On derivation and analysis of traffic and lubrication models

From fluids to crowds

Ewelina Zatorska

Workshop on Compressible Multiphase Flows, Strasbourg (IRMA) 07.06.2023

Engineering and Physical Sciences Research Council

Compressible and incompressible NS systems

• Compressible Navier-Stokes equations (constant temperature):

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) \underbrace{-\mu \Delta \mathbf{u} - \lambda \nabla \operatorname{div} \mathbf{u}}_{:=\operatorname{div} \mathbb{S}(\mathbf{u})} + \nabla p(\rho) = \mathbf{0}, \end{cases}$$

- \rightsquigarrow The unknowns: ρ , **u**.
- \rightsquigarrow The pressure: $p = a\rho^{\gamma}$.

• Incompressibe Navier-Stokes equations:

$$\begin{aligned} & \operatorname{div} \mathbf{u} = \mathbf{0}, \\ & \rho^* (\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) - \mu \Delta \mathbf{u} + \nabla \pi = \mathbf{0}, \end{aligned}$$

 \rightsquigarrow The unknowns: ρ , **u** and π .

- Free boundary pb: free domain $\{\rho < \rho^*\}$ / congested domain $\{\rho = \rho^*\}$.
- Constrained compressible / incompressible Navier-Stokes equations

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0 \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla \rho(\rho) + \nabla \pi + \operatorname{div} \mathbb{S}(\mathbf{u}) = \mathbf{0}, \\ \mathbf{0} \le \rho \le \rho^*, \quad (\rho^* - \rho)\pi = 0, \quad \pi \ge \mathbf{0}. \end{cases}$$

<u>Unknowns:</u> ρ – density, **u** – velocity, $\nabla \pi$ – constraining force

Outline

- Motivation: crowds, floating structures, lubrication, traffic;
- Hard congestion limit explained in 1D;
- Analysis of Aw-Rascle system in multi-D.

Motivation: Applications

Let U_{pref} - preferred velocity, ρ - pedestrian population density

```
\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0\\ \mathbf{u} = P_{C_{\rho}}(\mathbf{U}_{pref}), \end{cases}
```

• cone of admis. vel.: $C_{\rho} = \{ \mathbf{v} \in L^2(\Omega) : \int_{\Omega} \mathbf{v} \cdot \nabla q \leq 0 \ \forall q \in H^1_{\rho} \}$

• space of pressures $H^1_{\rho} = \{q \in H^1, \ q \ge 0 \ a.e., q = 0 \ a.e. \ in \ \{\rho < 1\}\}.$

Find $(\mathbf{u}, p) \in L^2 imes H^1_{
ho}$ such that

$$\begin{cases} \mathbf{u} + \nabla p = \mathbf{U}_{pref} \\ \int_{\Omega} \mathbf{u} \cdot \nabla q \leq \mathbf{0} \quad \forall q \in H^{1}_{\rho} \end{cases}$$

Maury, Roudneff-Chupin, Santambrogio '10.

2/4 Floating structures/flows through the channels

The (inviscid) fluid is described by shallow water approximation

$$\begin{cases} \partial_t h + \partial_x (h\bar{u}) = 0\\ \partial_t (h\bar{u}) + \partial_x (h\bar{u}^2) = -h\partial_x \left(g(h+B) + \frac{\bar{p}}{\rho}\right),\\ \min\{\bar{H} - h, \bar{p} - P\} = 0. \end{cases}$$

Godlewski et al. '20, Lannes'17.

When number of masses goes to infinity, the flow is described by:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2) - \partial_x \left(\frac{\varepsilon}{1 - \rho} \partial_x u \right) = \rho f, \end{cases}$$

Conjecture: when $\varepsilon \rightarrow 0$ we obtain the system:

<

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p = f, \\ \partial_t \gamma + \partial_x (\gamma u) = -p, \\ \gamma \le 0, \ \rho \le 1, \ \gamma (1 - \rho) = 0. \end{cases}$$

A. Lefebvre-Lepot and B. Maury '11, Chaudhuri, Navoret, Perrin, Z. '23.

4/4 Link with the traffic model

From Follow the Leader to fluid-like Aw-Rascle system:

$$\begin{cases} \dot{x}_i = u_i, \\ \dot{u}_i = C \frac{u_{i+1} - u_i}{(x_{i+1} - x_i)^{\gamma + 1}}, \end{cases} \longrightarrow \begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho w) + \partial_x (\rho w u) = 0, \\ w = u + P(\rho) \end{cases}$$

where $P(\rho) = \rho^{\gamma}$ is the cost (offset) function.

Aw, Klar, Rascle, Materne. Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Math. Anal., 2002.

Problem: Maximal velocity and maximal density constraints not preserved.

F. Berthelin, P. Degond, M. Delitata, and M. Rascle. A Model for the Formation and Evolution of Traffic Jams. *ARMA*, 2008.

Who is the leader now?

 $\begin{array}{ll} & One \ dimension & \longrightarrow \\ & \\ & \\ \partial_t \rho + \partial_x (\rho u) = 0, & \\ & \\ & \\ \partial_t (\rho w) + \partial_x (\rho w u) = 0, & \end{array}$

Several dimensions $\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t(\rho \mathbf{w}) + \operatorname{div}(\rho \mathbf{w} \otimes \mathbf{u}) = 0. \end{cases}$

Problem: Dimension incompatibility: $\mathbf{w} = \mathbf{u} + \underbrace{P(\rho)}_{\text{vector}}$.

Solutions to dimension incompatibility problem

Either:

$$\mathbf{w} = \mathbf{u} + \mathbf{P}(\rho),$$

where $\mathbf{P}(\rho) = [P_1(\rho), P_2(\rho)].$

M. Herty, S. Moutari, G. Visconti. Macroscopic modeling of multilane motorways using a two-dimensional second-order model of traffic flow. *SIAM J. Appl. Math.*, 2018.

Or:

$$\mathbf{w} = \mathbf{u} + \nabla p(\rho),$$

where $p(\rho)$ is a scalar function.

A.Tosin, P. Degond, E. Zatorska Students' theses 2016-2017.

Observations about the model

• Taking the offset function $P(\rho) = \partial_x p(\rho) = \frac{\lambda(\rho)}{\rho^2} \partial_x \rho$, we get pressureless, compressible, degenerate Navier-Stokes equations:

$$\begin{split} \partial_t \rho &+ \partial_x (\rho u) = 0, \\ \partial_t (\rho u) &+ \partial_x (\rho u^2) - \partial_x \left(\lambda(\rho) \partial_x u \right) = 0. \end{split}$$

• In more dimensions this dissipative effect looks differently

$$\partial_t(
ho \mathbf{u}) + \operatorname{div}(
ho \mathbf{u} \otimes \mathbf{u}) =
abla_x(
ho Q'(
ho)\operatorname{div}\mathbf{u}) + \mathcal{L}[
abla_x Q(
ho),
abla_x \mathbf{u}]_y$$

where $Q'(\rho) = \rho p'(\rho)$ and

$$\mathcal{L}[\nabla_{\mathsf{x}} Q(\rho), \nabla_{\mathsf{x}} \mathbf{u}] = \nabla_{\mathsf{x}} (\nabla_{\mathsf{x}} Q(\rho) \cdot \mathbf{u}) - \mathsf{div}(\nabla_{\mathsf{x}} Q(\rho) \otimes \mathbf{u}),$$

which is a lower order term

$$\left(\mathcal{L}[\nabla_{x}Q(\rho),\nabla_{x}\mathbf{u}]\right)_{j}=\sum_{i=1}^{3}\left(\partial_{x_{i}}Q(\rho)\partial_{x_{j}}u_{i}-\partial_{x_{j}}Q(\rho)\partial_{x_{i}}u_{i}\right), \quad j=1,2,3$$

Analysis of hard congestion limit in 1D

The starting point is the following system on 1D tourus:

$$\left\{ egin{array}{l} \partial_t
ho + \partial_x(
ho u) = 0, \ \partial_t(
ho u) + \partial_x(
ho u^2) - \partial_x\left(\lambda_arepsilon(
ho)\partial_x u
ight) = 0, \end{array}
ight.$$

where

$$\lambda_{\varepsilon}(\rho) = \rho^2 p_{\varepsilon}'(\rho), \qquad p_{\varepsilon}(\rho) = \varepsilon rac{
ho^{\gamma}}{(1-
ho)^{eta}}, \quad \gamma \geq 0, \quad eta > 1.$$

Taking $w = u + \partial_x p_{\varepsilon}(\rho)$ we formally rewrite the momentum equation as:

$$\partial_t(\rho w) + \partial_x(\rho u w) = 0,$$

or as

$$\partial_t(\rho u + \partial_x \pi_{\varepsilon}(\rho)) + \partial_x(u(\rho u + \partial_x \pi_{\varepsilon}(\rho))) = 0$$

where $\partial_x \pi_{\varepsilon}(\rho) = \rho \partial_x p_{\varepsilon}(\rho)$.

Approximation and existence of solutions

We consider the following approximation:

$$\begin{cases} \partial_t \rho_{\varepsilon} + \partial_x (\rho_{\varepsilon} u_{\varepsilon}) = 0, \\ \partial_t (\rho_{\varepsilon} u_{\varepsilon}) + \partial_x (\rho_{\varepsilon} u_{\varepsilon}^2) - \partial_x (\lambda_{\varepsilon} (\rho_{\varepsilon}) \partial_x u_{\varepsilon}) = 0, \\ \rho_{\varepsilon}|_{t=0} = \rho_{\varepsilon}^0, \quad u_{\varepsilon}|_{t=0} = u_{\varepsilon}^0, \end{cases}$$

with λ_{ε} re-defined as

$$\lambda_{\varepsilon}(\rho_{\varepsilon}) = \rho_{\varepsilon}^{2} p_{\varepsilon}'(\rho_{\varepsilon}) + \underbrace{\rho_{\varepsilon}^{2} \varphi_{\varepsilon}'(\rho_{\varepsilon})}_{\text{approximation}}$$

where

$$p_{\varepsilon}(
ho_{\varepsilon}) = arepsilon rac{
ho_{arepsilon}^{\gamma}}{(1-
ho_{arepsilon})^{eta}}, \quad arphi_{arepsilon}(
ho_{arepsilon}) = rac{arepsilon}{lpha-1}
ho^{lpha-1}, \quad \gamma \geq 0, \quad eta > 1, \quad lpha \in \left(0,rac{1}{2}
ight).$$

Theorem (Chaudhuri, Navoret, Perrin, Z. '22) Let $\varepsilon > 0$ fixed, T > 0 arbitrary, $\rho_{\varepsilon}^{0}, u_{\varepsilon}^{0} \in H^{3}(\mathbb{T})$, with $0 < \rho_{\varepsilon}^{0} < 1$. \exists ! global solution $(\rho_{\varepsilon}, u_{\varepsilon})$ s. t. $0 < \rho_{\varepsilon}(t, x) < 1$, and

$$ho_{arepsilon}\in\mathcal{C}([0,\,T];\,H^{3}(\mathbb{T})),\qquad u_{arepsilon}\in\mathcal{C}([0,\,T];\,H^{3}(\mathbb{T}))\cap L^{2}(0,\,T;\,H^{4}(\mathbb{T})).$$

Constantin, Drivas, Nguyen, Pasqualotto '20, Mehmood '23.

Basic a priori estimates:

- $\|\rho_{\varepsilon}\|_{L^1_x}(t) = \|\rho^0_{\varepsilon}\|_{L^1_x}$,
- $\|\sqrt{\rho_{\varepsilon}} u_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}} + \|\sqrt{\lambda_{\varepsilon}(\rho_{\varepsilon})}\partial_{x} u_{\varepsilon}\|_{L^{2}_{t,x}} \leq C$ and $\|\sqrt{\rho_{\varepsilon}} w_{\varepsilon}\|_{L^{\infty}_{t}L^{2}_{x}} \leq C$, (classical energy) (BD estimate)
- $\|H_{\varepsilon}(\rho_{\varepsilon})\|_{L_{t}^{\infty}L_{x}^{1}} + \|\sqrt{\rho_{\varepsilon}}\partial_{x}(p_{\varepsilon}(\rho_{\varepsilon}) + \varphi_{\varepsilon}(\rho_{\varepsilon}))\|_{L_{t}^{2}L_{x}^{2}}^{2} \leq C(T),$ (porous medium structure)

where $H'_{\varepsilon}(\rho_{\varepsilon}) := p_{\varepsilon}(\rho_{\varepsilon}) + \varphi_{\varepsilon}(\rho_{\varepsilon}).$

$$\implies \rho_{\varepsilon}(t,x) \leq 1 - C\left(\frac{\varepsilon}{1+\sqrt{T}}\right)^{\frac{1}{\beta-1}}, \quad \rho_{\varepsilon}^{-1} \leq C\varepsilon^{-\frac{2}{1-2\alpha}} \left(1+T\right)^{\frac{1}{1-2\alpha}}.$$

No estimates on u_{ε} (or w_{ε}) independent of ρ_{ε} ; Λ Λ The BD estimate not uniform w.r.t. ε ; Λ Λ Λ No uniform estimates for $p_{\varepsilon}(\rho_{\varepsilon})$, not even L^{1} .

Idea: Duality solutions of Bouchut and James '98, '99, Boudin '00

Definition A solution $b \in \operatorname{Lip}_{loc}([0, T] \times \mathbb{R})$ to

$$\partial_t b + u_{\varepsilon} \partial_x b = 0, \qquad b_{|t=T} = b_T$$
 (1)

is said to be reversible if there exist two solutions $b_1, b_2 \in \operatorname{Lip}_{loc}([0, T] \times \mathbb{R})$ of (1) such that $\partial_x b_1 \geq 0$, $\partial_x b_2 \geq 0$ and $b = b_1 - b_2$.

Remark Bouchut and James showed that the backward problem (1) is well-posed in the class of reversible solutions provided $u_{\varepsilon} \in L^{\infty}([0, T] \times \mathbb{R})$, and if u_{ε} satisfies the *Oleinik entropy condition*, i.e. $\partial_{x}u_{\varepsilon} \leq 1/t$.

Definition We say that $\mu \in C([0, T], \mathcal{M}_{loc,x})$ is a duality solution to

$$\partial_t \mu + \partial_x(\mu u) = 0$$
 in $]0, T[\times \mathbb{T}]$

if, for any $0 < \tau \leq T$, and any reversible solution *b*, the function

$$t\mapsto \int_{\mathbb{T}}b(t,x)\mu(t,dx)$$

is constant on $[0, \tau]$.

 $\cancel{!}$ Further estimates on $u_arepsilon$

Idea: Duality solutions of Bouchut and James '98, '99, Boudin '00. \rightsquigarrow we prove the one-sided Lipschitz condition on $\partial_x u_{\varepsilon}$.

Proposition

Let ρ_{ε} , u_{ε} be a regular solution, and set $A_{\varepsilon} := \max(\operatorname{ess\,sup}(\lambda_{\varepsilon}(\rho_{\varepsilon}^{0})\partial_{x}u_{\varepsilon}^{0}), 0)$. Then

$$V_{\varepsilon} = \lambda_{\varepsilon}(\rho_{\varepsilon})\partial_{x}u_{\varepsilon} \leq A_{\varepsilon}.$$

In particular:

• If
$$A_{\varepsilon} \rightarrow 0$$
 as $\varepsilon \rightarrow 0$, then

$$(\lambda_{\varepsilon}(
ho_{\varepsilon})\partial_{x}u_{\varepsilon})_{+}
ightarrow 0$$
 as $\varepsilon
ightarrow 0$;

• If $A_{\varepsilon} \leq \lambda_{\varepsilon}(\underline{\rho}_{\varepsilon}) \leq \overline{C}\varepsilon^{\frac{1}{1-2\alpha}}$, for some \overline{C} independent of ε , then

 $\partial_x u_{\varepsilon} \leq \bar{C}$

We have

$$\|\partial_x u_{\varepsilon}\|_{L^{\infty}_t L^1_x} \leq C \quad \rightsquigarrow \quad \|u_{\varepsilon}\|_{L^{\infty}_{t,x}} \leq C$$

for a constant C independent of ε . As a consequence of it, we deduce

$$\|\pi_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{1}_{x}}+\|\partial_{x}\pi_{\varepsilon}(\rho_{\varepsilon})\|_{L^{\infty}_{t}L^{2}_{x}}\leq C,$$

where $\pi'_{\varepsilon}(\rho_{\varepsilon}) = \rho_{\varepsilon} p'_{\varepsilon}(\rho_{\varepsilon}) + \rho_{\varepsilon} \varphi'_{\varepsilon}(\rho_{\varepsilon}).$

Idea: Testing the momentum equation with

$$\psi(t,x) = \int_0^x \left(\rho_{\varepsilon}(t,y) - \langle \rho_{\varepsilon} \rangle \right) dy,$$

to obtain the bound

$$\left|\int_0^t\int_{\mathbb{T}}\rho_{\varepsilon}^2p_{\varepsilon}'(\rho_{\varepsilon})\partial_xu_{\varepsilon}dx\,dt\right|\leq C.$$

This is then used to bound the r.h.s. of the renormalised continuity equation

$$\partial_t(\rho_\varepsilon p_\varepsilon(\rho_\varepsilon)) + \partial_x(\rho_\varepsilon p_\varepsilon(\rho_\varepsilon) u_\varepsilon) = -\rho_\varepsilon^2 p_\varepsilon'(\rho_\varepsilon) \partial_x u_\varepsilon.$$

The limit passage

Recall the system once more:

$$\begin{split} \partial_t \rho_\varepsilon &+ \partial_x (\rho_\varepsilon u_\varepsilon) = \mathbf{0}, \\ \partial_t \left(\rho_\varepsilon u_\varepsilon + \partial_x \pi_\varepsilon \right) &+ \partial_x \left(\left(\rho_\varepsilon u_\varepsilon + \partial_x \pi_\varepsilon \right) u_\varepsilon \right) = \mathbf{0}. \end{split}$$

From the a-priori estimates:

 $\rho_{\varepsilon} \rightharpoonup \rho, \quad u_{\varepsilon} \rightharpoonup u \quad \text{weakly-* in} \quad L^{\infty}_{t,x}, \qquad \pi_{\varepsilon}(\rho_{\varepsilon}) \rightharpoonup \pi \quad \text{weakly in} \quad L^{2}_{t}H^{1}_{x},$ and also

$$\rho_{\varepsilon}\varphi_{\varepsilon}(\rho_{\varepsilon}) \to 0 \quad \text{strongly in} \quad L^{\infty}_{t,x}, \quad (1-\rho_{\varepsilon})\pi_{\varepsilon}(\rho_{\varepsilon}) \to 0 \quad \text{strongly in} \ L^{q}_{t,x}.$$

Using the standard compensated compactness arguments we then show:

$$(1-
ho_{arepsilon})\pi_{arepsilon}(
ho_{arepsilon})
ightarrow (1-
ho)\pi, \quad
ho_{arepsilon}u_{arepsilon}
ightarrow
ho u \quad ext{and} \quad
ho_{arepsilon}u_{arepsilon}^2
ightarrow
ho u^2 \quad ext{in } \mathcal{D}_{t, imes}'.$$

Hence, passing to the limit in the system, we verify that:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u + \partial_x \pi) + \partial_x ((\rho u + \partial_x \pi) u) = 0\\ 0 \le \rho \le 1, \quad (1 - \rho)\pi = 0, \quad \pi \ge 0 \end{cases}$$

Analysis of Aw-Rascle system in multi-D

The set up of the problem

Let $\mathbf{w} = \mathbf{u} + \nabla p(\rho)$ we can either solve:

$$\left(\begin{array}{l} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\rho \mathbf{w}) + \operatorname{div}(\rho \mathbf{w} \otimes \mathbf{u}) = \mathbf{0}, \end{array} \right.$$

or equivalently:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{w}) - \operatorname{div}(\sqrt{\rho} \nabla Q) = 0, \\ \partial_t(\rho \mathbf{w}) + \operatorname{div}(\rho \mathbf{w} \otimes \mathbf{w}) = \operatorname{div}(\sqrt{\rho} \nabla Q \otimes \sqrt{\rho} \mathbf{w}); \end{cases}$$

where $Q'(\rho) = \sqrt{\rho}p'(\rho)$.

We consider $\Omega = \mathbb{T}^d$ with the initial data $\rho(0, x) = \rho_0 \ge 0$, $(\rho \mathbf{w})(0, x) = \mathbf{m}_0$, satisfying the energy bound

$$E_0 = \int_{\Omega} \left(\frac{1}{2} \frac{|\mathbf{m}_0|^2}{\rho_0} + E(\rho_0) \right) \, \mathrm{d}x < \infty, \quad \text{where} \quad E(\rho) = \int_0^{\rho} p(s) \, ds.$$

$$\begin{split} \|\sqrt{\rho_n} \mathbf{w}_n\|_{L^{\infty}(0,T;L^2(\mathbb{T}^d))} &\leq C, \\ \|E(\varrho_n)\|_{L^{\infty}(0,T;L^1(\mathbb{T}^d))} &\leq C, \\ \|Q(\varrho_n)\|_{L^2(0,T;W^{1,2}(\mathbb{T}^d))} &\leq C, \end{split}$$
 where $E(\rho) = \int_0^{\rho} p(s) \ ds, \ Q'(\rho) = \sqrt{\rho}p'(\rho).$

Remarks:

- 1. There is <u>no uniform bound</u> on \mathbf{w}_n .
- 2. The estimates for ρ_n are quite strong.
 - The continuity equation

$$\partial_t \rho_n + \operatorname{div}(\underbrace{\sqrt{\rho_n}\sqrt{\rho_n}\mathbf{w}_n}_{L^{\infty}(L^p)}) - \operatorname{div}(\underbrace{\sqrt{\rho_n}\nabla Q(\rho_n)}_{L^2(L^p)}) = 0,$$

• The momentum equation

$$\partial_t (\sqrt{\rho_n} \sqrt{\rho_n} \mathbf{w}_n) + \operatorname{div}(\underbrace{\sqrt{\rho_n} \mathbf{w}_n \otimes \sqrt{\rho_n} \mathbf{w}_n}_{L^{\infty}(L^1)}) = \operatorname{div}(\underbrace{\nabla Q(\rho_n) \otimes \sqrt{\rho_n} \mathbf{w}_n}_{L^2(L^1)}).$$

$$\mathcal{V}: \mathcal{Q} \subset \mathbb{R}^k
ightarrow \mathcal{P}(\mathbb{R}^N),$$

in the sense that

$$z \in Q o \langle \mathcal{V}_z; g(\xi) \rangle = \int_{\mathbb{R}^N} g(\xi) d\mathcal{V}_z(\xi)$$

is Borel measurable $\forall g \in C_0(\mathbb{R}^N)$.

Any measurable function $\mathbf{u}_n: Q \to \mathbb{R}^N$ generates a measure

$$\mathbf{u}_n: z \in Q \to \delta_{u_n(z)} \in \mathcal{P}(\mathbb{R}^N),$$

moreover $\mathbf{u}_n \to \mathcal{V}$ in the natural topology $L^{\infty}_{waek^*}(Q; \mathcal{M}(\mathbb{R}^N))$, meaning that

 $\langle \mathbf{u}_n; g(\xi) \rangle \to \langle \mathcal{V}; g(\xi) \rangle$ weakly^{*} in $L^{\infty}(Q)$, $\forall g \in C_0(\mathbb{R}^N)$.

Definition: \mathcal{V} is called the Young measure generated by $\{\mathbf{u}_n\}_{n \in \mathbb{N}}$.

Oscillations and concentrations

 $\{\mathbf{u}_n\}_{n\in\mathbb{N}}$ such that

$$\|\mathbf{u}_n\|_{L^1(Q)} \le C$$
 and $\|b(\mathbf{u}_n)\|_{L^p(Q)} \le C, \quad p > 1$

then $\lim_{n\to\infty} b(\mathbf{u}_n)$ can be characterised by \mathcal{V} , i.e.

$$\int_{Q} \phi(z) b(\mathbf{u}_{n}(z)) \, dz \to \int_{Q} \phi(z) \langle \mathcal{V}_{z}; b(\xi) \rangle \, dz, \quad \forall \phi \in L^{p'}(Q).$$

But if $||b(\mathbf{u}_n)||_{L^1(Q)} \leq C$ only, then

$$b(\mathbf{u}_n) \to \overline{b(u)} \in \mathcal{M}(Q).$$

Remark: Only the oscillations are captured by the Young measure, the concentrations are not!

Definition: We call

$$\mathcal{R}_b = \overline{b(u)} - \langle \mathcal{V}_z; b(\xi) \rangle$$

a <u>defect measure</u> for function b.

 $\{\rho_n, \sqrt{\rho_n} \mathbf{w}_n, \nabla Q(\rho_n)\}_{n \in \mathbb{N}}$, and so we consider $\{\mathcal{V}_{t,x}\}_{(t,x) \in (0,T) \times \mathbb{T}^d}$, and $\mathcal{V} \in L^{\infty}_{weak-(*)}((0,T) \times \mathbb{T}^d; \mathcal{P}(\mathcal{F})),$

on the phase space

$$\mathcal{F} = \left\{ \left(\widetilde{\rho}, \widetilde{\sqrt{\varrho} \mathbf{w}}, \widetilde{D_Q} \right) \mid \widetilde{\rho} \in [0, \infty), \ \widetilde{\sqrt{\varrho} \mathbf{w}} \in \mathbb{R}^d, \ \widetilde{D_Q} \in \mathbb{R}^d \right\}.$$

Our convergence results allow us to identify

$$\rho = \langle \mathcal{V}_{t,x}; \tilde{\varrho} \rangle, \quad \sqrt{\rho} \left\langle \mathcal{V}_{t,x}; \widetilde{\sqrt{\varrho} \mathbf{w}} \right\rangle = \left\langle \mathcal{V}_{t,x}; \sqrt{\tilde{\varrho} \sqrt{\varrho} \mathbf{w}} \right\rangle,$$
$$Q(\rho) = \left\langle \mathcal{V}_{t,x}; Q(\tilde{\rho}) \right\rangle, \quad \nabla_{x} Q(\rho) = \left\langle \mathcal{V}_{t,x}; \widetilde{D_{Q}} \right\rangle.$$

In particular, we have

$$\mathcal{V}_{t,x} = \delta_{\{
ho(t,x)\}} \otimes Y_{t,x}$$
 for a.a. $(t,x) \in (0,T) imes \mathbb{T}^d$,

where $Y \in L^{\infty}_{weak-(*)}((0, T) \times \mathbb{T}^d; \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d)).$

Weak formulation

1. The continuity equation

$$\partial_t \rho + \operatorname{div}(\sqrt{\rho} \left\langle \mathcal{V}_{t,x}; \widetilde{\sqrt{\rho} \mathbf{w}} \right\rangle) - \operatorname{div}(\sqrt{\rho} \nabla_x Q) = 0$$

2. The momentum equation

$$\begin{split} \partial_t \left(\sqrt{\rho} \left\langle \mathcal{V}_{t,x}; \widetilde{\sqrt{\rho} \mathbf{w}} \right\rangle \right) + \mathrm{div} \left(\left\langle \mathcal{V}_{t,x}; \widetilde{\sqrt{\rho} \mathbf{w}} \otimes \widetilde{\sqrt{\rho} \mathbf{w}} \right\rangle \right) \\ &- \mathrm{div} \left(\left\langle \mathcal{V}_{t,x}; \widetilde{\sqrt{\rho} \mathbf{w}} \otimes \widetilde{D_Q} \right\rangle \right) + \mathrm{div}(r^M) = 0. \end{split}$$

are satisfied in the sense of distributions, where

$$r^M \in L^{\infty}_{\mathsf{weak}_{-}(*)}(0, T; \mathcal{M}(\mathbb{T}^d; \mathbb{R}^{d \times d})) + \mathcal{M}([0, T] \times \mathbb{T}^d; \mathbb{R}^{d \times d}).$$

3. The energy inequality

where

$$\mathcal{R} \in L^{\infty}_{\mathsf{weak}-(*)}(0, T; \mathcal{M}(\mathbb{T}^d)) + \mathcal{M}([0, T] \times \mathbb{T}^d).$$

4. The weights are compatible, i.e. $\mathcal{D} \equiv 0 \implies \mathcal{R}, r^M \equiv 0$.

Theorem (Gwiazda, Chaudhuri, Zatorska '22) Let $(\mathcal{V}, \mathcal{D})$ be a measure valued solution in $(0, T) \times \mathbb{T}^d$ of the Aw-Rascle system. Let $(\bar{\varrho}, \bar{\mathbf{w}})$ be a strong solution to the same system in $(0, T) \times \mathbb{T}^d$ with initial data $(\bar{\varrho}_0, \bar{\mathbf{w}}_0) \in (C^2(\mathbb{T}^d), C^2(\mathbb{T}^d; \mathbb{R}^d))$ satisfying $\bar{\varrho}_0 > 0$. We assume that the strong solution belongs to the class

$$\bar{\varrho} \in C^1(0, T; C^2(\mathbb{T}^d)), \ \bar{\mathbf{w}} \in C^1(0, T; C^2(\mathbb{T}^d); \mathbb{R}^d) \ \text{with} \ \bar{\varrho} > 0.$$

If the initial states coincide, i.e.

$$\mathcal{V}_{0,x} = \delta_{\{\bar{\varrho}_0(x), \bar{\mathbf{w}}_0(x)\}}, \text{ for a.e. } x \in \mathbb{T}^d$$

then $\mathcal{D} = 0$, and

 $\mathcal{V}_{\tau,x} = \delta_{\{\underline{\tilde{\varrho}}(\tau,x),\sqrt{\underline{\rho}}\overline{w}(\tau,x),\nabla_{x}Q(\underline{\tilde{\varrho}})(\tau,x)\}}, \text{ for a.e. } (\tau,x) \in (0,T) \times \mathbb{T}^{d}.$

 $(\rho_0, \mathbf{u}_0) = (\rho(0, \cdot), \mathbf{u}(0, \cdot))$ can connect to arbitrary terminal state $(\rho_T, \mathbf{u}_T) = ((\rho(T, \cdot), \mathbf{u}(T, \cdot))$ via a weak solution.

More specifically, we consider

$$egin{aligned} &
ho_0,
ho_{\mathcal{T}} \in C^2(\mathbb{T}^d), & \inf_{\mathbb{T}^d}
ho_0 > 0, & \inf_{\mathbb{T}^d}
ho_{\mathcal{T}} > 0, \ & \int_{\mathbb{T}^d}
ho_0 \, \mathrm{d}x = \int_{\mathbb{T}^d}
ho_{\mathcal{T}} \, \mathrm{d}x, \end{aligned}$$

together with

$$\mathbf{u}_{0}, \mathbf{u}_{T} \in C^{3}(\mathbb{T}^{d}; \mathbb{R}^{d}),$$
$$\int_{\mathbb{T}^{d}} \rho_{T} \mathbf{u}_{T} \, \mathrm{d}x - \int_{\mathbb{T}^{d}} \rho_{0} \mathbf{u}_{0} \, \mathrm{d}x = \int_{\mathbb{T}^{d}} \rho_{0} \mathbf{P}(\rho_{0}) \, \mathrm{d}x - \int_{\mathbb{T}^{d}} \rho_{T} \mathbf{P}(\rho_{T}) \, \mathrm{d}x.$$

Theorem (Chaudhuri, Feireisl, Zatorska '22) Let d = 2,3. Suppose that

 ${f P}\in C^2((0,\infty);R^d),\ p\in C^2((0,\infty)).$

Let (ρ_0, \mathbf{u}_0) , (ρ_T, \mathbf{u}_T) satisfy assumptions above.

Then, the Aw-Rascle system, endowed with the periodic boundary conditions admits infinitely many weak solutions in the class

$$ho \in C^2([0,T] imes \mathbb{T}^d), \quad \mathbf{u} \in L^\infty((0,T) imes \mathbb{T}^d; R^d)$$

such that

$$\rho(\mathbf{0},\cdot) = \rho_0, \ \rho(\mathsf{T},\cdot) = \rho_{\mathsf{T}}, \ (\rho \mathbf{u})(\mathbf{0},\cdot) = \rho_0 \mathbf{u}_0, \ (\rho \mathbf{u})(\mathsf{T},\cdot) = \rho_{\mathsf{T}} \mathbf{u}_{\mathsf{T}}.$$

C. De Lellis and L. Székelyhidi, Jr. '10, Feireisl '16.

Thank you!