k \in \mathbb{N}$. We also have

$$
\begin{aligned}
M^{1 / 2} c_{G\left(\cdot / M^{1 / 2}\right), \mu M}(1) & =\exp \left\{\left(\mathrm{e}^{\mathrm{a} / M^{1 / 2}}-1-\left(a / M^{1 / 2}\right)\right) \mu M\right\} M^{1 / 2}\left(\mathrm{e}^{\mathrm{a} / M^{1 / 2}}-1\right) \\
& \rightarrow a \mathrm{e}^{\mathrm{a}^{2} \mu / 2}=\mathrm{E}\left[\mathrm{e}^{\mathrm{a} Z_{\mu}} Z_{\mu}\right]=h_{G, \mu}(1)
\end{aligned}
$$

4. Scaling of nonlinear functions of RG model

Example (Exponential model)

$$
\mathcal{E}_{M}(\boldsymbol{t}):=\mathrm{e}^{\mathrm{a}\left(X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})\right) / M^{1 / 2}}, \quad \mathcal{E}_{\lambda, M}(\phi):=\int_{\mathbb{R}^{d}} \phi(\boldsymbol{t} / \lambda) \mathcal{E}_{M}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}
$$

Particular case of (23) corresponding to $G(x)=\mathrm{e}^{a x}$. Note $D_{+}^{k} G(x)=\left(\mathrm{e}^{a}-1\right)^{k} \mathrm{e}^{a x}$ and $c_{G, \mu}(k)=\left(\mathrm{e}^{a}-1\right)^{k} \mathrm{e}^{\left(\mathrm{e}^{a}-1\right) \mu}, k \in \mathbb{N}$. We also have

$$
\begin{aligned}
M^{1 / 2} c_{G\left(\cdot / M^{1 / 2}\right), \mu M}(1) & =\exp \left\{\left(\mathrm{e}^{\mathrm{a} / M^{1 / 2}}-1-\left(a / M^{1 / 2}\right)\right) \mu M\right\} M^{1 / 2}\left(\mathrm{e}^{\mathrm{a} / M^{1 / 2}}-1\right) \\
& \rightarrow a \mathrm{e}^{\mathrm{a}^{2} \mu / 2}=\mathrm{E}\left[\mathrm{e}^{\mathrm{aZ}} Z_{\mu}\right]=h_{G, \mu}(1)
\end{aligned}
$$

Corollary (2)

Let $X_{M}(\boldsymbol{t})$ be as in Thm 1 and $G(x)=\mathrm{e}^{a x}$. Then

4. Scaling of nonlinear functions of RG model

Example (Exponential model)

$$
\mathcal{E}_{M}(\boldsymbol{t}):=\mathrm{e}^{\mathrm{a}\left(X_{M}(\boldsymbol{t})-\mathrm{E} X_{M}(\boldsymbol{t})\right) / M^{1 / 2}}, \quad \mathcal{E}_{\lambda, M}(\phi):=\int_{\mathbb{R}^{d}} \phi(\boldsymbol{t} / \lambda) \mathcal{E}_{M}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}
$$

Particular case of (23) corresponding to $G(x)=\mathrm{e}^{a x}$. Note $D_{+}^{k} G(x)=\left(\mathrm{e}^{a}-1\right)^{k} \mathrm{e}^{a x}$ and $c_{G, \mu}(k)=\left(\mathrm{e}^{a}-1\right)^{k} \mathrm{e}^{\left(\mathrm{e}^{a}-1\right) \mu}, k \in \mathbb{N}$. We also have

$$
\begin{aligned}
M^{1 / 2} c_{G\left(\cdot / M^{1 / 2}\right), \mu M}(1) & =\exp \left\{\left(\mathrm{e}^{\mathrm{a} / M^{1 / 2}}-1-\left(a / M^{1 / 2}\right)\right) \mu M\right\} M^{1 / 2}\left(\mathrm{e}^{\mathrm{a} / M^{1 / 2}}-1\right) \\
& \rightarrow a \mathrm{e}^{\mathrm{a}^{2} \mu / 2}=\mathrm{E}\left[\mathrm{e}^{\mathrm{aZ}} Z_{\mu}\right]=h_{G, \mu}(1)
\end{aligned}
$$

Corollary (2)

Let $X_{M}(\boldsymbol{t})$ be as in Thm 1 and $G(x)=\mathrm{e}^{a x}$. Then

$$
\lambda^{(\gamma / 2)-H(\gamma)}\left(\mathcal{E}_{\lambda, M}-\mathrm{E} \mathcal{E}_{\lambda, M}(\phi)\right) \quad \xrightarrow{\mathrm{d}} \quad a \mathrm{e}^{\mathrm{a}^{2} \mu / 2} \begin{cases}B_{\alpha}(\phi), & \gamma>d(\alpha-1), \\ L_{\alpha}(\phi), & \gamma<d(\alpha-1) \\ J_{\alpha}(\phi), & \gamma=d(\alpha-1)\end{cases}
$$

where $H(\gamma), B_{\alpha}(\phi), L_{\alpha}(\phi), J_{\alpha}(\phi)$ are the same as in Thm 1.

5. Application to Burgers' equation

5. Application to Burgers' equation

Burgers' equation with (random) potential initial data:

$$
\begin{aligned}
\partial \vec{v}(t, \boldsymbol{x}) / \partial t+(\vec{v}(t, \boldsymbol{x}), \nabla) \vec{v}(t, \boldsymbol{x}) & =\frac{1}{2} \kappa \Delta \vec{v}(t, \boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \mathbb{R}^{d} \\
\vec{v}(0, \boldsymbol{x}) & =-\nabla \xi(\boldsymbol{x})
\end{aligned}
$$

5. Application to Burgers' equation

Burgers' equation with (random) potential initial data:

$$
\begin{aligned}
\partial \vec{v}(t, \boldsymbol{x}) / \partial t+(\vec{v}(t, \boldsymbol{x}), \nabla) \vec{v}(t, \boldsymbol{x}) & =\frac{1}{2} \kappa \Delta \vec{v}(t, \boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \mathbb{R}^{d} \\
\vec{v}(0, \boldsymbol{x}) & =-\nabla \xi(\boldsymbol{x})
\end{aligned}
$$

- $\vec{v}(t, \boldsymbol{x})=\left(v_{1}(t, \boldsymbol{x}), \cdots, v_{d}(t, \boldsymbol{x})\right): \mathbb{R}^{d}$-valued function (velocity field), $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$

5. Application to Burgers' equation

Burgers' equation with (random) potential initial data:

$$
\begin{aligned}
\partial \vec{v}(t, \boldsymbol{x}) / \partial t+(\vec{v}(t, \boldsymbol{x}), \nabla) \vec{v}(t, \boldsymbol{x}) & =\frac{1}{2} \kappa \Delta \vec{v}(t, \boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \mathbb{R}^{d} \\
\vec{v}(0, \boldsymbol{x}) & =-\nabla \xi(\boldsymbol{x})
\end{aligned}
$$

- $\vec{v}(t, \boldsymbol{x})=\left(v_{1}(t, \boldsymbol{x}), \cdots, v_{d}(t, \boldsymbol{x})\right): \mathbb{R}^{d}$-valued function (velocity field), $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$

5. Application to Burgers' equation

Burgers' equation with (random) potential initial data:

$$
\begin{aligned}
\partial \vec{v}(t, \boldsymbol{x}) / \partial t+(\vec{v}(t, \boldsymbol{x}), \nabla) \vec{v}(t, \boldsymbol{x}) & =\frac{1}{2} \kappa \Delta \vec{v}(t, \boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \mathbb{R}^{d} \\
\vec{v}(0, \boldsymbol{x}) & =-\nabla \xi(\boldsymbol{x})
\end{aligned}
$$

- $\vec{v}(t, \boldsymbol{x})=\left(v_{1}(t, \boldsymbol{x}), \cdots, v_{d}(t, \boldsymbol{x})\right): \mathbb{R}^{d}$-valued function (velocity field), $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$
- $\kappa>0$: viscosity parameter, $\Delta=$ Laplacian

5. Application to Burgers' equation

Burgers' equation with (random) potential initial data:

$$
\begin{aligned}
\partial \vec{v}(t, \boldsymbol{x}) / \partial t+(\vec{v}(t, \boldsymbol{x}), \nabla) \vec{v}(t, \boldsymbol{x}) & =\frac{1}{2} \kappa \Delta \vec{v}(t, \boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \mathbb{R}^{d} \\
\vec{v}(0, \boldsymbol{x}) & =-\nabla \xi(\boldsymbol{x})
\end{aligned}
$$

- $\vec{v}(t, \boldsymbol{x})=\left(v_{1}(t, \boldsymbol{x}), \cdots, v_{d}(t, \boldsymbol{x})\right): \mathbb{R}^{d}$-valued function (velocity field), $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$
- $\kappa>0$: viscosity parameter, $\Delta=$ Laplacian
- $\xi=\left\{\xi(\boldsymbol{x}) ; \boldsymbol{x} \in \mathbb{R}^{d}\right\}$: initial scalar (potential) random field (RF); $(\vec{v}(t, x), \nabla):=\sum_{i=1}^{d} v_{i}(t, x) \partial / \partial x_{i}$

5. Application to Burgers' equation

Burgers' equation with (random) potential initial data:

$$
\begin{aligned}
\partial \vec{v}(t, \boldsymbol{x}) / \partial t+(\vec{v}(t, \boldsymbol{x}), \nabla) \vec{v}(t, \boldsymbol{x}) & =\frac{1}{2} \kappa \Delta \vec{v}(t, \boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \mathbb{R}^{d} \\
\vec{v}(0, \boldsymbol{x}) & =-\nabla \xi(\boldsymbol{x})
\end{aligned}
$$

- $\vec{v}(t, \boldsymbol{x})=\left(v_{1}(t, \boldsymbol{x}), \cdots, v_{d}(t, \boldsymbol{x})\right): \mathbb{R}^{d}$-valued function (velocity field), $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$
- $\kappa>0$: viscosity parameter, $\Delta=$ Laplacian
- $\xi=\left\{\xi(\boldsymbol{x}) ; \boldsymbol{x} \in \mathbb{R}^{d}\right\}$: initial scalar (potential) random field (RF); $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$
- one of the important equations of mathematical physics [acoustic, astrophysics, cosmology, turbulence]

5. Application to Burgers' equation

Burgers' equation with (random) potential initial data:

$$
\begin{aligned}
\partial \vec{v}(t, \boldsymbol{x}) / \partial t+(\vec{v}(t, \boldsymbol{x}), \nabla) \vec{v}(t, \boldsymbol{x}) & =\frac{1}{2} \kappa \Delta \vec{v}(t, \boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \mathbb{R}^{d} \\
\vec{v}(0, \boldsymbol{x}) & =-\nabla \xi(\boldsymbol{x})
\end{aligned}
$$

- $\vec{v}(t, \boldsymbol{x})=\left(v_{1}(t, \boldsymbol{x}), \cdots, v_{d}(t, \boldsymbol{x})\right): \mathbb{R}^{d}$-valued function (velocity field), $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$
- $\kappa>0$: viscosity parameter, $\Delta=$ Laplacian
- $\xi=\left\{\xi(\boldsymbol{x}) ; \boldsymbol{x} \in \mathbb{R}^{d}\right\}$: initial scalar (potential) random field (RF); $(\vec{v}(t, x), \nabla):=\sum_{i=1}^{d} v_{i}(t, x) \partial / \partial x_{i}$
- one of the important equations of mathematical physics [acoustic, astrophysics, cosmology, turbulence]
- nonlinear but explicitly solvable

5. Application to Burgers' equation

Burgers' equation with (random) potential initial data:

$$
\begin{aligned}
\partial \vec{v}(t, \boldsymbol{x}) / \partial t+(\vec{v}(t, \boldsymbol{x}), \nabla) \vec{v}(t, \boldsymbol{x}) & =\frac{1}{2} \kappa \Delta \vec{v}(t, \boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \mathbb{R}^{d} \\
\vec{v}(0, \boldsymbol{x}) & =-\nabla \xi(\boldsymbol{x})
\end{aligned}
$$

- $\vec{v}(t, \boldsymbol{x})=\left(v_{1}(t, \boldsymbol{x}), \cdots, v_{d}(t, \boldsymbol{x})\right): \mathbb{R}^{d}$-valued function (velocity field), $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$
- $\kappa>0$: viscosity parameter, $\Delta=$ Laplacian
- $\xi=\left\{\xi(\boldsymbol{x}) ; \boldsymbol{x} \in \mathbb{R}^{d}\right\}$: initial scalar (potential) random field (RF); $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$
- one of the important equations of mathematical physics [acoustic, astrophysics, cosmology, turbulence]
- nonlinear but explicitly solvable
- solution $\vec{v}(t, x)$ with random initial data is a (vector-valued) RF

5. Application to Burgers' equation

Burgers' equation with (random) potential initial data:

$$
\begin{aligned}
\partial \vec{v}(t, \boldsymbol{x}) / \partial t+(\vec{v}(t, \boldsymbol{x}), \nabla) \vec{v}(t, \boldsymbol{x}) & =\frac{1}{2} \kappa \Delta \vec{v}(t, \boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \mathbb{R}^{d} \\
\vec{v}(0, \boldsymbol{x}) & =-\nabla \xi(\boldsymbol{x})
\end{aligned}
$$

- $\vec{v}(t, \boldsymbol{x})=\left(v_{1}(t, \boldsymbol{x}), \cdots, v_{d}(t, \boldsymbol{x})\right): \mathbb{R}^{d}$-valued function (velocity field), $(\vec{v}(t, \boldsymbol{x}), \nabla):=\sum_{i=1}^{d} v_{i}(t, \boldsymbol{x}) \partial / \partial x_{i}$
- $\kappa>0$: viscosity parameter, $\Delta=$ Laplacian
- $\xi=\left\{\xi(\boldsymbol{x}) ; \boldsymbol{x} \in \mathbb{R}^{d}\right\}$: initial scalar (potential) random field (RF); $(\vec{v}(t, x), \nabla):=\sum_{i=1}^{d} v_{i}(t, x) \partial / \partial x_{i}$
- one of the important equations of mathematical physics [acoustic, astrophysics, cosmology, turbulence]
- nonlinear but explicitly solvable
- solution $\vec{v}(t, x)$ with random initial data is a (vector-valued) RF
- behavior of $\vec{v}(t, \boldsymbol{x})$ presents considerable physical and mathematical interest and has been extensively studied
- M. Rosenblatt, Ya. Sinai, S. Molchanov, W. Woyczynski, N. Leonenko, ...

5. Application to Burgers' equation

5. Application to Burgers' equation

- Hopf-Cole substitution:

$$
\vec{v}(t, \boldsymbol{x})=-\kappa \nabla \log u(t, \boldsymbol{x})=-\frac{\kappa \nabla u(t, \boldsymbol{X})}{u(t, \boldsymbol{X})}
$$

with scalar-valued $u(t, \boldsymbol{x})$ satisfying heat equation
$\partial u(t, \boldsymbol{x}) / \partial t=\frac{1}{2} \kappa \Delta u(t, \boldsymbol{x})$
with the exponential initial condition $u(0+, \boldsymbol{x})=\exp \{\xi(\boldsymbol{x}) / \kappa\}, \boldsymbol{x} \in \mathbb{R}^{d}$.

5. Application to Burgers' equation

- Hopf-Cole substitution:

$$
\vec{v}(t, \boldsymbol{x})=-\kappa \nabla \log u(t, \boldsymbol{x})=-\frac{\kappa \nabla u(t, \boldsymbol{X})}{u(t, \boldsymbol{X})}
$$

with scalar-valued $u(t, \boldsymbol{x})$ satisfying heat equation
$\partial u(t, \boldsymbol{x}) / \partial t=\frac{1}{2} \kappa \Delta u(t, \boldsymbol{x})$
with the exponential initial condition $u(0+, \boldsymbol{x})=\exp \{\xi(\boldsymbol{x}) / \kappa\}, \boldsymbol{x} \in \mathbb{R}^{d}$.
Explicit representation through heat kernel
$g(t, \boldsymbol{x}, \boldsymbol{y}):=(2 \pi \kappa t)^{-d / 2} \exp \left\{-\|\boldsymbol{x}-\boldsymbol{y}\|^{2} / 2 \kappa t\right\}$:

5. Application to Burgers' equation

- Hopf-Cole substitution:

$$
\vec{v}(t, \boldsymbol{x})=-\kappa \nabla \log u(t, \boldsymbol{x})=-\frac{\kappa \nabla u(t, \boldsymbol{X})}{u(t, \boldsymbol{X})}
$$

with scalar-valued $u(t, \boldsymbol{x})$ satisfying heat equation
$\partial u(t, \boldsymbol{x}) / \partial t=\frac{1}{2} \kappa \Delta u(t, \boldsymbol{x})$
with the exponential initial condition $u(0+, \boldsymbol{x})=\exp \{\xi(\boldsymbol{x}) / \kappa\}, \boldsymbol{x} \in \mathbb{R}^{d}$.
Explicit representation through heat kernel
$g(t, \boldsymbol{x}, \boldsymbol{y}):=(2 \pi \kappa t)^{-d / 2} \exp \left\{-\|\boldsymbol{x}-\boldsymbol{y}\|^{2} / 2 \kappa t\right\}$:

$$
\vec{v}(t, \boldsymbol{x})=-\frac{\kappa \int_{\mathbb{R}^{d}} \nabla g(t, \boldsymbol{x}, \boldsymbol{y}) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}}{\int_{\mathbb{R}^{d}} g(t, \boldsymbol{X}, \boldsymbol{y}) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}}
$$

5. Application to Burgers' equation

- Hopf-Cole substitution:

$$
\vec{v}(t, \boldsymbol{x})=-\kappa \nabla \log u(t, \boldsymbol{x})=-\frac{\kappa \nabla u(t, \boldsymbol{X})}{u(t, \boldsymbol{X})}
$$

with scalar-valued $u(t, \boldsymbol{x})$ satisfying heat equation
$\partial u(t, \boldsymbol{x}) / \partial t=\frac{1}{2} \kappa \Delta u(t, \boldsymbol{x})$
with the exponential initial condition $u(0+, \boldsymbol{x})=\exp \{\xi(\boldsymbol{x}) / \kappa\}, \boldsymbol{x} \in \mathbb{R}^{d}$.
Explicit representation through heat kernel
$g(t, \boldsymbol{x}, \boldsymbol{y}):=(2 \pi \kappa t)^{-d / 2} \exp \left\{-\|\boldsymbol{x}-\boldsymbol{y}\|^{2} / 2 \kappa t\right\}$:

$$
\vec{v}(t, \boldsymbol{x})=-\frac{\kappa \int_{\mathbb{R}^{d}} \nabla g(t, \boldsymbol{X}, \boldsymbol{y}) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}}{\int_{\mathbb{R}^{d}} g(t, \boldsymbol{X}, \boldsymbol{y}) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}}
$$

- Parabolic scaling leads to the RF $\vec{v}_{\lambda}(t, \boldsymbol{x}):=\vec{v}\left(\lambda^{2} t, \lambda \boldsymbol{x}\right)$ written as

$$
\begin{equation*}
\vec{v}_{\lambda}(t, \boldsymbol{x})=-\frac{\kappa \int_{\mathbb{R}^{d}} \nabla g(t, \boldsymbol{x}, \boldsymbol{y} / \lambda) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}}{\lambda \int_{\mathbb{R}^{d}} g(t, \boldsymbol{x}, \boldsymbol{y} / \lambda) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}} \tag{23}
\end{equation*}
$$

5. Application to Burgers' equation

- Hopf-Cole substitution:

$$
\vec{v}(t, \boldsymbol{x})=-\kappa \nabla \log u(t, \boldsymbol{x})=-\frac{\kappa \nabla u(t, \boldsymbol{X})}{u(t, \boldsymbol{X})}
$$

with scalar-valued $u(t, \boldsymbol{x})$ satisfying heat equation
$\partial u(t, \boldsymbol{x}) / \partial t=\frac{1}{2} \kappa \Delta u(t, \boldsymbol{x})$
with the exponential initial condition $u(0+, \boldsymbol{x})=\exp \{\xi(\boldsymbol{x}) / \kappa\}, \boldsymbol{x} \in \mathbb{R}^{d}$.
Explicit representation through heat kernel
$g(t, \boldsymbol{x}, \boldsymbol{y}):=(2 \pi \kappa t)^{-d / 2} \exp \left\{-\|\boldsymbol{x}-\boldsymbol{y}\|^{2} / 2 \kappa t\right\}$:

$$
\vec{v}(t, \boldsymbol{x})=-\frac{\kappa \int_{\mathbb{R}^{d}} \nabla g(t, \boldsymbol{x}, \boldsymbol{y}) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}}{\int_{\mathbb{R}^{d}} g(t, \boldsymbol{X}, \boldsymbol{y}) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}}
$$

- Parabolic scaling leads to the RF $\vec{v}_{\lambda}(t, \boldsymbol{x}):=\vec{v}\left(\lambda^{2} t, \lambda \boldsymbol{x}\right)$ written as

$$
\begin{equation*}
\vec{v}_{\lambda}(t, \boldsymbol{x})=-\frac{\kappa \int_{\mathbb{R}^{d}} \nabla g(t, \boldsymbol{x}, \boldsymbol{y} / \lambda) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}}{\lambda \int_{\mathbb{R}^{d}} g(t, \boldsymbol{x}, \boldsymbol{y} / \lambda) \mathrm{e}^{\xi(\boldsymbol{y}) / \kappa} \mathrm{d} \boldsymbol{y}} \tag{23}
\end{equation*}
$$

- integrals in numerator and denominator resemble $Y_{\lambda}(\phi)=\int_{\mathbb{R}^{d}} G(\xi(\boldsymbol{y})) \phi(\boldsymbol{y} / \lambda) \mathrm{d} \boldsymbol{y}$ with $G(x)=\mathrm{e}^{x / \kappa}, \phi(\boldsymbol{y})=\nabla g(t, \boldsymbol{x}, \boldsymbol{y})$ and $\phi(\boldsymbol{y})=g(t, \boldsymbol{x}, \boldsymbol{y})$

5. Application to Burgers' equation

5. Application to Burgers' equation

- For $\kappa>0$ fixed the limit distribution of $\vec{v}_{\lambda}(t, \boldsymbol{x})$ was studied for several models of initial $\operatorname{RF} \xi=\left\{\xi(\boldsymbol{y}), \boldsymbol{y} \in \mathbb{R}^{d}\right\}$ with short and long range dependence [Gaussian, Gaussian subordinated, shot-noise, Cox]

5. Application to Burgers' equation

- For $\kappa>0$ fixed the limit distribution of $\vec{v}_{\lambda}(t, \boldsymbol{x})$ was studied for several models of initial $\operatorname{RF} \xi=\left\{\xi(\boldsymbol{y}), \boldsymbol{y} \in \mathbb{R}^{d}\right\}$ with short and long range dependence [Gaussian, Gaussian subordinated, shot-noise, Cox]
Albeverio, S., Molchanov, S.A. \& S.D. (1994) Stratified structure of the Universe and Burgers' equation - a probabilistic approach. Probab. Th. Rel. Fields 100
Funaki, T., S.D. \& Woyczynski, W.A. (1995) Gibbs-Cox random fields and Burgers' turbulence. Ann. Appl. Probab. 5 Leonenko, N.N. \& Woyczynski, W.A. (1998) Scaling limits of solutions of the heat equation for singular non-Gaussian data. J. Stat. Physics 91

5. Application to Burgers' equation

- For $\kappa>0$ fixed the limit distribution of $\vec{v}_{\lambda}(t, \boldsymbol{x})$ was studied for several models of initial $\operatorname{RF} \xi=\left\{\xi(\boldsymbol{y}), \boldsymbol{y} \in \mathbb{R}^{d}\right\}$ with short and long range dependence [Gaussian, Gaussian subordinated, shot-noise, Cox]

Albeverio, S., Molchanov, S.A. \& S.D. (1994) Stratified structure of the Universe and Burgers' equation - a probabilistic approach. Probab. Th. Rel. Fields 100

Funaki, T., S.D. \& Woyczynski, W.A. (1995) Gibbs-Cox random fields and Burgers' turbulence. Ann. Appl. Probab. 5 Leonenko, N.N. \& Woyczynski, W.A. (1998) Scaling limits of solutions of the heat equation for singular non-Gaussian data. J. Stat. Physics 91

Review paper:

S.D. \& Woyczynski, W.A. (2003) Limit theorems for the Burgers equation initialized by data with long-range dependence. In: P. Doukhan, G. Oppenheim and M.S. Taqqu (Eds.) Long Range Dependence: Theory and Applications, pp. 507-523. Birkhäuser, Boston.

5. Application to Burgers' equation

- For $\kappa>0$ fixed the limit distribution of $\vec{v}_{\lambda}(t, \boldsymbol{x})$ was studied for several models of initial $\operatorname{RF} \xi=\left\{\xi(\boldsymbol{y}), \boldsymbol{y} \in \mathbb{R}^{d}\right\}$ with short and long range dependence [Gaussian, Gaussian subordinated, shot-noise, Cox]

Albeverio, S., Molchanov, S.A. \& S.D. (1994) Stratified structure of the Universe and Burgers' equation - a probabilistic approach. Probab. Th. Rel. Fields 100
Funaki, T., S.D. \& Woyczynski, W.A. (1995) Gibbs-Cox random fields and Burgers' turbulence. Ann. Appl. Probab. 5 Leonenko, N.N. \& Woyczynski, W.A. (1998) Scaling limits of solutions of the heat equation for singular non-Gaussian data. J. Stat. Physics 91

Review paper:
S.D. \& Woyczynski, W.A. (2003) Limit theorems for the Burgers equation initialized by data with long-range dependence. In: P. Doukhan, G. Oppenheim and M.S. Taqqu (Eds.) Long Range Dependence: Theory and Applications, pp. 507-523. Birkhäuser, Boston.

- This talk: initial potential RF $=$ aggregated RG model

$$
\begin{equation*}
\xi_{M}(\boldsymbol{y}):=M^{-1 / 2}\left(X_{M}(\boldsymbol{y})-\mathrm{E} X_{M}(\boldsymbol{y})\right), \quad \boldsymbol{y} \in \mathbb{R}^{d}, \tag{24}
\end{equation*}
$$

with intensity $M=\lambda^{\gamma}$ increasing with λ for some $\gamma>0$

5. Application to Burgers' equation

- For $\kappa>0$ fixed the limit distribution of $\vec{v}_{\lambda}(t, \boldsymbol{x})$ was studied for several models of initial $\operatorname{RF} \xi=\left\{\xi(\boldsymbol{y}), \boldsymbol{y} \in \mathbb{R}^{d}\right\}$ with short and long range dependence [Gaussian, Gaussian subordinated, shot-noise, Cox]

Albeverio, S., Molchanov, S.A. \& S.D. (1994) Stratified structure of the Universe and Burgers' equation - a probabilistic approach. Probab. Th. Rel. Fields 100
Funaki, T., S.D. \& Woyczynski, W.A. (1995) Gibbs-Cox random fields and Burgers' turbulence. Ann. Appl. Probab. 5 Leonenko, N.N. \& Woyczynski, W.A. (1998) Scaling limits of solutions of the heat equation for singular non-Gaussian data. J. Stat. Physics 91

Review paper:
S.D. \& Woyczynski, W.A. (2003) Limit theorems for the Burgers equation initialized by data with long-range dependence. In: P. Doukhan, G. Oppenheim and M.S. Taqqu (Eds.) Long Range Dependence: Theory and Applications, pp. 507-523. Birkhäuser, Boston.

- This talk: initial potential RF = aggregated RG model

$$
\begin{equation*}
\xi_{M}(\boldsymbol{y}):=M^{-1 / 2}\left(X_{M}(\boldsymbol{y})-\mathrm{E} X_{M}(\boldsymbol{y})\right), \quad \boldsymbol{y} \in \mathbb{R}^{d} \tag{24}
\end{equation*}
$$

with intensity $M=\lambda^{\gamma}$ increasing with λ for some $\gamma>0$

- The meaning of intial condition $\vec{v}(0+, \boldsymbol{x})=-\nabla \xi_{M}(\boldsymbol{x})$ ignored

5. Application to Burgers' equation

5. Application to Burgers' equation

Thm 2 and Example 2 lead to

Corollary

1. Let $\vec{v}_{\lambda}(t, x)$ be as in (23), (24), with X_{M}, M satisfying the conditions of Thm 1 .

5. Application to Burgers' equation

Thm 2 and Example 2 lead to

Corollary

1. Let $\vec{v}_{\lambda}(t, \boldsymbol{x})$ be as in (23), (24), with X_{M}, M satisfying the conditions of Thm 1. Then, as $\lambda \rightarrow \infty$, for any $\gamma>0$

$$
\lambda^{1+d+\frac{\gamma}{2}-H(\gamma)} \vec{v}_{\lambda}(t, \boldsymbol{x}) \quad \stackrel{\text { fdd }}{\longrightarrow} \quad \begin{cases}B_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma>d(\alpha-1), \tag{25}\\ L_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma<d(\alpha-1), \\ J_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma=d(\alpha-1),\end{cases}
$$

5. Application to Burgers' equation

Thm 2 and Example 2 lead to

Corollary

1. Let $\vec{v}_{\lambda}(t, \boldsymbol{x})$ be as in (23), (24), with X_{M}, M satisfying the conditions of Thm 1. Then, as $\lambda \rightarrow \infty$, for any $\gamma>0$

$$
\lambda^{1+d+\frac{\gamma}{2}-H(\gamma)} \vec{v}_{\lambda}(t, \boldsymbol{x}) \quad \stackrel{\text { fdd }}{\longrightarrow} \quad \begin{cases}B_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma>d(\alpha-1), \tag{25}\\ L_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma<d(\alpha-1), \\ J_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma=d(\alpha-1),\end{cases}
$$

where $H(\gamma)$ and the limit RFs are the same as in Thms 1-2.

5. Application to Burgers' equation

Thm 2 and Example 2 lead to

Corollary

1. Let $\vec{v}_{\lambda}(t, \boldsymbol{x})$ be as in (23), (24), with X_{M}, M satisfying the conditions of Thm 1. Then, as $\lambda \rightarrow \infty$, for any $\gamma>0$

$$
\lambda^{1+d+\frac{\gamma}{2}-H(\gamma)} \vec{v}_{\lambda}(t, \boldsymbol{x}) \quad \stackrel{\text { fdd }}{\longrightarrow} \quad \begin{cases}B_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma>d(\alpha-1), \tag{25}\\ L_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma<d(\alpha-1), \\ J_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma=d(\alpha-1),\end{cases}
$$

where $H(\gamma)$ and the limit RFs are the same as in Thms 1-2.
2. $\vec{v}_{\lambda}(t, \boldsymbol{x})$ be as in (23) with $\xi(\boldsymbol{y})=X(\boldsymbol{y})$ given in (8) $(M=1)$.

5. Application to Burgers' equation

Thm 2 and Example 2 lead to

Corollary

1. Let $\vec{v}_{\lambda}(t, \boldsymbol{x})$ be as in (23), (24), with X_{M}, M satisfying the conditions of Thm 1. Then, as $\lambda \rightarrow \infty$, for any $\gamma>0$

$$
\lambda^{1+d+\frac{\gamma}{2}-H(\gamma)} \vec{v}_{\lambda}(t, \boldsymbol{x}) \quad \xrightarrow{\mathrm{fdd}} \quad \begin{cases}B_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma>d(\alpha-1), \tag{25}\\ L_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma<d(\alpha-1), \\ J_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), & \gamma=d(\alpha-1),\end{cases}
$$

where $H(\gamma)$ and the limit RFs are the same as in Thms 1-2.
2. $\vec{v}_{\lambda}(t, \boldsymbol{x})$ be as in (23) with $\xi(\boldsymbol{y})=X(\boldsymbol{y})$ given in (8) $(M=1)$. Then, as $\lambda \rightarrow \infty$

$$
\begin{equation*}
\lambda^{1+d-\frac{d}{\alpha}} \vec{v}_{\lambda}(t, \boldsymbol{x}) \quad \xrightarrow{\mathrm{fdd}} \quad \kappa\left(\mathrm{e}^{1 / \kappa}-1\right) L_{\alpha}(\nabla g(t, \boldsymbol{x}, \cdot)), \tag{26}
\end{equation*}
$$

where L_{α} is α-stable RF as in part 1 .

6. Open questions

6. Open questions

(1) Thm 2 yields trivial limits if respective Hermite/Charlier coefficients vanish: $h_{G, \mu}(1)=0$ or $c_{G, \mu}(1)=0$.

6. Open questions

(1) Thm 2 yields trivial limits if respective Hermite/Charlier coefficients vanish: $h_{G, \mu}(1)=0$ or $c_{G, \mu}(1)=0$. Limit distribution of $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} G\left(X_{M}(\boldsymbol{t})\right) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ in such cases is open

6. Open questions

(1) Thm 2 yields trivial limits if respective Hermite/Charlier coefficients vanish: $h_{G, \mu}(1)=0$ or $c_{G, \mu}(1)=0$. Limit distribution of $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} G\left(X_{M}(\boldsymbol{t})\right) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ in such cases is open (Gaussian/Poisson chaos?)

6. Open questions

(1) Thm 2 yields trivial limits if respective Hermite/Charlier coefficients vanish: $h_{G, \mu}(1)=0$ or $c_{G, \mu}(1)=0$. Limit distribution of $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} G\left(X_{M}(\boldsymbol{t})\right) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ in such cases is open (Gaussian/Poisson chaos?)
(2) Aggregated small-scale limits: $\lambda \rightarrow 0$ together with $M=\lambda^{\gamma} \rightarrow 0$?

6. Open questions

(1) Thm 2 yields trivial limits if respective Hermite/Charlier coefficients vanish: $h_{G, \mu}(1)=0$ or $c_{G, \mu}(1)=0$. Limit distribution of $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} G\left(X_{M}(\boldsymbol{t})\right) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ in such cases is open (Gaussian/Poisson chaos?)
(2) Aggregated small-scale limits: $\lambda \rightarrow 0$ together with $M=\lambda^{\gamma} \rightarrow 0$?

For linear integrals $X_{\lambda, M}(\phi)$:
Biermé, H., Estrade, A. \& Kaj, I. (2010) Self-similar random fields and rescaled random balls models. J. Theoret.
Probab. 23

6. Open questions

(1) Thm 2 yields trivial limits if respective Hermite/Charlier coefficients vanish: $h_{G, \mu}(1)=0$ or $c_{G, \mu}(1)=0$. Limit distribution of $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} G\left(X_{M}(\boldsymbol{t})\right) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ in such cases is open (Gaussian/Poisson chaos?)
(2) Aggregated small-scale limits: $\lambda \rightarrow 0$ together with $M=\lambda^{\gamma} \rightarrow 0$?

For linear integrals $X_{\lambda, M}(\phi)$:
Biermé, H., Estrade, A. \& Kaj, I. (2010) Self-similar random fields and rescaled random balls models. J. Theoret.
Probab. 23
Nonlinear integrals: $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} G\left(X_{M}(\boldsymbol{t})\right) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$?

6. Open questions

(1) Thm 2 yields trivial limits if respective Hermite/Charlier coefficients vanish: $h_{G, \mu}(1)=0$ or $c_{G, \mu}(1)=0$. Limit distribution of $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} G\left(X_{M}(\boldsymbol{t})\right) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$ in such cases is open (Gaussian/Poisson chaos?)
(2) Aggregated small-scale limits: $\lambda \rightarrow 0$ together with $M=\lambda^{\gamma} \rightarrow 0$?

For linear integrals $X_{\lambda, M}(\phi)$:
Biermé, H., Estrade, A. \& Kaj, I. (2010) Self-similar random fields and rescaled random balls models. J. Theoret.
Probab. 23
Nonlinear integrals: $Y_{\lambda, M}(\phi)=\int_{\mathbb{R}^{d}} G\left(X_{M}(\boldsymbol{t})\right) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}$?
(3) Cox RG model: Poisson grains with random intensity

[^0]: Biermé, H., Meerschaert, M.M. and Scheffler, H.P. (2007) Operator scaling stable random fields. Stoch. Process. Appl.

