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Abstract

Serial dependence and predictability are two sides of the same coin. The liter-
ature has considered alternative measures of these two fundamental concepts. In
this paper, we aim to distill the most predictable aspect of a univariate time series,
i.e., the one for which predictability is optimized. Our target measure is the mutual
information between the past and future of a random process, a broad measure of
predictability that takes into account all future forecast horizons rather than focusing
on the one-step-ahead prediction error mean square error. The first most predictable
aspect is defined as the measurable transformation of the series, which maximizes the
mutual information between past and future. The proposed transformation arises
from the linear combination of a set of basis functions localized at the quantiles of
the unconditional distribution of the process. The mutual information is estimated as
a function of the sample partial autocorrelations, by a semiparametric method which
estimates an infinite sum by a regularized finite sum. The second most predictable
aspect can also be defined, subject to suitable orthogonality restrictions. We also
investigate using the most predictable aspect for testing the null of no predictability.
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1 Introduction

The issue of measuring serial dependence is at the heart of time series analysis, being inti-

mately related to the predictability of a random process. The traditional Bravais-Pearson

autocorrelation function (ACF) provides essential information on the dependence structure

of a Gaussian process. Outside the Gaussian class, it is less informative. In particular, zero

correlation implies only a lack of linear association, or no linear predictability. Other clas-

sical measures, such as Spearman’s rank correlation coefficient and Kendall’s tau, measure

monotonic association, but fail to detect more general forms of nonlinear dependence.

Alternative broader measures of serial dependence have been developed; for a recent

overview, see Tjøstheim et al. (2018). There is also a substantive literature dealing with

testing the null of (serial) independence and iid-ness, reviewed in Teräsvirta et al. (2010,

sec. 7.7).

For a stationary time series {Xt, t ∈ Z}, Hong (1999) defined a measure of dependence

based on the covariance between the characteristic functions of Xt and Xt−k. Zhou (2012)

extended to strictly stationary time series the dependence measure based on the concepts of

distance covariance and correlation, introduced by Székely et al. (2007) (see also Székely and

Rizzo, 2009). Fokianos and Pitsillou (2017) proposed a test of serial independence based on

the auto-distance covariance function. Compared with the classical ACF, the auto-distance

correlation function and its Fourier transform, the generalized spectral density by Hong,

can capture possibly nonlinear forms of serial dependence. See Edelmann et al. (2019) for

a review of these developments.

Escanciano and Velasco (2006) proposed conditional mean dependence measures based

on the covariance between Xt and the characteristic function of Xt−k, and a test of the

martingale difference hypothesis based on the sample spectral distribution function. Shao

and Zhang (2014) measured the degree of conditional mean independence of Xt from its

past by the martingale difference correlation. Linton and Whang (2007) introduced a mea-
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sure of directional predictability named the quantilogram. Otneim and Tjøstheim (2021)

have recently proposed the locally Gaussian partial correlation, a measure of conditional

dependence.

The generality of many of such measures is such that the most interpretable outcome

is: do we fail to reject (conditional mean) independence? The answer for many applica-

tions, e.g., in economics and finance, is typically ‘no’, thereby raising the issue as to why

independence is rejected. The main motivation for this paper is to provide an answer to

both questions, by establishing the transformation of the series which is most predictable

from its past, and estimating its predictability.

Our focus is on mutual information (MI), a measure of dependence defined as the

Kullback-Leibler distance between the joint probability density function (pdf) and the

product of the marginal pdfs. It has a long tradition in time series analysis, see Jewell

and Bloomfield (1983) and Pourahmadi (2001), in information and communication theory

(Cover and Thomas, 2006), and data science. For recent contributions, see Reshef et al.

(2011), who proposed the maximal information coefficient, and Kinney and Atwal (2014).

For the analysis of univariate time series measures of serial dependence based on the

mutual information between (Xt, Xt−j) have been proposed by Granger and Lin (1994). The

asymptotic theory for their kernel based nonparametric estimators has been established by

Hong and White (2005).

Against this background, our aim is to determine the transformation of a stationary

stochastic process Xt, for which the MI between the past and the future of a time series

is a maximum. Our approach is related to Gourieroux and Jasiak (2002), who proposed

the nonlinear autocorrelogram, the nonlinear transformation which maximizes the auto-

correlation at selected lags, and to Owen (1983), who develops the optimal transformation

of an autoregressive processes by an adaptation of the alternating conditional expectation

algorithm (Breiman and Friedman, 1985).
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Our contribution to the literature referenced above is the following. First, we adopt the

mutual information between past and future (MIPF) as the target measure of predictability.

This is a broad measure that takes into account all future forecast horizons, rather than

focusing on the one-step-ahead forecast mean square error. Secondly, we provide a general

result which decomposes the mutual information between past and future as the sum of

all partial mutual information between the pair of random variables in the future and the

past. The most predictable aspect is then defined as the measurable square integrable

transformation of Xt for which the MIPF is a maximum. The proposed transformation

arises from of the linear combination of a set of basis functions localized at the quantiles of

the unconditional distribution of Xt or a monotonic transformation thereof. We consider

several basis functions and consider their merits. The mutual information is estimated

as a function of the sample partial autocorrelations, by a semiparametric method which

estimates an infinite sum by a regularized finite sum.

The paper is structured in the following way. In the next section we review the definition

and the properties of the mutual information between two sets of random variables. Section

3 states the main assumptions about the univariate stochastic process under consideration,

defines the mutual information between past and future, and deals with its evaluation in

the special case of a Gaussian process. Section 2 defines the most predictable aspect of time

series and presents alternative basis functions for eliciting it. Estimation and statistical

inference is presented in section 5. Section 6 illustrates our methodology. Finally, section

7 uses the most predictable aspect for testing (lack of) predictability. In section 8 we draw

some conclusions.
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2 Mutual Information: Definitions and Properties

Let X and Y denote a pair of possibly multivariate continuous random variables with prob-

ability density function (pdf) f(X, Y ) and marginal densities f(X) and f(Y ), respectively.

The mutual information (MI) between X and Y is defined as

I(X, Y ) = E(X,Y )

{
log

f(X, Y )

f(X)f(Y )

}
,

where, for any measurable function g(U) of U with pdf f(U), EU(g(U)) =
∫∞
−∞ g(u)f(u)du;

I(X, Y ) is interpreted as the Kullback-Leibler distance between the joint distribution and

product of the marginal distribution.

The MI has the following main properties. i. Nonnegativity: I(X, Y ) ≥ 0. ii. I(X, Y ) =

0 if and only if X and Y are independent. iii. Symmetry: I(Y,X) = I(X, Y ). iv. I(X, Y ) is

invariant to one-to-one transformations of Y and X, see Granger and Lin (1994, Theorem

3). v. I(X, Y ) is related to entropy via I(X, Y ) = H(Y ) − H(Y |X), or, equivalently,

I(X, Y ) = H(X) +H(Y )−H(X, Y ), where, e.g., H(Y ) = −EY {log f(Y )} and H(Y |X) =

−E(Y,X){log f(Y |X)}.

The mutual information index is defined as I (X, Y ) = 1 − exp (−2I(X, Y )). It pro-

vides a measure of association satisfying the properties of an ideal measure of dependence

established by Rényi (1959), with the following properties: i. 0 ≤ I (X, Y ) ≤ 1, ii.

I (X, Y ) = 0 if X and Y are independent, iii. if u(X) = v(Y ) for u and v measurable

functions, I (X, Y ) = 1.

Finally, the conditional or partial mutual information (PMI) between X and Y , given

the random variable Z, is defined as I(X, Y |Z) = E(X,Y,Z)

{
log f(X,Y |Z)

f(X|Z)f(Y |Z)

}
.
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3 Stationary random processes and their characteris-

tics

Let {Xt, t = 1, . . .} be a strictly stationary zero mean process, with continuous density

f(Xt) and characterised by the autocovariance function γ(k) = E(XtXt−k) < ∞, k =

0,±1,±2, . . ..

We denote by Γk = {γ(|i− j|), i, j = 1, . . . , k} the autocovariance matrix of Xt−k+1:t =

(Xt−k+1, Xt−k+2, . . . , Xt−1, Xt) and by ρ(k) = γ(k)/γ(0), k ∈ Z the autocorrelation function

(ACF) of Xt.

The optimal linear predictor of Xt based on Xt−k:t−1 = (Xt−k, . . . , Xt−1),

X̂kt = ϕ1kXt−1 + ϕ2kXt−2 + · · ·+ ϕkkXt−k,

has coefficients ϕk = (ϕ1k, . . . , ϕkk)
′ equal to ϕk = Γ−1

k γk, where γk = (γ(1), γ(2), . . . , γ(k))′,

and mean square prediction error vk = E{(Xt − X̂t,k)
2}, given recursively as vk = vk−1(1−

ϕ2
kk), with v0 = γ(0). The partial ACF (PACF) is ϕkk =

Cov(Xt−X̂k−1,t,Xt−k−X̂∗
k−1,t−k)√

Var(Xt−X̂k−1,t)Var(Xt−X̂∗
k,t−k)

, k =

1, 2, . . . , where X̂∗
k−1,t−k is the linear predictor ofXt−k based onXt−k+1:t−1 = (Xt−k+1, Xt−k+2, . . . , Xt−1).

For a Gaussian processes we have the enhanced interpretation and results:

� ϕkk =
Cov(Xt,Xt−k|Xt−1,...,Xt−k+1)√

Var(Xt|Xt−1,...,Xt−k+1)Var(Xt−k|Xt−1,...,Xt−k+1)
, k = 1, 2, . . . .

� I(Xt, Xt+k) = −1
2
log(1− ρ2(k)), I (Xt, Xt+k) = ρ2(k).

� I(Xt, Xt+k|Xt−1:t−k) = −1
2
log(1− ϕ2

kk), I (Xt, Xt+k|Xt+1:t+k−1) = ϕ2
kk.

The partial autocorrelation sequence and the partial autogressive coefficients are com-

puted by the Durbin-Levinson algorithm (see Appendix B).
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3.1 The mutual information between past and future

We now turn our consideration to the mutual information between the past and the future

(MIPF) of a stochastic process. The following theorem establishes that it can be obtained

as the sum of the pairwise partial mutual information of the random variables involved.

Theorem 1. Let π(k) = I(Xt, Xt+k|Xt+1, Xt+2, . . . , Xt+k−1), the partial mutual informa-

tion of Xt and Xt+k, given all the intermediate random variables. The mutual infor-

mation between the n past variables X1:n = (X1, X2, . . . , Xn) and the m future variables

Xn+1:n+m = (Xn+1, Xn+2, . . . , Xn+m), can be decomposed as follows:

I(X1:n, Xn+1:n+m) =
n∑

i=1

m∑
j=1

π(n+ j − i). (1)

Proof. See Appendix A.

Remark 1. The partial mutual information π(k) is the expected conditional log copula

density of Xt and Xt+k, given the intermediate variables:

π(k) =

∫
· · ·

∫
f(Xt:t+k) ln c(Ft+1:t+k−1(Xt), Ft+1:t+k−1(Xt+k))dXt · · · dXt+k,

where f(Xt, Xt+k|Xt+1:t+k−1) = f(Xt|Xt+1:t+k−1)f(Xt+k|Xt+1:t+k−1)c(Ft+1:t+k−1(Xt), Ft+1:t+k−1(Xt+k))

and c(·) is the copula density. It is a general measure of partial dependence for two random

variables, which generalizes the notion of partial autocorrelation function.

Denote by Xp = X−∞:n the collection of random variables up to and including time n

(generically, the “past” of the process) and by X
(h)
f = Xn+h:∞, h ∈ Z+ the collection of

future random variables, with a gap of h time units. For h = 1, we write X
(1)
f = Xf . By

Theorem 1, we can provide the following generalization of the MIPF, originally formulated
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for Gaussian processes (Ibragimov and Rozanov, 2012; Jewell and Bloomfield, 1983),

I(Xp, Xf ) =
∞∑
k=1

kπ(k).

This arises simply as the limit of I(X−n:0, X1:m) as n,m → ∞.

An important related concept is that of information regularity of a stochastic process

(Ibragimov and Rozanov, 2012). A stationary random process is said to be information

regular if I(Xp, X
(h)
f ) → 0 as h → ∞, and absolutely regular if I(Xp, Xf ) < ∞. Absolute

regularity implies information regularity.

3.2 The Gaussian case

For a Gaussian process the mutual information is a function of the squared partial auto-

correlations, as it is shown by the following corollary, whose proof is direct since π(k) =

−1
2
log(1− ϕ2

kk).

Corollary 1. If {Xt, t ∈ Z} is a Gaussian process, I(X1:n, Xn+1:n+m) = −1
2

∑n
i=1

∑m
j=1 log(1−

ϕ2
i+j−1,i+j−1), and I(Xp, Xf ) = −1

2

∑∞
k=1 k log(1− ϕ2

kk).

Example 1. Gaussian AR(1) process Let Xt = ϕXt−1 + ϵt, ϵt ∼ i.i.d. N(0, σ2). Then,

I(Xp, Xf ) = −1
2
log(1− ϕ2) and I (Xp, Xf ) = ϕ2.

Example 2. Lognormal stochastic volatility process Let Xt = exp(Yt/2)ϵt, ϵt ∼ i.i.d. N(0, 1)

and Yt+1 = µ(1−ϕ)+ϕYt+ ηt, ηt ∼ i.i.d. N(0, σ2
η), independently of ϵt. Then, I(Xp, Xf ) =

−1
2
log(1− ϕ2) and I (Xp, Xf ) = ϕ2.

The MIPF provides a measure of predictability across all possible future forecast hori-

zons.
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4 Optimal transformations: the most predictable as-

pects of time series

Let h1t = h1(Xt), h2t = h2(Xt), . . . , hrt = hr(Xt) denote a set of Borel measurable

functions, such that E(hjt) = µhj, Var(hjt) > 0 and |Cov(hkt, hjt)| <
√

Var(hkt)
√
Var(hjt),

and let ht denote the r × 1 vector ht = (h1t, . . . , hrt)
′. The cross-covariance matrix of ht

at lag k is Cov(ht,ht−k) = Γh(k), k ∈ Z.

For identifiability we will assume that the set of measurable transformations hj(Xt), j =

1, . . . , r, is non-singular, i.e., Γh(0) is positive definite, with distinct eigenvalues; this rules

out affine transformations of Xt, e.g., hj(Xt) = aj + bjXt.

Consider the process resulting from a measurable monotonic transformation Zt =

g(Z∗
t ) of the contemporaneous aggregation of the elements of ht, with coefficients β =

(β1, . . . , βr)
′, Z∗

t = β′ht, satisfying the normalization constraint β′Γh(0)β = 1. Notice that

Z∗
t has unit variance.

For g(·) we consider two cases: the identity transformation, Zt = Z∗
t , and the normaliz-

ing transformation g(Z∗
t ) = Φ−1 (FZ(Z

∗
t )), where FZ is the cumulative distribution function

(cdf) of Z∗
t , and Φ is the standard normal cdf.

We are now ready to define the most and second most predictable aspects of the series.

Definition 1. The most predictable aspect of Xt is the transformation Zt = g (β′ht), with

β satisfying the constraint β′Γh(0)β = 1, such that the mutual information between the past

and future I(Zp,Zf ) is a maximum, where Zp = {Zn−j, j ≥ 0} and Zf = {Zn+j, j ≥ 1}.

The second most predictable aspect of Xt is the transformation Wt = g (ζ ′ht), such that

ζ ′Γh(0)β = 0, ζ ′Γh(0)ζ = 1, and the mutual information between the past and future

I(Wp,Wf ) is a maximum, where Wp = {Wn−j, j ≥ 0} and Wf = {Wn+j, j ≥ 1}.

The most predictable aspects of the time series are difficult to evaluate, as they depend

on the partial mutual information coefficients of Zt, denoted πZ(k), that are difficult to

9



estimate. A workable definition takes into consideration linear predictability.

Definition 2. The most linearly-predictable aspect of Xt is the transformation Zt = g (β′ht),

with β satisfying the constraint β′Γh(0)β = 1, which maximises the linear mutual informa-

tion measure I∗(Zp,Zf ) = −1
2

∑∞
k=1 log(1− ϕ2

Z,kk), where ϕZ,kk denotes the PACF of Z∗
t =

β′ht, Zp = {Z∗
n−j, j ≥ 0} and Zf = {Z∗

n+j, j ≥ 1}. The second most linearly-predictable

aspect is defined as in Definition 2 with reference to the target measure I∗(Wp,Wf ) =

−1
2

∑∞
k=1 log(1− ϕ2

W,kk), where ϕW,kk is the PACF of W ∗
t = ζ ′ht.

In the sequel, the most predictable aspect of Xt will refer to Definition 2. We refer to

I∗(Zp,Zf ) as the linear MIPF.

Example 1. (continued) Let σ2 = 1 − ϕ2, so that Var(Xt) = 1, and choose two hinge

functions located at the median, so that h1t = max(0, Xt) and h2t = max(0,−Xt). Then it

holds that E(hit) = 1/
√
2π, Var(hit) = (π− 1)/(2π), i = 1, 2, and Cov(h1t, h2t) = −1/(2π).

The covariance matrix Γh(0) =
1
2

(
I2 − 1

π
ii′
)
, has eigenvalues λ1 =

1
2
and λ2 =

1
2
− 1

π
, with

corresponding eigenvectors v1 = 1√
2
(1,−1)′ and v2 = 1√

2
i. Rescaling the two vectors by

λ
−1/2
i , we obtain the two linear combinations Z1t = max(0, Xt) − max(0,−Xt) ≡ Xt and

Z2t =
√

π
π−2

(max(0, Xt) + max(0,−Xt)) ≡
√

π
π−2

|Xt|, the first corresponding to the most

predictable aspect and the second to the least. By the properties of the folded normal

distribution, see Kan and Robotti (2017, page 933), it can be shown that Z2t (equivalently

|Xt|) is AR(1) with partial autocorrelation coefficient ϕZ2,11 = ϕc(ϕ), where |c(ϕ)| < 1,

namely c(ϕ) =
4Φ2(ϕ)−1+ 2

π

(√
1−ϕ2

ϕ
−1

)
1− 2

π

, where Φ2(ϕ) denotes the bivariate standard normal

cdf with correlation ϕ evaluated at (0,0). In this case, the most predictable aspect is Xt

and the second (and least) predictable aspect is |Xt|. Notice that Z∗
t = Zt, i.e., we have

considered the identity transformation for g(·).
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4.1 Basis functions

The vector ht can be thought as a feature vector, and the choice of the functions hj(Xt) can

be considered as context specific. However, we concentrate on sets of basis functions that

can be used for the purpose of eliciting the most predictable aspect of a time series. The

basis functions are evaluated at location shifts of Xt, namely Xt − q(υj), where q(υj) =

inf{x ∈ R : F (x) ≥ υj}, j = 1, . . . , r, is the quantile corresponding to the probability

υj ∈ (0, 1). Some relevant choices are the following.

� Hinge basis functions with knots at the r∗ quantiles qj = q(υj), υj = j
r∗+1

, such

that h2j−1(Xt) = max{0, Xt − qj}, h2j(Xt) = max{0, qj − Xt}, j = 1, 2, . . . , r∗.

There are r = 2r∗ basis functions. The transformation encompasses the identity

transformation, Z∗
t = Xt, which occurs if β2j−1 = 1 and β2j = −1, the absolute

value transformation, Z∗
t = |Xt|, if j is odd and βr∗ = βr∗+1 = 1 and βj = 0 for

j ̸= (r∗, r∗ + 1).

� Logistic basis. Define

hj(Xt) =
1

1 + exp
(
−Xt−qj

τ

) − 1

2
,

where τ > 0 is a scale parameter, related to the variance of Xt by τ = π−1
√

3Var(Xt).

The logistic transformation is bounded between -0.5 and 0.5.

The left plot of figure 1 displays the generic constituent pair of the hinge basis, h(u) =

max{0, u} (solid red) and h(u) = max{0,−u} (dashed blue).The right plot displays the

logistic functions obtained by setting τ = 1 and choosing qj = ln(υj/(1−υj)), υj = j/5, j =

1, 2, 3, 4, i.e., the quintiles of the logistic distribution.

Remark 2. A variant of the above bases can be adopted when Xt does not have a fi-

nite second moment, entailing a preliminary transformation of the original series. For

instance, in the logistic case, let X∗
t = F−1

L (F (Xt)), where F is the distribution function of
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of Xt, estimated by the empirical distribution function of Xt, and F−1
L (u) = log(u/(1− u))

is the standard (unit scale) logistic quantile function. Then, considering the quantiles

of the standard logistic distribution qj(υj) = log(υj/(1 − υj)), υj = j
r+1

, we can set

hj(Xt) = {1 + exp(qj −X∗
t )}

−1 − 0.5. A polinomial basis, such as a cubic spline basis,

possibly considering natural boundary constraints, could be considered after performing a

normalizing transformation of Xt. An alternative interesting direction is to adopt the set

of check functions {υj − I(xt < qj), j = 1, . . . , r}, that define Linton and Whang (2007)

quantilogram.

−3 −2 −1 0 1 2 3
0

1

2

3

−4 −2 0 2 4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 1: Left: Plot of h(u) = max{0, u} (solid red) and h(u) = max{0,−u} (dashed blue).
Right: Plot of hj(u) = {1 + exp((qj − u)/τ)}−1, for τ = 1 and qj = ln(υj/(1 − υj)) and
υj = j/5, j = 1, 2, 3, 4.

In section S3 of the Supplementary Material, we shows that the problem of evaluating

the most predictable aspect of the time series can be traced back to a nonlinear canonical

correlation analysis of the past and the future of (h1t, . . . , hrt)
′.

5 Statistical Inference

Let {xt, t = 1, . . . , T} denote the observed time series. The quantile corresponding to the

probability υj is estimated as the minimizer of the total check loss function

q̂j = argmin
q∈R

T∑
t=1

ςυj(xt − q), (2)
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where ςυj(u) = u{υj − I(u < 0)}. Denoting ĥt = (h1(xt), . . . , hr(xt))
′, the sample mean

and covariance matrix of the vector ht are respectively h̄ = T−1
∑T

t=1 ht and Γ̂h(0) =

T−1
∑T

t=1

(
ht − h̄

) (
ht − h̄

)′
.

The vector β is estimated by maximizing the mutual information

Q̂T (β) = −1

2

⌊2ℓT ⌋∑
k=1

k log
(
1− ϕ̃2

z,kk(β)
)
, (3)

which is also a function of a bandwidth parameter, ℓT , allowing for the truncation of

the infinite sum. The coefficients ϕ̃z,kk(β) are the regularized Durbin-Levinson estimators

of the PACF of zt = β′ht at lag k, under the constraint β′Γ̂h(0)β = 1. For given β,

we construct zt; letting ϕ̂z,kk(β) denote the sample PACF of zt, then, the regularized

PACF is ϕ̃z,kk(β) = wkϕ̂z,kk(β), where the weight wk ∈ [0, 1] is obtained as wk = κ(k/ℓT ).

Here, ℓT ∈ R+ denotes the bandwidth parameter of the trapezoidal kernel κ(u) defined as

κ(u) = 1, if |u| ≤ 1, κ(u) = 2 − |u|, if 1 < |u| ≤ 2, and κ(u) = 0, if |u| > 2. The kernel

weights are thus equal to 1 for k ≤ ℓT , decrease linearly to zero for ℓT < k ≤ 2ℓT , and are

identically zero for k > 2ℓT . By construction, Q̂T (β) is a finite sum, since the regularized

partial autocorrelations are zero after lag ⌊2ℓT ⌋.

In practice, the maximization of (3) is carried out by a numerical optimization routine

handling nonlinear equality constraints, such as fmincon in Matlab. The initial value of β̂

is obtained from the eigenvector of Γh(0) (scaled by the square root of the corresponding

eigenvalue) for which the mutual information of the corresponding zt variable is largest.

5.1 Large sample properties

Under regularity conditions concerning Xt, the nature of the basis functions hj(Xt), j =

1, . . . , r, and the design of the estimator, we can prove the consistency and the asymptotic

normality of β̂.
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The following assumptions will be made about Xt.

Assumption 1. Xt is strictly stationary with absolutely continuous marginal distribution

function F (x), with continous density f(x), and υj-quantiles qj = F−1(υj), j = 1, . . . , r,

such that −∞ < a ≤ q1 < q2 < · · · < qr ≤ b < ∞, and 0 < f(qj) < ∞.

Assumption 2. Xt is absolutely regular with strong mixing coefficient αm of size -φ0, with

φ0 = 1 + 1
1+δ

, δ > 0, and E|Xt|4+2δ.

Recall that {Xt, t ∈ Z} is α-mixing (Dedecker et al., 2007; Davidson, 2021, Ch. 15) if

limm→∞ αm = 0, where αm is the mixing coefficient, defined as

αm = sup
B∈Ft

−∞,C∈F∞
t+m

|P (B ∩ C)− P (B)P (C)|,

and F s
r , r < s is the σ-field generated by {Xr, Xr+1, . . . , Xs}. We also say that {Xt, t ∈ Z}

is α-mixing of size −φ0, φ0 > 0, if αm = O(m−φ), φ > φ0.

If the transformation Zt is bounded (see Remark 2), Assumption 2 can be relaxed.

Remark 3. If |Zt| < C,C > 0, then it suffices to assume that Xt is absolutely regular with

α-mixing coefficients satisfying the summability condition
∑∞

m=1mαm < ∞.

As for the selection of the features of the process, we will assume what follows.

Assumption 3. The set of basis functions is chosen so that their number if fixed and

known, E|hj(Xt)|4+2δ < ∞, Γh(0) is non singular, and hj(Xt) is a Lipschitz continuous

function of the quantile qj.

For the hinge and logistic bases the Lipschitz condition is satisfied, and E|hj(Xt)|4+2δ <

∞ is implied by Assumption 2. We stress that we assume in our setup that r is fixed. If r

is allowed to vary with T , the estimation of the optimal tranformation can be considered

as a particular instance of the method of sieve extremum estimation, see, e.g., X. Chen and
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Shen (1998), and the references therein, and Gourieroux and Jasiak (2002) for applications

to the estimation of nonlinear correlograms.

The next assumption deals with the design of the estimator of β.

Assumption 4. The bandwidth parameter of the trapezoidal kernel is chosen so that ℓT =

o(T 1/4) and ℓT ≥ r/2.

Our last assumption deals with the existence of a solution to the problem of determining

the most predictable aspect of Xt (in linear sense).

Assumption 5. Let Q0(β) = limT→∞ Q̂T (β). The value

β0 = argmax
β∈B

Q0(β),

where B = {β ∈ Rr : β′Γh(0)β = 1}, is unique (apart from a sign change), i.e., β0 is

the unique fixed point of the nonlinear system β = Γ−1
h (0)g(β)/ (β′g(β)), where g(β) =

∂Q0(β)/∂β.

Note that β0 is identified up to a sign change, i.e., −β0 is also a solution. The nonlinear

system for β follows from the first order conditions for a maximum of the Lagrangian

L(β, ϖ) = Q0(β)− ϖ
2
(β′Γh(0)β − 1), where ϖ is the Lagrange multiplier.

The following theorem shows that under the stated assumptions β̂ is a consistent esti-

mator of β0 and its asymptotic sampling distribution is normal.

Theorem 2. Under Assumptions 1-5,

β̂ →p β. (4)

Also, denoting ĝT (β) =
∂Q̂T (β)

∂β
and ĜT (β) =

∂2Q̂T (β)

∂β∂β′ , and letting Σ0 = limT→∞Var
(√

T ĝT (β0)
)
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and G0 = plim
{
ĜT (β0)

}
,

√
T
(
β̂ − β0

)
→d N (0,E0Σ0E

′
0) , (5)

where E0 = G−1
0 − 1

β′
0Γh(0)G

−1
0 Γh(0)β0

G−1
0 Γh(0)β0β

′
0Γh(0)G

−1
0 .

Proof. See Appendix C.

5.2 Selection of the bandwidth parameter and of the number of

basis functions

The bandwidth of the trapezoidal kernel is an important parameter. As it is shown in

Proietti and Giovannelli (2018), the optimal choice of the bandwidth depends on the rate

of decay of the autocovariance function of Zt, γz(j). In practice, given β, its value can be

estimated from zt. Proietti and Giovannelli (2018) adopt a data-based selection criterion,

adapted from McMurry and Politis (2010), which chooses ℓ̂T as the smallest value of ℓT

such that |ϕ̂z,kk(ℓT+k)| < c{log10 T/T}1/2, k = 1, . . . , Kn, Kn = o(log10 T ). For the sample

sizes typically used in applied work, McMurry and Politis recommend c = 2 and Kn = 5.

The rule amounts to conducting an approximate 95% simultaneous test of ϕz,kk(ℓT +k) = 0

(k = 1, . . . , Kn).

We have assumed r fixed. However, the number of basis functions should be selected.

For this purpose, an information criterion based on Li and Xie (1996) can be used. This

is evaluated as Q̂T (β̂)− c log log(T )
T

(
L̂T (L̂T + 1)/2 + r

)
, where c > 2. The rationale is that

we add a penalty for the number of elements in the basis, r.
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6 Illustrations

6.1 Lognormal AR(1)

Consider the log-normal first order autoregressive process Xt = eYt , Yt = 0.2 + 0.5Yt−1 +

ϵt, ϵt ∼ i.i.d. N(0, 1), for which the mutual information is equal to 0.1438. The ability

to estimate this value has been assessed via a Monte Carlo (MC) simulation experiment,

according to which 1,000 simulated time series xt, t = 1, . . . , T , are generated with T =

100, 250, 500, 1000, 5000. The most predictable aspect have been estimated by adopting a

hinge basis with r∗ = 3 functions located at the quartiles of the marginal distribution of

xt, and the MI estimated by Q̂T (β̂).

Figure 2 displays in the first panel a simulated series with T = 500 and in (ii) its sample

ACF. The estimated transformation, plotted in panel (v), is essentially the logarithmic

transformation. The zt series is plotted in panel (iii) and its ACF (panel (iv)) displays

higher autocorrelations with respect to xt, the largest being close to the true value, equal

to 0.5. The ability to estimate the true MI is considered in the last panel, which shows the

MC sampling distribution for different sample sizes.

6.2 Nonlinear MA(2) process

The process Xt = ϵtϵt−1ϵt−2, ϵt ∼ i.i.d. N(0, 1), is serially uncorrelated, but not inde-

pendent, as X2
t is positively autocorrelated at lags 1 and 2. Figure 3 displays a se-

ries of length T = 1000 generated by this process, along with its ACF, which shows

no statistically significant autocorrelations. Interestingly, the second most predictable

aspect, which is the level of the series is unpredictable, and has mutual information

close to zero. The optimized value Q̂T (β̂) did not vary with the choice of ℓT for val-

ues of ℓT between 1.5 and 4. In the top right panel we plot the transformation zt =

Φ−1
(
F̂Z (1.19 ·max{0, xt − q̂0.5}+ 1.37 ·max{0, q̂0.5 − xt})

)
, where F̂Z(z) is the empirical
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Figure 2: Log-normal AR(1). (i) Simulated series, xt, with length T = 500, generated by
the lognormal process Xt = eYt , Yt = 0.2+ 0.5Yt−1 + ϵt, ϵt ∼ i.i.d. N(0, 1). (ii) Sample ACF
of xt. (iii) Transformed time series, zt. (iv) Sample ACF of zt. (v) Plot of zt versus xt.
(vi) Kernel density estimates of the sampling distribution of the MI estimator Q̂T (β̂), for
T = 100, 250, 500, 1000, 50000.

cdf of z∗t = 1.19 · max{0, xt − q̂0.5} + 1.37 · max{0, q̂0.5 − xt}, versus the original series

and versus time. The transformation removes the concentration of values around zero and

unveils the serial correlation, and in particular the second order moving average feature.

The second best predictable aspect of the series (not shown) is a white noise process

arising from a sigmoid transformation of the series.

6.3 US Index of Industrial Production

The series considered for this illustration is the monthly growth of industrial production in

the U.S. (Source: Board of Governors of the Federal Reserve System, https://fred.stlouisfed.org/),

available for the period 1960.1-2022.1. The autocorrelation structure of the series is strongly

affected by the downfall and subsequent recovery following the Covid-19 pandemic, as it

is seen from panel (i) of figure 4. For the analysis of this series we adopted a logis-

tic basis with r = 3 components, located at the quartiles of the distribution of x∗
t =
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Figure 3: Nonlinear MA(2) process (i) Plot of the simulated series, xt, t = 1, . . . , 1000. (ii)

Plot of zt = Φ−1
(
F̂Z (1.19 ·max{0, xt − q̂0.5}+ 1.37 ·max{0, q̂0.5 − xt})

)
versus xt. (iii)

Time series plot of zt. (iv) Sample ACFs of xt (red) and zt (blue).

log(F̂T (xt)/(1− F̂T (xt)). The latter is a bounded monotonic transformation, F̂T (x) denot-

ing the empirical distribution function of xt.

The estimated most predictable aspect of the series turns out to be a robust trans-

formation of the series, cutting down the extreme values, see panel (ii). The trans-

formed series zt is homoscedastic and displays stronger autocorrelations than the origi-

nal time series. This is constructed as zt = Φ−1
(
F̂Z (1.19h1t + 1.34h2t + 1.19h3t)

)
, where

hjt = 1/{1 + exp(−(x∗
t − q̂∗j )}. The estimated mutual information index is 0.22.

The second most predictable aspect of the time series (not shown) is a measure of the

volatility of the series, wt = Φ−1
(
F̂W (−5.81h1t − 2.14h2t + 8.21h3t)

)
. This is characterized

by a sizable persistence in the autocorrelation function, and its mutual information index

is estimated to be equal to 0.14.

6.4 S&P500 index returns

Figure 5, panel (i), displays the time series of daily returns of the Standard & Poor 500

(SP500) stock market index from January 3, 1998, to March 11, 2022, for a total of T = 6088
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Figure 4: US Index of Industrial Production: relative changes with respect to the
previous month. (i) Plot of the original time series (xt). (ii) Plot of zt =

Φ−1
(
F̂Z (1.19h1t + 1.34h2t + 1.19h3t)

)
, where hjt = 1/{1 + exp(−(x∗

t − q̂∗j )}, x∗
t =

log(F̂T (xt)/(1 − F̂T (xt)), versus the original xt. (iii) Time series plot of the transformed
series (zt). (iv) Sample ACFs of xt (red) and zt (blue).

observations. We considered a hinge basis function and the value maximising the MI

selection criterion is r = 1. The mutual information index of z∗t is equal to 0.63. The

top graph of figure 6 displays the values of the objective function Q̂T (β) as a function of

β, evaluated at the points β such that β′Γ̂h(0)β = 1 (in grey), for h1t = max{0, xt −

q0.5}, h2t = max{0, q0.5 − xt} and ℓT = 10. The covariance matrix of the two functions is

Γ̂h(0) =

 0.528 −0.167

−0.167 0.670

 . The sample cross-correlation between h1t and h2t is equal

to -0.28. The first eigenvector, scaled by the square root of the first eigenvalue (0.780), is

(−0.624, 0.944)′; the mutual information has a local maximum in the vicinity of it. The

second eigenvector, scaled by the square root of the corresponding eigenvalue (0.418), is

(1.291, 0.850)′; the mutual information has a local maximum in the vicinity of it, barely

visible from figure 6.

The most predictable aspect of S&P 500 stock returns, Xt, is the volatility process

zt = Φ−1
(
F̂Z(z

∗
t )
)
, z∗t = 1.133max{0, xt− q0.5}+1.031max{0, q0.5−xt}. Figure 6 plots z∗t
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Figure 5: S&P 500 daily returns. (i) Plot of the original time series (xt). (ii) Sample ACF
plot of xt. (iii) Time series plot of z∗t = 1.29max{0, xt − q0.5}+ 0.85max{0, q0.5 − xt}. (iv)
Sample ACF plot of z∗t . (v) Time series plot of zt = Φ−1

(
F̂Z(z

∗
t )
)
. (vi) Sample ACF plot

of zt.

versus xt (panel (ii)), and zt versus xt (panel (iii)). Both relations are slightly asymmetric.

The sample ACF of z∗t , plotted in panel (iv) of figure 5, is very persistent.

The second most predictable aspect wt, orthogonal to the first is a robust level trans-

formation wt = Φ−1
(
F̂Ww∗

t

)
, w∗

t = 0.879max{0, xt − q0.5} − 0.746max{0, q0.5 − xt}. It is

characterized by a significant autocorrelation at lag 1, equal to -0.108, which is very close

to the value of the first sample autocorrelation of the original time series (-0.102).

7 Testing (un)predictability

The most predictable aspect, zt, can be used for testing the null of no predictability of the

series. The idea is to apply a serial correlation test, such as the Box and Pierce (1970) and

the Ljung and Box (1978), or an independence test (see Teräsvirta et al., 2010, sec. 7.7)
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Figure 6: S&P 500 daily returns. (i) Plot of the mutual information as a function of β,

Q̂T (β), evaluated at the points β such that β′ ˆΓh(0)β = 1 (in grey), for h1t = max{0, xt −
q0.5}, h2t = max{0, q0.5 − xt} and ℓT = 10. (ii) Plot of z∗t = 1.133max{0, xt − q0.5} +
1.031max{0, q0.5 − xt} versus xt. (iii) Plot of zt = Φ−1 (z∗t ) versus xt.

to the series zt. Here we propose considering Hong’s (1996) test statistic:

HT (κ) = T
T−1∑
j=1

K2(j/BT )ρ̂
2
z(j), BT = 3T κ, (6)

where K(j) = 0.5[1 + cos(πu)], for |u| ≤ 1, K(u) = 0, for |u| > 1 is the Tukey-Hanning

kernel, and BT is the bandwidth parameter.

When appropriately standardized, the test statistic is asymptotically N(0,1). It has been

shown by W. W. Chen and Deo (2004) that (6) suffers from size distortions in finite samples,

which are resolved in W. W. Chen and Deo (2004) by taking a power transformation of the

test statistic, aiming at reducing the skewness of the distribution. Their test statistic will

be denoted Hδ
T (κ), where δ is a power parameter depending on the moments of the kernel.

Section S3 of the Supplementary material reports the results of a Monte Carlo simu-

lation experiment according to which we generate M = 1000 time series of length T =

100, 250, 500, 1000, 5000; for each series we determine the most predictable aspect, zt, by

using a set of r = 2r∗, r∗ = 1, 2, 3, 5, hinge-basis functions; As for the choice of κ, three

values are considered: 0.2, 0.3, and 0.4.

The empirical size refers to the test conducted at the 5% nominal size for the following

processes: i. Xt ∼ i.i.d. N(0, 1); ii. Xt = exp(ϵt), ϵt ∼ i.i.d. N(0, 1); iii. Xt ∼ i.i.d. t3
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(Student’s-t with 3 degrees of freedom); iv. Xt ∼ i.i.d. α-stable with characteristic exponent

1, skewness parameter 0, location 0 and scale 1; v. Xt ∼ i.i.d. α-stable with characteristic

exponent 1.5, skewness parameter 0.8, location parameter 0 and scale parameter 1. The

results, reported in the Supplementary Material (tables S1-S5), show that the test tends to

be slightly oversized in small sample; the size distortion is larger as r increases (overfitting

generates more false discoveries), but tend to disappear as T increases. We also observe

that the Chen and Deo modified test behaves better, and in particular with the choice of

the bandwidth κ = 0.2.

The empirical powers are evaluated using the same experimental design, with refer-

ence to the following processes (where ϵt ∼ i.i.d. N(0, 1)): 1. Non-Linear MA(2) process,

Xt = ϵtϵt−1ϵt−2. 2. ARCH(1,1) process: Xt =
√
htϵt, ht = 0.5 + 0.8X2

t−1 + 0.1X2
t−2,. 3.

GARCH(1,1) process: Xt =
√
htϵt, ht = 0.01 + 0.94X2

t−1 + 0.05ht−1. 4. Threshold autore-

gressive process, Xt = (−1.5Xt−1 + ϵt)I(Xt−1 < 0)+ (0.5Xt−1 + ϵt)I(Xt−1 ≥ 0). 5. Bilinear

model Xt = 0.6ϵt−1Xt−2 + ϵt.

8 Conclusions

This paper has defined and estimated the most predictable aspect of a time series in a linear

sense, which is defined as the measurable transformation of the series which maximizes the

linear mutual information between the past and the future. The most predictable feature

can be used for testing the null of unpredictability. The next issue, left unexplored here,

is how we can use the most predictable aspect, Zt, to predict aspects of the original time

series, Xt. This entails the local inversion of the nonlinear transformation relating the

former to the latter, so as to map the predictions of Zt into those for Xt. A similar idea

has been explored by McNeil (2021) in a different framework.
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Supplementary material

The supplement (a) relates the problem of determining the most predictable aspect of

the time series to canonical correlation analysis of the cross-covariance matrix of the fea-

ture process ht = (h1t(Xt), . . . , hrt(Xt)), subject to nonlinear constraints in the canonical

vectors, and (b) and provides the full simulation results discussed in section 7.

A Proof of Theorem 1

The following preliminary result is known as the chain rule for mutual information, see

Cover and Thomas (2006).

Theorem A1 (MI decomposition). Let Y,X = (X1, X2, . . . , Xr) be continuous random

variables with joint density f(X, Y ). The mutual information between Y and X is decom-

posed into the sum of the partial mutual information

I(Y,X) = I(Y,Xr) +
r−1∑
i=1

I(Y,Xi|Xi+1, . . . , Xr).

In view of further developments, we provide an alternative proof.

Proof. It follows from the easily established factorization f(Y,X) = f(Y,Xr)
∏r−1

i=1
f(Y,Xi|Xi+1,...,Xr)
f(Y |Xi+1,...,Xr)

,

that

f(Y,X)

f(X)f(Y )
=

f(Y,Xr)

f(Y )f(Xr)

r∏
i=2

f(Y,Xi|Xi+1, . . . , Xr)

f(Y |Xi+1, . . . , Xr)f(Xi|Xi+1, . . . , Xr)
.

Then, the above decomposition is obtained from

I(Y,X) =
∫ ∫

f(Y,X) log f(Y,X)
f(X)f(Y )dY dX

=
∑r

i=1

∫
· · ·

∫
f(Y,Xi, Xi+1, . . . , Xr) log

f(Y,Xi|Xi+1,...,Xr)
f(Y |Xi+1,...,Xr)f(Xi|Xi+1,...,Xr)

dY dXidXi+1 · · · dXr.
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Corollary A1. Given the continuous random variable Z, the conditional mutual informa-

tion I(Y,X|Z) has the following decomposition

I(Y,X|Z) = I(Y,Xr|Z) +
r−1∑
i=1

I(Y,Xi|Xi+1, . . . , Xr, Z).

We are now ready to prove Theorem 1. For m = 1, apply Theorem A1 with Y = Xn+1

and r = n, to show that I(X1:n, Xn+1) =
∑n

k=1 π(k). For m > 1, the following recursion

holds:

f(X1:n,Xn+1:n+m)
f(X1:n)f(Xn+1:n+m) = f(X1:n,Xn+1:n+m−1)

f(X1:n)f(Xn+1:n+m−1)
f(Xn+m|X1:n+m−1)

f(Xn+m|Xn+1:n+m−1)
,

= f(X1:n,Xn+1:n+m−1)
f(X1:n)f(Xn+1:n+m−1)

f(Xn+m,X1:n|Xn+1:n+m−1)
f(Xn+m|Xn+1:n+m−1)f(X1:n|Xn+1:n+m−1)

,

so that, taking logarithms and the expectation with respect to the joint density of (X1:n, Xn+1:n+m),

Theorem A1, applied with Y = Xn+m, X = X1:n and Z = Xn+1:n+m−1, yields

I(X1:n, Xn+1:n+m) = I(X1:n, Xn+1:n+m−1) +
∑n

i=1 I(Xn+m, Xi|Xi+1, . . . , Xn+m−1),

= I(X1:n, Xn+1:n+m−1) +
∑n

i=1 π(n+m− i)

= I(X1:n, Xn+1:n+m−2) +
∑n

i=1(π(n+m− i)π(n+m− i− 1)

=
∑m

j=1

∑n
i=1 π(n+ j − i).

B Durbin–Levinson algorithm

The Durbin–Levinson algorithm (Durbin, 1960; Levinson, 1946) recursively computes the

autoregressive coefficients of the optimal linear predictor based on i = 1, 2, . . . , k, past

observations and the variance of the corresponding prediction error, from the first k auto-

covariances.

Let v0 = γ(0), ϕ11 = γ(1)/γ(0), v1 = (1 − ϕ2
11)v0; then, for i = 2, . . . , k, the Durbin-
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Levinson (DL) algorithm is the following set of recursions:

ϕii =
γ(i)−

∑i−1
j=1 ϕi−1,jγ(i−j)

vi−1
,

ϕij = ϕi−1,j − ϕiiϕi−1,i−j , (j = 1, . . . , i− 1),

vi = (1− ϕ2
ii)vi−1.

(7)

The DL algorithm performs the factorization of the inverse of the autocovariance matrix

of the random variables {Xt−j, j = 0, . . . , k−1}. Denoting Γk = {γ(|i−j|), i, j = 1, . . . , k},

Γ−1
k = Φ′

kDkΦk, where Dk = diag
(
v−1
0 , v−1

1 , . . . , v−1
k−1

)
, and

Φk =



1 0 0 · · · 0

−ϕ11 1 0 · · · 0

−ϕ22 −ϕ21 1 · · · 0

...
... · · · . . .

...

−ϕk−1,k−1 −ϕk−1,k−2 −ϕk−1,k−3 · · · 1


.

The mapping which transforms γ = (γ(0), . . . , γ(k)) into (ϕ11, . . . , ϕkk, vk) is one-to-one

and continuously differentiable. The derivatives of the lag k partial autocorrelation with

respect to γ is obtained by running the following recursions in parallel with the above DL

recursions. Letting ∂v0/∂γ = (1, 0, . . . , 0)′, ∂ϕ11/∂γ = {γ(0)}−1(−ϕ11, 1, 0, . . . , 0)
′, and

defining ui = (−ϕi−1,i−1,−ϕi−1,i−2, . . . ,−ϕi−1,1, 1)
′, for i = 2, . . . , k,

∂ϕii

∂γ = 1
vi−1

{
ui −

∑i−1
j=1 γ(i− j)

∂ϕi−1,j

∂γ − ϕii
∂vi−1

∂γ

}
,

∂ϕij

∂γ =
∂ϕi−1,j

∂γ − ϕi−1,i−j
∂ϕii

∂γ − ϕii
∂ϕi−1,i−j

∂γ , (j = 1, . . . , i− 1),

∂vi
∂γ = (1− ϕ2

ii)
∂vi−1

∂γ − 2ϕiivi−1
∂ϕii

∂γ .

(8)

C Proof of Theorem 2

Let q = (q1, . . . , qr) denote the r × 1 vector1 containing the quantiles of the unconditional

distribution of Xt, with q0 denoting the true quantiles and q̂ the estimated ones, and let

1Alternatively, r is replaced by r∗ = r/2 if the hinge basis is considered.
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θ = (q′,β′)′ ∈ Θ, Θ = Rr × B, B = {β ∈ Rr : β′Γh(0)β = 1}. Rewrite ht(q) to denote

the r × 1 vector containing the values of the basis functions evaluated at q, and ĥt(q) for

sample counterpart.

Recall that the transformed time series {zt, t = 1, . . . , T} depends on q via the set

of basis functions ĥt(q) and linearly on β. To stress this dependence we will write

zt(θ) = β′ĥt(q), the corresponding stochastic process as Zt(θ) = β′ht(q). Let γz(k;θ) =

Cov(Zt(θ), Zt−k(θ)) and γ̂z(k;θ) =
1
T

∑T
t=k+1(zt(θ)−z̄(θ))(zt−k(θ)−z̄(θ)), z̄(θ) = 1

T

∑T
t=1 zt(θ).

An intermediate large sample property concerns the convergence of γ̂z(k;θ), equivalently

written γ̂z(k;q,β), to γz(k;θ), also written γz(k;q,β), for all θ ∈ Θ. Recall that q does

not depend on β and is estimated by the sample quantiles, q̂, of the marginal distribution

of Xt, so that γ̂(k; q̂,β)− γ̂(k;q,β) = op(1), under Assumption 1.

Lemma C1. The sample autocovariance function of zt(θ) = β
′ĥt(q) converges uniformly

in probability to γz(k;θ) = Cov(Zt(θ), Zt−k(θ)), i.e., supθ∈Θ |γ̂z(k;θ)− γz(k;θ)| →p 0.

Proof. Assumptions 1-3 imply that γ̂z(k;θ) is convergent in mean square to γz(k;θ) for all

θ ∈ Θ. Consider the centred random process Y ∗
kt = [Zt(θ)−E{Zt(θ)}][Zt−k(θ)−E{Zt(θ)}],

and its sample analogue, y∗kt = [zt(θ) − z̄(θ)][zt−k(θ) − z̄(θ)]. The process Y ∗
kt is strong

mixing with coefficient of size −φ0, and defining γ̂∗
z (k;θ) = T−1

∑T
t=1 Y

∗
kt, it holds that

E
{
[γ̂∗

z (k;θ)− γz(k;θ)]
2} = 1

T 2E
{
[
∑

t(Y
∗
kt − E(Y ∗

kt)]
2}

≤ 2
T
C
∑∞

m=1{α(m)}
δ

2+δ

= O(T−1),

where the second line follows from Davidov’s covariance inequality (Davydov, 1968), with

C = 12{E(|Y ∗
kt|2+δ)}2, whose finiteness is implied by Assumption 2. Then, simple manipu-

lations show that γ̂∗(k;θ)− γ̂(k;θ) = Op (T
−2[

∑
t(Ykt − E(Ykt))]

2) →p 0.

Finally, γ̂z(k;θ) is a Lipschitz continuous function of θ ∈ Θ: let θ = (q′,β′)′,θ∗ =
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(q∗′ ,β∗′)′ ∈ Θ, then

|γ̂z(k;q,β)− γ̂z(k;q
∗,β∗)| ≤ |γ̂z(k;q,β)− γ̂z(k;q

∗,β)|+ |γ̂z(k;q∗,β)− γ̂z(k;q
∗,β∗)|

= |β′{Γ̂h(k,q)− Γ̂h(k,q
∗)}β|

+|β∗′Γ̂
′

h(k,q
∗)(β − β∗) + (β − β∗)′Γ̂h(k,q

∗)(β − β∗)|

≤ C1k,T∥q− q∗∥2 + C2k,T∥β − β∗∥2

≤ C3k,T∥θ − θ∗∥2,

with Cik,T = Op(1), i = 1, 2, 3. The first inequality arises since, if we refer to the hinge basis,

the j-th component of the vector |ĥjt(q) − ĥjt(q
∗)| = |max(0, xt − qj) −max(0, xt − q∗j )|,

equals 0 if xt ≤ (qj∧q∗j ), and it is not greater than |qj−q∗j | otherwise. Similar considerations

hold for the logistic basis.

In summary, γ̂z(k;θ) converges pointwise to γz(k;θ) and satisfies the above Lipschitz

condition. Hence, by Theorems 2.9 and 2.11 in Davidson (2021), it converges uniformly to

γz(k;θ).

The above Lipschitz property holds also for the sample partial autocorrelation of Zt(θ),

ϕ̂z,kk(θ), which are a continuous and differentiable function of the sample autocovariances.

The differential, which can be obtained recursively by differentiating the Durbin-Levinson

recursions, is linear in γ̂(i;θ) − γ̂(i;θ∗), i = 0, 1, . . . , k, with bounded coefficients, see Ap-

pendix B.

The second large sample property that will be needed in the sequel concerns the asymp-

totic normality of γ̂z(k;θ) for all θ ∈ Θ.

Lemma C2. Let γ̂L(θ) = (γ̂z(0,θ), γ̂z(1,θ), . . . , γ̂z(L,θ))
′, and define γL(θ) the cor-

responding population vector. Then,
√
T {γ̂L(θ)− γL(θ)} →d N(0,WL), where W =

{wkl; k, l = 1, 2, . . . , L}, with generic element given by the Bartlett’s formula

wkl =
∑∞

j=−∞ {γz(j)γz(j − k + l) + γz(j + k)γz(j + l) + κ(k,−j, l − j)} , and κ(i, j, k) is
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the fourth cumulant of (Zt(θ), Zt+i(θ), Zt+j(θ), Zt+k(θ)).

Proof. The result follows from Theorem 18.5.3 in Ibragimov and Linnik (1971): Assump-

tions 2 and 3 and Theorem 15.1 in Davidson (2021) imply that Zt(θ) and Yt(θ) = Zt(θ)Zt−k(θ)

are α-mixing of size −φ0, E(|Yt(θ)|4+2δ) < ∞, and
∑

m{αY (m)}δ/(2+δ) < ∞, where αY (m)

is the mixing coefficient of Yt(θ). The evaluation of the long run variance of Yt(θ) leads to

the above Bartlett’s formula, see e.g. Anderson (1971, ch. 8) and Keenan (1997). Finally,

E(|Yt(θ)|4+2δ) < ∞ implies that
∑

j |κ(k,−j, l − j)| < ∞.

The sample partial autocorrelations of Zt(θ) are continuous and differentiable func-

tions of the sample autocovariances. The derivatives can be obtained recursively by

differentiating the Durbin-Levinson recursions, as in Appendix B. Hence, writing ϕ̂L =(
ϕ̂11(β), . . . , ϕ̂LL(β)

)
and ϕL(θ) = (ϕ11(β), . . . , ϕLL(β)), and applying the delta method,

it holds that
√
T
{
ϕ̂L(θ)− ϕL(θ)

}
→d N(0

¯
,JϕWLJ

′
ϕ), where Jϕ = ∂ϕL(θ)/∂γL.

Proof of β̂ →p β (consistency). Under Assumptions 1 and 2 the sample quantiles

converge in probability to the population quantiles, q̂ →p q. Notice that Q̂T (β) in (3) can

be written as Q̂T (q̂,β), and |Q̂T (q̂,β)− Q̂T (q,β)| = op(1).

The consistency of β̂ follows from Theorem 2.1 in Newey and McFadden (1994), since all

the assumptions are satisfied: i. Θ is a compact set; ii. Q̂T (θ) = Q̂T (q,θ) is continuous in

θ ∈ Θ and is a measurable function of {Xt, t = 1, . . . , T}. iii. Q̂T (θ) converges uniformly

in probability to Q0(θ), i.e., supθ∈Θ

∣∣∣Q̂T (θ)−Q0(θ)
∣∣∣ →p 0. This last property follows

from Lemma 2.9 in Newey and McFadden (1994), as Q0(θ) is a continuous function of θ,

and, for all θ ∈ Θ, Q̂T (θ) →p Q0(θ) (pointwise convergence); finally, for all θ,θ∗ ∈ Θ,

|Q̂T (θ)− Q̂T (θ
∗)| ≤ BT∥θ − θ∗∥2 with BT = Op(1) (Lipschitz condition).

Pointwise convergence is proved as follows. By the triangle inequality,
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∣∣∣Q̂T (θ)−Q0(θ)
∣∣∣ ≤

∣∣∣Q̂T (θ)−QT (θ)
∣∣∣+ |QT (θ)−Q0(θ)|

≤ C1

∑⌊ℓT ⌋
k=1 k|ϕ̂z,kk − ϕz,kk|+ C2

∑∞
⌊ℓT ⌋+1 kϕ

2
z,kk

≤ C3
⌊ℓT ⌋(⌊ℓT ⌋+1)

2T 1/2 + C2

∑∞
⌊ℓT ⌋+1 kϕ

2
z,kk

where Ci, i = 1, 2, 3, are positive constants. The first term on the right hand results from

the mean value theorem expansion −1
2
log(1 − ϕ̂2

z,kk) = −1
2
log(1 − ϕ2

z,kk) +
ϕ2
z,kk

1−ϕ̄2
kk
(ϕ̂z,kk −

ϕz,kk) + 0.5
1+ϕ̄2

kk

(1−ϕ̄2
z,kk)

2 (ϕ̂z,kk − ϕz,kk)
2, where ϕ̄z,kk is an intermediate point between ϕkk and

ϕ̂z,kk. Its probability limit is zero by Assumption 4. The second addend uses the first order

Maclaurin expansion −1
2
log(1 − ϕ2

z,kk) = ϕ2
kk + O(ϕ4

z,kk). By Assumption 2 this term is

O(
∑∞

k=⌊ℓT ⌋+1 kα
2
k) and thus converges to zero as ℓT → ∞.

Finally, Lipschitz continuity of Q̂T (θ) follows from that of the sample autocovariance

function. If we define the vector ψt(θ) with LT+1 elements Y ∗
kt, k = 0, 1, . . . , LT , where Ykt∗

was defined above, then it can be seen that Q̂T (β) is a continuous function of T−1
∑

tψt,

via the sample partial autocorrelations ϕ̂z,kk(θ), which are a continuous and differentiable

function of γ̂L(θ), with bounded first derivative. Hence, there exist a constant C > 0, such

that |Q̂T (θ)− Q̂T (θ
∗)| ≤ BT∥θ − θ∗∥2 where BT = C

∑LT

k=1 k∥Γ̂h(k,θ)∥, and BT = Op(1),

as implied by Assumption 2 and the maximum norm inequality ∥A∥ ≤ rmax{|aij|}, where

r is the row and column dimension of A. Hence, Q̂T (θ) satisfies a Lipschitz condition and

all the regularity conditions of Lemma 2.9 in Newey and McFadden (1994) are satisfied.

Asymptotic normality of β̂ Consider the Lagrangian L(β, ϖ) = Q̂T (β)− 1
2
ϖβ′Γ̂h(0)β.

Let us denote ĝT (β) =
∂Q̂T (β)

∂β
. The first order conditions for the problem are ĝT (β) −

ϖΓ̂h(0)β = 0, β′Γ̂h(0)β−1 = 0; premultiplying the first equation by β′ givesϖ = β′ĝT (θ).

Hence, the constrained solution β̂ satisfies the nonlinear system β̂ = Γ̂
−1

h (0)ĝT (β̂)/β̂
′
ĝT (θ).

By a first order Taylor’s expansion of the first order conditions around β0, as in Davidson

(2000, Sec. 12.3), after scaling by
√
T , we get
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 ĜT (β
∗) Γ̂h(0)β̂

β̂
′
Γ̂h(0) 0




√
T (β̂ − β0)

√
Tϖ̂

 =


√
T ĝT (β0)

0

 .

Let nowG0 = plimĜT (β
∗), and recalling Γ̂h(0)β̂ →p Γh(0)β0,

√
T (β̂−β0) →p E0

√
T ĝT (β0),

where E0 = G−1
0 − 1

β′
0Γh(0)G

−1
0 Γh(0)β0

G−1
0 Γh(0)β0β

′
0Γh(0)G

−1
0 is the top-left block of the

inverse matrix of the probability limit of the matrix on the left hand side.

The term on the right hand side is a function of the sample autocovariances. By the

mean value theorem, ĝT (β0) = g0(β0) + M∗
T (γ̂LT

− γLT
), where M∗

T =
ĝT (β0)

∂γLT

∣∣∣∣
γLT

=γ∗
LT

,

γ∗
LT

is a point intermediate between γ̂LT
, and γLT

, and g0(β0) converges to zero.

By the properties of the sample autocovariances (Lemma 2), denotingΣT = MTWLT
M′

T →p

Σ0, we have that
√
T ĝT (β0) →d N(0,Σ0), provided that LT ≥ r (which follows from As-

sumption 4).

Hence,
√
T (β̂ − β0) →d N(0,E0Σ0E

′
0) .
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