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Definition

Hawkes process

A Hawkes process (Nt)t≥0 is a self-exciting point process, whose
intensity at time t, denoted by λt , is of the form

λt = µ+
∑

0<Ji<t

φ(t − Ji ) = µ+

∫
(0,t)

φ(t − s)dNs ,

where µ is a positive real number, φ a regression kernel and the Ji are
the points of the process before time t.

These processes have been introduced in 1971 by Hawkes in the
purpose of modeling earthquakes and their aftershocks.

Used in neurosciences, network analysis, criminology...

First introduction in finance : Chavez-Demoulin et al. (2005),
Bowsher (2007).
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Example of Hawkes process intensity
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Popularity of Hawkes processes in finance

Two main reasons for the popularity of Hawkes processes

In finance for example, it is nowadays classical to model the order
flow (number of trades) thanks to Hawkes processes.

These processes represent a very natural and tractable extension of
Poisson processes. In fact, comparing point processes and
conventional time series, Poisson processes are often viewed as the
counterpart of iid random variables whereas Hawkes processes play
the role of autoregressive processes.

Another explanation for the appeal of Hawkes processes is that it is
often easy to give a convincing interpretation to such modelling. To
do so, the branching structure of Hawkes processes is quite helpful.
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Hawkes processes as a population model

Poisson cluster representation

Under the assumption ‖φ‖1 < 1, where ‖φ‖1 denotes the L1 norm of
φ, Hawkes processes can be represented as a population process where
migrants arrive according to a Poisson process with parameter µ.

Then each migrant gives birth to children according to a non
homogeneous Poisson process with intensity function φ, these children
also giving birth to children according to the same non homogeneous
Poisson process, see Hawkes (74).

Now consider for example the classical case of buy (or sell) market
orders. Then migrants can be seen as exogenous orders whereas
children are viewed as orders triggered by other orders.
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Stability condition

The condition ‖φ‖1 < 1

The assumption ‖φ‖1 < 1 is crucial in the study of Hawkes processes.

If one wants to get a stationary intensity with finite first moment,
then the condition ‖φ‖1 < 1 is required (similar condition as for the
AR(1) process).

This condition is also necessary in order to obtain classical ergodic
properties for the process.

For these reasons, this condition is often called stability condition in
the Hawkes literature.
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Main classes of volatility models

Prices are often modeled as continuous semi-martingales of the form

dPt = Pt(µtdt + σtdWt).

The volatility process σs is the most important ingredient of the model.
Practitioners consider essentially three classes of volatility models :

Deterministic volatility (Black and Scholes 1973),

Local volatility (Derman and Kani, Dupire 1994)

Stochastic volatility (Hull and White 1987, Heston 1993, Hagan et al.
2002,...).

In term of regularity, in these models, the volatility is either very smooth or
with a smoothness similar to that of a Brownian motion.
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Fractional Brownian motion (I)

To allow for a wider range of smoothness, one can use the fractional
Brownian motion in volatility modelling.

Idea introduced by Comte and Renault in 1998 in the context of long
memory modelling with H > 1/2.

Definition

The fractional Brownian motion (fBm) with Hurst parameter H is the only
process WH to satisfy :

Self-similarity : (WH
at )

L
= aH(WH

t ).

Stationary increments : (WH
t+h −WH

t )
L
= (WH

h ).

Gaussian process with E[WH
1 ] = 0 and E[(WH

1 )2] = 1.
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Fractional Brownian motion (II)

Proposition

For all ε > 0, WH is (H − ε)-Hölder a.s.

Proposition

The absolute moments satisfy

E[|WH
t+h −WH

t |q] = Kqh
Hq.

Mandelbrot-van Ness representation

WH
t =

∫ t

0

dWs

(t − s)
1
2
−H

+

∫ 0

−∞

( 1

(t − s)
1
2
−H
− 1

(−s)
1
2
−H

)
dWs .
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The log-volatility

Figure – The log volatility log(σt) as a function of t, S&P.
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Measure of the regularity of the log-volatility

The starting point of this work is to consider the scaling of the moments
of the increments of the log-volatility. Thus we study the quantity

m(∆, q) = E[| log(σt+∆)− log(σt)|q],

or rather its empirical counterpart.

The behavior of m(∆, q) when ∆ is close to zero is related to the
smoothness of the volatility (in the Hölder or even the Besov sense).
Essentially, the regularity of the signal measured in lq norm is s if
m(∆, q) ∼ c∆qs as ∆ tends to zero.
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Scaling of the moments

Figure – log(m(q,∆)) = ζq log(∆) + Cq. The scaling is not only valid as ∆
tends to zero, but holds on a wide range of time scales.
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Monofractality of the log-volatility

Figure – Empirical ζq and q → Hq with H = 0.14 (similar to a fBm with Hurst
parameter H).
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Distribution of the log-volatility increments

Figure – The distribution of the log-volatility increments is close to Gaussian.
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Properties of the rough volatility models

Statistical analysis of rough volatility models

The log-volatility behaves essentially as a fractional Brownian motion
with Hurst parameter of order 0.1.

More precisely, basically all the statistical stylized facts of volatility are
retrieved when modelling it by a rough fractional Brownian motion.

Such model also enables us to reproduce very well the behavior of the
implied volatility surface, in particular the at-the-money skew
(without jumps).

Very relevant approach for risk management of derivatives.

The phenomenon is universal, see G. Szymanski’s thesis for
theoretical foundations of the statistical analysis of rough volatility.
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In this presentation

What we want to understand :

Why is volatility rough ?

Something universal in finance→ should be related to some no
arbitrage concept.

Can we make this link ?
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Market impact

Some definitions

Market impact is the link between the volume of an order (either
market order or metaorder) and the price moves during and after the
execution of this order.

We focus here on the impact function of metaorders, which is the
expectation of the price move with respect to time during and after
the execution of the metaorder.

We call permanent market impact of a metaorder the limit in time of
the impact function (that is the average price move between the start
of the metaorder and a long time after its execution).
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Market impact in practice

Figure – Market impact curves.
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Market impact

Linear permanent impact

Let Pt be the asset price at time t. Consider a metaorder with total
volume V .

PMI (V ) = lim
s→+∞

E[Ps − P0|V ].

Price manipulation is a roundtrip with negative average cost.

From Huberman and Stanzl and Gatheral : Only linear permanent
market impact can prevent price manipulation : PMI (V ) = kV .
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Dynamics

Assumptions

All market orders are part of metaorders.

Let [0,S ] be the time during which metaorders are being executed
(which can be thought of as the trading day). Let vai (resp. vbi ) be
the volume of the i-th buy (resp. sell) metaorder and Na

S (resp. Nb
S )

be the number of buy (resp. sell) metaorders up to time S . Finally,
write V a

S and V b
S for cumulated buy and sell order flows up to time S .

We assume

PS = P0 + k
( Na

S∑
i=1

vai −
Nb
S∑

i=1

vbi
)

+ ZS = P0 + k(V a
S − V b

S ) + ZS ,

with Z a martingale term that we neglect.
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Dynamics

Martingale assumption

We furthermore assume that the price Pt is a martingale. We obtain

Pt = P0 + E
[
k(V a

S − V b
S )|Ft

]
.

We suppose that lim
S→+∞

E
[
k(V a

S −V b
S )|Ft

]
is well defined. This means

E
[
(V a

S+h − V b
S+h)− (V a

S − V b
S )|Ft

]
→ 0,

that is the order flow imbalance between S and S + h is
asymptotically (in S) not predictable at time t.

M. Rosenbaum Statistical modelling with Hawkes processes 24



Dynamics

Price dynamics

Under the preceding assumptions, we finally get

Pt = P0 + k lim
S→+∞

E
[
(V a

S − V b
S )|Ft

]
.

Martingale price.

Linear permanent impact, independent of execution mode.

The price process only depends on the global market order flow and
not on the individual executions of metaorders. We thus do not need
to assume that the market sees the execution of metaorders as it is
usually done.

Market orders move the price because they change the anticipation
that market makers have about the future of the order flow.
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Hawkes specification

Hawkes propagator

We now assume that buy and sell order flows are modeled by
independent Hawkes processes Na and Nb with same parameters µ
and φ. All orders have same unit volume.

Later on we will consider an asymptotic setting so that the flows are
defined on [0,T ] with T → +∞.

To be very general, we allow the parameters to depend on T (but do
not assume they do). So we write Na,T , Nb,T , µT , φT = aTφ with
aT < 1 and

∫
φ = 1 (stability condition).

Note that the average intensity of our processes is essentially
βT = µT (1− aT )−1 (stationary case).
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Price dynamic under Hawkes specification

Price equation

In this case, the general equation above rewrites as the following
propagator dynamic

Pt = P0 +

∫ t

0
ζT (t − s)(dNa,T

s − dNb,T
s ),

with ζT (t) =
(
1 +

∫ +∞
t ψT (u)−

∫ t
0 ψ

T (u − s)φT (s)dsdu
)
.

The propagator kernel compensates the correlation of the order flow
implied by the Hawkes dynamics to recover a martingale price. Note
that the kernel does not tend to 0 since there is permanent impact.
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Adding our own transactions

Labeled order

In the above framework, Na,T and Nb,T are the flows of anonymous
market orders.

Now assume we arrive on the market, executing our own (buy)
metaorder. Our flow is a Poisson process n on [0,T ] (can be
generalized) with intensity IT = γβT , γ < 1 (proportion γ of the
total flow).

According to the propagator approach, we get

Pt = P0 +

∫ t

0
ζT (t − s)(dNa,T

s − dNb,T
s ) +

∫ t

0
ζT (t − s)dns .
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Impact function

Explicit market impact

We get that the impact function of a metaorder executed between 0
and T is for 0 ≤ t ≤ T

MI (t) := E[Pt − P0] = IT
∫ t

0
ζT (t − s)ds.

We define

MI
T

(t) =
MITtT
TβT

=

∫ t

0
χT (t − s)ds,

with

χT (s) = γ
ζT (Ts)

1− aT
.
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Decomposing the impact

Transient and permanent market impact

We have

MI
T

(t) =

∫ t

0
χT (t − s)ds,

χT (s) = γ
(
1 + (1− aT )−1

∫ +∞

Ts
φ
)
.

The market impact kernel is the sum of a linear market impact
representing the permanent component and of a transient term
vanishing after the metaorder completion.

Existence of transient part is equivalent (asymptotically) to the
existence of a limit for (1− aT )−1

∫ t
0

∫ +∞
T (t−s) φ(u)duds.
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Shape of the market impact

Power-law market impact

Assume the transient part of the market impact exists. Then for t < 1,

lim
T→+∞

MI
T

(t)− γt = γKt1−α

for some K > 0 and α ∈ (0, 1). Furthermore, we necessarily have aT → 1
(highly endogenous market) and the tail of the Hawkes kernel is power-law
of order x−(1+α).

Note that the celebrated square-root law (Bouchaud et al., Farmer et al.,
Pohl et al.) corresponds to α = 1/2.
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Market impact decomposition

Figure – Permanent and temporary market impact
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Limiting price process

Emergence of (hyper-)rough processes

Let P̄T
t = 1

TβT P
T
t and assume µT (1− aT )T tends to δ. As T goes to

infinity, the limit Pt of P̄T
t satisfies

Pt = BXt ,

Xt =
2

δ

∫ t

0
Fα,λ(s)ds +

1

δ
√
λ

∫ t

0
Fα,λ(t − s)dWXs ,

where B and W are Brownian motions, λ = KΓ(1− α)−1 and
Fα,λ(t) =

∫ t
0 f α,λ(s)ds with f α,λ the density of the Mittag-Leffler

distribution. Furthermore, X has Hölder regularity min(2α, 1)− ε.
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The case α > 1/2

Rough Heston limit

When α > 1
2 , the rescaled price process variance is almost surely

differentiable. Furthermore

Pt =

∫ t

0

√
YsdBs ,

Yt =
λ

Γ(α)

( ∫ t

0
(t − s)α−1(

2

δ
− λYs)ds +

1

δ
√
λ

∫ t

0
(t − s)α−1

√
YsdWs

)
.

Therefore we have a rough Heston model with H = α− 1/2.
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Characteristic function of rough Heston models

We write :

I 1−αf (x) =
1

Γ(1− α)

∫ x

0

f (t)

(x − t)α
dt, Dαf (x) =

d

dx
I 1−αf (x).

Theorem

The characteristic function at time t for the rough Heston model is given
by

exp
(∫ t

0
g(a, s)ds +

V0

θλ
I 1−αg(a, t)

)
,

with g(a, ) the unique solution of the fractional Riccati equation :

Dαg(a, s) =
λθ

2
(−a2 − ia) + λ(iaρν − 1)g(a, s) +

λν2

2θ
g2(a, s).
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Comments on the theorem

The rough Heston formula

The formula is the very same as the celebrated Heston formula, up to
the replacement of a classical time derivative by a fractional
derivative.

This formula allows for fast derivatives pricing and risk management.

Thanks to this approach, we can derive the infinite dimensional
Markovian structure underlying rough Heston models, leading to
explicit hedging formulas.

Other probabilistic aspects of rough volatility models : Large and
moderate deviation principles, connections with Hairer’s regularity
structures : works by P. Gassiat and co-authors. Also links with
log-correlated Gaussian field.
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Summary

From no-arbitrage to volatility

We made two assumptions : Linear permanent impact and martingale
price.

Only modeling assumption : Hawkes dynamics for the order flow
(reasonable...).

This leads to rough volatility.
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Further aspects of volatility

Zumbach effect (Zumbach et al.) : description

Feedback of price returns on volatility.

Price trends induce an increase of volatility.

In the literature (notably works by J.P. Bouchaud and co-authors), a
way to reinterpret the Zumbach effect is to consider that the
predictive power of past squared returns on future volatility is
stronger than that of past volatility on future squared returns.

To check this on data, one typically shows that the covariance
between past squared price returns and future realized volatility (over
a given duration) is larger than that between past realized volatility
and future squared price returns.

We refer to this version of Zumbach effect as weak Zumbach effect.
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Further aspects of volatility

Weak and strong Zumbach effect

It is shown in Gatheral et al. that the rough Heston model reproduces
the weak form of Zumbach effect.

However, it is not obtained through feedback effect, which is the
motivating phenomenon in the original paper by Zumbach. It is only
due to the dependence between price and volatility induced by the
correlation of the Brownian motions driving their dynamics.

In particular in the rough Heston model, the conditional law of the
volatility depends on the past dynamic of the price only through the
past volatility.

We speak about strong Zumbach effect when the conditional law of
future volatility depends not only on past volatility trajectory but also
on past returns.
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A convenient microscopic model encoding Zumbach effect

Quadratic Hawkes processes

Inspired by Blanc et al., we model high frequency prices using
quadratic Hawkes processes.

Jump sizes of the price Pt are i.i.d taking values −1 and 1 with
probability 1/2 and jump times are those of a point process Nt with
intensity

λt = µ+

∫ t

0
φ(t − s)dNs + Z 2

t , with Zt =

∫ t

0
k(t − s)dPs .

The component Zt is a moving average of past returns.

If the price has been trending in the past, Zt is large leading to high
intensity. On the contrary if it has been oscillating, Zt is close to zero
and there is no feedback from the returns on the volatility. So Zt is a
(strong) Zumbach term.
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One particular scaling limit

Quadratic rough Heston model

dSt = St
√

VtdWt , Vt = a(Zt − b)2 + c,

where a, b and c some positive constants and Zt follows

Zt =

∫ t

0
f α,λ(t − s)θ0(s)ds +

∫ t

0
f α,λ(t − s)

√
VsdWs ,

with α ∈ (1/2, 1), λ > 0 and θ0 a deterministic function.

Zt is path-dependent : a weighted average of past returns.

c : minimal instantaneous variance.

b > 0 : asymmetry of the feedback effect.

a : sensitivity of the volatility feedback.

A log-normal rough volatility model with strong Zumbach
effect.
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The Volatility Index

Definition of the VIX

Introduced in 1993 by the CBOE.

VIX is the square root of the price of a specific basket of options on
the S&P 500 Index (SPX) with maturity ∆ = 30 days such that

VIXt =
2

∆

√
−E[log(St+∆/St)|Ft ]× 100,

with S the SPX index.

VIX futures and VIX options exist.
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The joint calibration problem

VIX options

More than 500,000 VIX options traded each day.

Quite wide spreads for VIX options : non-mature market.

VIX is by definition a derivative of the SPX, any reasonable
methodology must necessarily be consistent with the pricing of SPX
options.

Designing a model that jointly calibrates SPX and VIX options prices
is known to be extremely challenging.

This problem is sometimes considered to be the holy grail of volatility
modeling.

We simply refer to it as the joint calibration problem.
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The joint calibration problem

Attempts to solve the joint calibration problem

Theoretical approch by J. Guyon : the joint calibration problem is
interpreted as a model-free constrained martingale transport problem.
Perfect calibration of VIX options smile at time T1 and SPX options
smiles at T1 and T2 = T1 + 30 days. Hard to be extended to any set
of maturities and high computational cost.

Models with jumps : most of them fail to reproduce VIX smiles for
maturities shorter than one month.

Continuous models : Unsuccessful so far. Interpretation : the very
large negative skew of short-term SPX options, which in continuous
models implies a very large volatility of volatility, seems inconsistent
with the comparatively low levels of VIX implied volatilities
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The VIX conjecture

The joint calibration problem and continuous models

“So far all the attempts at solving the joint SPX/VIX smile
calibration problem [using a continuous time model] only produced
imperfect, approximate fits”.

“Joint calibration seems out of the reach of continuous-time models
with continuous SPX paths”.

Investigating Guyon’s work one can realise the following : a necessary
condition for a continuous model to fit simultaneously SPX and VIX
smiles is the inversion of convex ordering between volatility and the
local volatility implied by option prices.

The intuition behind this condition could be reinterpreted as some
kind of strong Zumbach effect.

Natural for us to investigate the ability of super-Heston rough
volatility models to solve the joint calibration problem.
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Calibration for one day in history 19 May 2017

Parameters calibration with Deep Learning

0.150 0.125 0.100 0.075 0.050 0.025 0.000 0.025 0.050
0.05

0.10

0.15

0.20

0.25

0.30
T=0.033

0.150 0.125 0.100 0.075 0.050 0.025 0.000 0.025 0.050
0.05

0.10

0.15

0.20

0.25

0.30 T=0.052

0.150 0.125 0.100 0.075 0.050 0.025 0.000 0.025 0.050
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250 T=0.071

0.150 0.125 0.100 0.075 0.050 0.025 0.000 0.025 0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250 T=0.090

Figure – Implied volatility on SPX options for 19 May 2017. Blue and red points
are bid and ask of market implied volatilities. Model implied volatility smiles from
the model are in green. Strikes are in log-moneyness, maturity in year.
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Calibration for one day in history 19 May 2017

Parameters calibration with Deep Learning
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Figure – Implied volatility on VIX options for 19 May 2017. Blue and red points
are bid and ask of market implied volatilities. Model implied volatility smiles from
the model are in green. Strikes are in log-moneyness, maturity in year.
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Take home message for the joint calibration problem

Thanks to the quadratic rough Heston model

6 parameters.

VIX smiles in the bid-ask spread.

Global shape of the implied volatility surface of the SPX very well
reproduced

Very accurate SPX skews of orders -1.5 (shortest maturites), -1
(longer maturities), as for market data.
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Event based data

Event based football data

A time-coded feed that lists all events with the ball within a game
with a player, team, event type and timestamp for each action.

Counting process

A 12-dimensional counting process is constructed as follows :

Every time a player touches the ball, there is a jump in his assigned
dimension d ∈ {1, . . . , 11} at the corresponding timestamp.

Every time the ball is in the opponent danger area, there is a jump in
the twelfth dimension at the corresponding timestamp.

Once a danger state is triggered, no event are recorded until the ball
goes out of the danger area (+ε).

Once the ball is lost, no event is recorded until the ball is won again.
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Modelling with Hawkes process

Modelling and estimation

We fit a 12-dimensional exponential Hawkes process to the jump data
through Maximum Likelihood Estimation.

λi (t) = µi +
d∑

j=1

∫ t

0
φi ,j(t − s)Nj(ds).

where φi ,j(s) = αi ,je
−βi s .

The goal is to detect correlations between the event times related to
each player and the danger state.

The estimation is complex in large dimensions as the likelihood
function is not convex in β. This is why we reduce the number of
parameters and consider the rate of decay of the kernel is the same
for each player. βi ,j = βi for all i , j .

We use the algorithm of Bonnet et al. (2022).
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Estimated parameters

The integrated kernel Ki ,j =
∫∞

0 φi ,j can be interpreted as the
expected number of touches of player i directly generated by player j
touch. It can be estimated directly from the estimated parameters :

K̂i ,j = α̂i ,j/β̂i .

It is also relevant to consider the interactions between two states
across multiple steps (generations). This is the case for defenders that
rarely generate Danger directly but contribute to Danger creation by
passing the ball to advanced positions.

Mi ,j represents the expected total number of touches of the player i
generated by player j directly but also indirectly through other players.

M = K + K 2 + K 3 + · · · = K (I − K )−1 .

where K =
∫∞

0 φ.
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Estimated interactions

Figure – Graph of estimated interactions K̂i,j between players for Chelsea
2016/2017.
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Danger generated

Player Name Danger directly generated Total danger generated

Eden Hazard 0.22 0.28
Pedro 0.12 0.17

Victor Moses 0.08 0.15
Kante 0.06 0.13

Diego Costa 0.07 0.13
Marcos Alonso 0.04 0.10

Azpilicueta 0.02 0.10
Matic 0.03 0.10
Cahill 0 0.07

Courtois 0 0.05
David Luiz 0 0.04

Table – Danger directly and indirectly generated by one player touch. Direct
danger is represented by K̂danger,player and Total danger by M̂danger,player .
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Some observations

Remarks

Factoring in the indirect contribution in danger creation is important
for defenders and midfielders.

Kante is responsible for as many intrusions to the danger area per
touch as the striker Diego Costa, while having more touches per game.

The contribution of the central defender David Luiz in danger
creation is minimal. This is not surprising as the flat 3-4-3 system
relies heavily on the wings. David Luiz naturally passes the ball to
either Cahill or Azpilicueta in build-up to spread the play.
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A better visualization scheme

Figure – Graph of estimated interactions between players and with Danger state
for Chelsea 2016/2017. The color of the circles represents the total danger
created by the player. The size of arrows represents the parameters K̂player1,player2 .
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Comments

More remarks

Azpilicueta, Kante and Victor Moses witness a considerable increase
in Danger creation when considering the total contribution rather
than the direct one. The right side of Chelsea combines a lot for
danger generation and should be disrupted from the root.

The left side relies a lot more on the huge offensive output of Eden
Hazard. The links Marcos Alonso/Matic → Hazard should be
controlled.

Goalkeeper Courtois is successful in targeting Marcos Alonso and
Diego Costa when playing long balls.
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