On derivation and analysis of traffic and lubrication models

From fluids to crowds

Ewelina Zatorska

Workshop on Compressible Multiphase Flows, Strasbourg (IRMA) 07.06.2023

London

Compressible and incompressible NS systems

- Compressible Navier-Stokes equations (constant temperature):

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0, \\
\partial_{t}(\rho \mathbf{u})+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) \underbrace{-\mu \Delta \mathbf{u}-\lambda \nabla \operatorname{div} \mathbf{u}}_{:=\operatorname{div} \mathbb{S}(\mathbf{u})}+\nabla p(\rho)=\mathbf{0},
\end{array}\right.
$$

\rightsquigarrow The unknowns: ρ, \mathbf{u}.
\rightsquigarrow The pressure: $p=a \rho^{\gamma}$.

- Incompressibe Navier-Stokes equations:

$$
\left\{\begin{array}{l}
\operatorname{div} \mathbf{u}=0 \\
\rho^{*}\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right)-\mu \Delta \mathbf{u}+\nabla \pi=\mathbf{0}
\end{array}\right.
$$

\rightsquigarrow The unknowns: ρ, \mathbf{u} and π.

Fluid equations with constrained density

- Free boundary pb : free domain $\left\{\rho<\rho^{*}\right\} /$ congested domain $\left\{\rho=\rho^{*}\right\}$.
- Constrained compressible / incompressible Navier-Stokes equations

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0 \\
\partial_{t}(\rho \mathbf{u})+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})+\nabla p(\rho)+\nabla \pi+\operatorname{div} \mathbb{S}(\mathbf{u})=\mathbf{0} \\
0 \leq \rho \leq \rho^{*}, \quad\left(\rho^{*}-\rho\right) \pi=0, \quad \pi \geq 0
\end{array}\right.
$$

Unknowns: $\quad \rho$ - density, \mathbf{u} - velocity, $\quad \nabla \pi$ - constraining force

Outline

- Motivation: crowds, floating structures, lubrication, traffic;
- Hard congestion limit explained in 1D;
- Analysis of Aw-Rascle system in multi-D.

Motivation: Applications

1/4 Modelling of crowd

Let $\mathbf{U}_{\text {pref }}$ - preferred velocity, ρ - pedestrian population density

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0 \\
\mathbf{u}=P_{C_{\rho}}\left(\mathbf{U}_{p r e f}\right),
\end{array}\right.
$$

- cone of admis. vel.: $C_{\rho}=\left\{\mathbf{v} \in L^{2}(\Omega): \int_{\Omega} \mathbf{v} \cdot \nabla q \leq 0 \quad \forall q \in H_{\rho}^{1}\right\}$
- space of pressures $H_{\rho}^{1}=\left\{q \in H^{1}, q \geq 0\right.$ a.e., $q=0$ a.e. in $\left.\{\rho<1\}\right\}$.

Find $(\mathbf{u}, p) \in L^{2} \times H_{\rho}^{1}$ such that

$$
\left\{\begin{array}{l}
\mathbf{u}+\nabla p=\mathbf{U}_{\text {pref }} \\
\int_{\Omega} \mathbf{u} \cdot \nabla q \leq 0 \quad \forall q \in H_{\rho}^{1}
\end{array}\right.
$$

E
Maury, Roudneff-Chupin, Santambrogio '10.

2/4 Floating structures/flows through the channels

The (inviscid) fluid is described by shallow water approximation

$$
\left\{\begin{array}{l}
\partial_{t} h+\partial_{x}(h \bar{u})=0 \\
\partial_{t}(h \bar{u})+\partial_{x}\left(h \bar{u}^{2}\right)=-h \partial_{x}\left(g(h+B)+\frac{\bar{\rho}}{\rho}\right), \\
\min \{\bar{H}-h, \bar{p}-P\}=0
\end{array}\right.
$$

\square

3/4 Lubrication model

When number of masses goes to infinity, the flow is described by:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)-\partial_{x}\left(\frac{\varepsilon}{1-\rho} \partial_{x} u\right)=\rho f
\end{array}\right.
$$

Conjecture: when $\varepsilon \rightarrow 0$ we obtain the system:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\partial_{x} p=f \\
\partial_{t} \gamma+\partial_{x}(\gamma u)=-p \\
\gamma \leq 0, \rho \leq 1, \gamma(1-\rho)=0
\end{array}\right.
$$A. Lefebvre-Lepot and B. Maury '11, Chaudhuri, Navoret, Perrin, Z. '23.

4/4 Link with the traffic model

From Follow the Leader to fluid-like Aw-Rascle system:

$$
\left\{\begin{array} { l }
{ \dot { x } _ { i } = u _ { i } , } \\
{ \dot { u } _ { i } = C \frac { u _ { i + 1 } - u _ { i } } { (x _ { i + 1 } - x _ { i }) ^ { \gamma + 1 } } , }
\end{array} \quad \longrightarrow \quad \left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0, \\
\partial_{t}(\rho w)+\partial_{x}(\rho w u)=0, \\
w=u+P(\rho)
\end{array}\right.\right.
$$

where $P(\rho)=\rho^{\gamma}$ is the cost (offset) function.
\square Aw, Klar, Rascle, Materne. Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Math. Anal., 2002.

4/4 ..

Problem: Maximal velocity and maximal density constraints not preserved.

Solution: Cost function with maximal density constraint $\rho^{*}>0$

$$
P_{\epsilon}(\rho)=\epsilon\left(\frac{\rho}{\rho^{*}-\rho}\right)^{\gamma} .
$$

Hard congestion
F. Berthelin, P. Degond, M. Delitata, and M. Rascle. A Model for the Formation and Evolution of Traffic Jams. ARMA, 2008.

Multi-lane models

Who is the leader now?

One dimension

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho w)+\partial_{x}(\rho w u)=0
\end{array}\right.
$$

\longrightarrow
Several dimensions

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0 \\
\partial_{t}(\rho \mathbf{w})+\operatorname{div}(\rho \mathbf{w} \otimes \mathbf{u})=0
\end{array}\right.
$$

Problem: Dimension incompatibility: $\underbrace{\mathbf{w}}_{\text {vector }}=\underbrace{\mathbf{u}}_{\text {vector }}+\underbrace{P(\rho)}_{\text {scalar }}$.

Solutions to dimension incompatibility problem

Either:

$$
\mathbf{w}=\mathbf{u}+\mathbf{P}(\rho),
$$

where $\mathbf{P}(\rho)=\left[P_{1}(\rho), P_{2}(\rho)\right]$.
\square M. Herty, S. Moutari, G. Visconti. Macroscopic modeling of multilane motorways using a two-dimensional second-order model of traffic flow. SIAM J. Appl. Math., 2018.

Or:

$$
\mathbf{w}=\mathbf{u}+\nabla p(\rho)
$$

where $p(\rho)$ is a scalar function.

A.Tosin, P. Degond, E. Zatorska Students' theses 2016-2017.

Observations about the model

- Taking the offset function $P(\rho)=\partial_{x} p(\rho)=\frac{\lambda(\rho)}{\rho^{2}} \partial_{x} \rho$, we get pressureless, compressible, degenerate Navier-Stokes equations:

$$
\begin{aligned}
& \partial_{t} \rho+\partial_{x}(\rho u)=0 \\
& \partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)-\partial_{x}\left(\lambda(\rho) \partial_{x} u\right)=0
\end{aligned}
$$

- In more dimensions this dissipative effect looks differently

$$
\partial_{t}(\rho \mathbf{u})+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})=\nabla_{x}\left(\rho Q^{\prime}(\rho) \operatorname{div} \mathbf{u}\right)+\mathcal{L}\left[\nabla_{x} Q(\rho), \nabla_{x} \mathbf{u}\right],
$$

where $Q^{\prime}(\rho)=\rho p^{\prime}(\rho)$ and

$$
\mathcal{L}\left[\nabla_{\times} Q(\rho), \nabla_{\times} \mathbf{u}\right]=\nabla_{x}\left(\nabla_{\times} Q(\rho) \cdot \mathbf{u}\right)-\operatorname{div}\left(\nabla_{\times} Q(\rho) \otimes \mathbf{u}\right),
$$

which is a lower order term

$$
\left(\mathcal{L}\left[\nabla_{x} Q(\rho), \nabla_{x} \mathbf{u}\right]\right)_{j}=\sum_{i=1}^{3}\left(\partial_{x_{i}} Q(\rho) \partial_{x_{j}} u_{i}-\partial_{x_{j}} Q(\rho) \partial_{x_{i}} u_{i}\right), \quad j=1,2,3 .
$$

Analysis of hard congestion limit in 1D

Setup of the problem

The starting point is the following system on 1D tourus:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)-\partial_{x}\left(\lambda_{\varepsilon}(\rho) \partial_{x} u\right)=0
\end{array}\right.
$$

where

$$
\lambda_{\varepsilon}(\rho)=\rho^{2} p_{\varepsilon}^{\prime}(\rho), \quad p_{\varepsilon}(\rho)=\varepsilon \frac{\rho^{\gamma}}{(1-\rho)^{\beta}}, \quad \gamma \geq 0, \quad \beta>1
$$

Taking $w=u+\partial_{x} p_{\varepsilon}(\rho)$ we formally rewrite the momentum equation as:

$$
\partial_{t}(\rho w)+\partial_{x}(\rho u w)=0,
$$

or as

$$
\partial_{t}\left(\rho u+\partial_{x} \pi_{\varepsilon}(\rho)\right)+\partial_{x}\left(u\left(\rho u+\partial_{x} \pi_{\varepsilon}(\rho)\right)\right)=0
$$

where $\partial_{x} \pi_{\varepsilon}(\rho)=\rho \partial_{\times} p_{\varepsilon}(\rho)$.

Approximation and existence of solutions

We consider the following approximation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{\varepsilon}+\partial_{x}\left(\rho_{\varepsilon} u_{\varepsilon}\right)=0 \\
\partial_{t}\left(\rho_{\varepsilon} u_{\varepsilon}\right)+\partial_{x}\left(\rho_{\varepsilon} u_{\varepsilon}^{2}\right)-\partial_{x}\left(\lambda_{\varepsilon}\left(\rho_{\varepsilon}\right) \partial_{x} u_{\varepsilon}\right)=0 \\
\left.\rho_{\varepsilon}\right|_{t=0}=\rho_{\varepsilon}^{0},\left.\quad u_{\varepsilon}\right|_{t=0}=u_{\varepsilon}^{0}
\end{array}\right.
$$

with λ_{ε} re-defined as

$$
\lambda_{\varepsilon}\left(\rho_{\varepsilon}\right)=\rho_{\varepsilon}^{2} \boldsymbol{p}_{\varepsilon}^{\prime}\left(\rho_{\varepsilon}\right)+\underbrace{\rho_{\varepsilon}^{2} \varphi_{\varepsilon}^{\prime}\left(\rho_{\varepsilon}\right)}_{\text {approximation }}
$$

where
$p_{\varepsilon}\left(\rho_{\varepsilon}\right)=\varepsilon \frac{\rho_{\varepsilon}^{\gamma}}{\left(1-\rho_{\varepsilon}\right)^{\beta}}, \quad \varphi_{\varepsilon}\left(\rho_{\varepsilon}\right)=\frac{\varepsilon}{\alpha-1} \rho^{\alpha-1}, \quad \gamma \geq 0, \quad \beta>1, \quad \alpha \in\left(0, \frac{1}{2}\right)$.
Theorem (Chaudhuri, Navoret, Perrin, Z. '22)
Let $\varepsilon>0$ fixed, $T>0$ arbitrary, $\rho_{\varepsilon}^{0}, u_{\varepsilon}^{0} \in H^{3}(\mathbb{T})$, with $0<\rho_{\varepsilon}^{0}<1$.
\exists ! global solution $\left(\rho_{\varepsilon}, u_{\varepsilon}\right)$ s. $t .0<\rho_{\varepsilon}(t, x)<1$, and

$$
\rho_{\varepsilon} \in \mathcal{C}\left([0, T] ; H^{3}(\mathbb{T})\right), \quad u_{\varepsilon} \in \mathcal{C}\left([0, T] ; H^{3}(\mathbb{T})\right) \cap L^{2}\left(0, T ; H^{4}(\mathbb{T})\right)
$$

泀
Constantin, Drivas, Nguyen, Pasqualotto '20, Mehmood '23.

Basic a priori estimates:

- $\left\|\rho_{\varepsilon}\right\|_{L_{x}^{1}}(t)=\left\|\rho_{\varepsilon}^{0}\right\|_{L_{x}^{1}}$,
- $\left\|\sqrt{\rho_{\varepsilon}} u_{\varepsilon}\right\|_{L_{t}^{\infty} L_{x}^{2}}+\left\|\sqrt{\lambda_{\varepsilon}\left(\rho_{\varepsilon}\right)} \partial_{x} u_{\varepsilon}\right\|_{L_{t, x}^{2}} \leq C$ and $\left\|\sqrt{\rho_{\varepsilon}} W_{\varepsilon}\right\|_{L_{t}^{\infty} L_{x}^{2}} \leq C$, (classical energy)
(BD estimate)
- $\left\|H_{\varepsilon}\left(\rho_{\varepsilon}\right)\right\|_{L_{t}^{\infty} L_{\chi}^{1}}+\left\|\sqrt{\rho_{\varepsilon}} \partial_{x}\left(p_{\varepsilon}\left(\rho_{\varepsilon}\right)+\varphi_{\varepsilon}\left(\rho_{\varepsilon}\right)\right)\right\|_{L_{t}^{2} L_{\chi}^{2}}^{2} \leq C(T)$,
(porous medium structure)
where $H_{\varepsilon}^{\prime}\left(\rho_{\varepsilon}\right):=p_{\varepsilon}\left(\rho_{\varepsilon}\right)+\varphi_{\varepsilon}\left(\rho_{\varepsilon}\right)$.

$$
\Longrightarrow \rho_{\varepsilon}(t, x) \leq 1-C\left(\frac{\varepsilon}{1+\sqrt{T}}\right)^{\frac{1}{\beta-1}}, \quad \rho_{\varepsilon}^{-1} \leq C \varepsilon^{-\frac{2}{1-2 \alpha}}(1+T)^{\frac{1}{1-2 \alpha}} .
$$

No estimates on u_{ε} (or w_{ε}) independent of ρ_{ε};
The BD estimate not uniform w.r.t. ε;
No uniform estimates for $p_{\varepsilon}\left(\rho_{\varepsilon}\right)$, not even L^{1}.

Idea: Duality solutions of Bouchut and James '98, '99, Boudin '00

Definition A solution $b \in \operatorname{Lip}_{\text {loc }}([0, T] \times \mathbb{R})$ to

$$
\begin{equation*}
\partial_{t} b+u_{\varepsilon} \partial_{x} b=0, \quad b_{\mid t=T}=b_{T} \tag{1}
\end{equation*}
$$

is said to be reversible if there exist two solutions $b_{1}, b_{2} \in \operatorname{Lip}_{\text {loc }}([0, T] \times \mathbb{R})$ of (1) such that $\partial_{x} b_{1} \geq 0, \partial_{x} b_{2} \geq 0$ and $b=b_{1}-b_{2}$.

Remark Bouchut and James showed that the backward problem (1) is well-posed in the class of reversible solutions provided $u_{\varepsilon} \in L^{\infty}([0, T] \times \mathbb{R})$, and if u_{ε} satisfies the Oleinik entropy condition, i.e. $\partial_{x} u_{\varepsilon} \leq 1 / t$.

Definition We say that $\mu \in \mathcal{C}\left([0, T], \mathcal{M}_{l o c, x}\right)$ is a duality solution to

$$
\left.\partial_{t} \mu+\partial_{\times}(\mu u)=0 \quad \text { in }\right] 0, T[\times \mathbb{T}
$$

if, for any $0<\tau \leq T$, and any reversible solution b, the function

$$
t \mapsto \int_{\mathbb{T}} b(t, x) \mu(t, d x)
$$

is constant on $[0, \tau]$.

Idea: Duality solutions of Bouchut and James '98, '99, Boudin '00.
\rightsquigarrow we prove the one-sided Lipschitz condition on $\partial_{x} u_{\varepsilon}$.

Proposition

Let $\rho_{\varepsilon}, u_{\varepsilon}$ be a regular solution, and set $A_{\varepsilon}:=\max \left(\operatorname{esssup}\left(\lambda_{\varepsilon}\left(\rho_{\varepsilon}^{0}\right) \partial_{x} u_{\varepsilon}^{0}\right), 0\right)$. Then

$$
V_{\varepsilon}=\lambda_{\varepsilon}\left(\rho_{\varepsilon}\right) \partial_{x} u_{\varepsilon} \leq A_{\varepsilon}
$$

In particular:

- If $A_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, then

$$
\left(\lambda_{\varepsilon}\left(\rho_{\varepsilon}\right) \partial_{x} u_{\varepsilon}\right)_{+} \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0
$$

- If $A_{\varepsilon} \leq \lambda_{\varepsilon}\left(\underline{\rho}_{\varepsilon}\right) \leq \bar{C} \varepsilon^{\frac{1}{1-2 \alpha}}$, for some \bar{C} independent of ε, then

$$
\partial_{x} u_{\varepsilon} \leq \bar{C}
$$

Consequences

We have

$$
\left\|\partial_{x} u_{\varepsilon}\right\|_{L_{t}^{\infty} L_{x}^{1}} \leq C \quad \rightsquigarrow \quad\left\|u_{\varepsilon}\right\|_{L_{t, x}^{\infty}} \leq C
$$

for a constant C independent of ε. As a consequence of it, we deduce

$$
\left\|\pi_{\varepsilon}\left(\rho_{\varepsilon}\right)\right\|_{L_{t}^{\infty} L_{x}^{1}}+\left\|\partial_{x} \pi_{\varepsilon}\left(\rho_{\varepsilon}\right)\right\|_{L_{t}^{\infty} L_{x}^{2}} \leq C
$$

where $\pi_{\varepsilon}^{\prime}\left(\rho_{\varepsilon}\right)=\rho_{\varepsilon} p_{\varepsilon}^{\prime}\left(\rho_{\varepsilon}\right)+\rho_{\varepsilon} \varphi_{\varepsilon}^{\prime}\left(\rho_{\varepsilon}\right)$.
Idea: Testing the momentum equation with

$$
\psi(t, x)=\int_{0}^{x}\left(\rho_{\varepsilon}(t, y)-<\rho_{\varepsilon}>\right) d y
$$

to obtain the bound

$$
\left|\int_{0}^{t} \int_{\mathbb{T}} \rho_{\varepsilon}^{2} p_{\varepsilon}^{\prime}\left(\rho_{\varepsilon}\right) \partial_{x} u_{\varepsilon} d x d t\right| \leq C
$$

This is then used to bound the r.h.s. of the renormalised continuity equation

$$
\partial_{t}\left(\rho_{\varepsilon} p_{\varepsilon}\left(\rho_{\varepsilon}\right)\right)+\partial_{x}\left(\rho_{\varepsilon} p_{\varepsilon}\left(\rho_{\varepsilon}\right) u_{\varepsilon}\right)=-\rho_{\varepsilon}^{2} p_{\varepsilon}^{\prime}\left(\rho_{\varepsilon}\right) \partial_{x} u_{\varepsilon}
$$

The limit passage

Recall the system once more:

$$
\begin{aligned}
& \partial_{t} \rho_{\varepsilon}+\partial_{x}\left(\rho_{\varepsilon} u_{\varepsilon}\right)=0 \\
& \partial_{t}\left(\rho_{\varepsilon} u_{\varepsilon}+\partial_{x} \pi_{\varepsilon}\right)+\partial_{x}\left(\left(\rho_{\varepsilon} u_{\varepsilon}+\partial_{x} \pi_{\varepsilon}\right) u_{\varepsilon}\right)=0
\end{aligned}
$$

From the a-priori estimates:

$$
\rho_{\varepsilon} \rightharpoonup \rho, \quad u_{\varepsilon} \rightharpoonup u \quad \text { weakly-* in } \quad L_{t, x}^{\infty}, \quad \pi_{\varepsilon}\left(\rho_{\varepsilon}\right) \rightharpoonup \pi \quad \text { weakly in } \quad L_{t}^{2} H_{x}^{1},
$$

and also

$$
\rho_{\varepsilon} \varphi_{\varepsilon}\left(\rho_{\varepsilon}\right) \rightarrow 0 \quad \text { strongly in } \quad L_{t, x}^{\infty}, \quad\left(1-\rho_{\varepsilon}\right) \pi_{\varepsilon}\left(\rho_{\varepsilon}\right) \rightarrow 0 \quad \text { strongly in } L_{t, x}^{q}
$$

Using the standard compensated compactness arguments we then show:

$$
\left(1-\rho_{\varepsilon}\right) \pi_{\varepsilon}\left(\rho_{\varepsilon}\right) \rightharpoonup(1-\rho) \pi, \quad \rho_{\varepsilon} u_{\varepsilon} \rightarrow \rho u \quad \text { and } \quad \rho_{\varepsilon} u_{\varepsilon}^{2} \rightarrow \rho u^{2} \quad \text { in } \mathcal{D}_{t, x}^{\prime}
$$

Hence, passing to the limit in the system, we verify that:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}\left(\rho u+\partial_{x} \pi\right)+\partial_{x}\left(\left(\rho u+\partial_{x} \pi\right) u\right)=0 \\
0 \leq \rho \leq 1, \quad(1-\rho) \pi=0, \quad \pi \geq 0
\end{array}\right.
$$

Analysis of Aw-Rascle system in multi-D

The set up of the problem

Let $\mathbf{w}=\mathbf{u}+\nabla p(\rho)$ we can either solve:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0 \\
\partial_{t}(\rho \mathbf{w})+\operatorname{div}(\rho \mathbf{w} \otimes \mathbf{u})=0
\end{array}\right.
$$

or equivalently:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{w})-\operatorname{div}(\sqrt{\rho} \nabla Q)=0 \\
\partial_{t}(\rho \mathbf{w})+\operatorname{div}(\rho \mathbf{w} \otimes \mathbf{w})=\operatorname{div}(\sqrt{\rho} \nabla Q \otimes \sqrt{\rho} \mathbf{w})
\end{array}\right.
$$

where $Q^{\prime}(\rho)=\sqrt{\rho} p^{\prime}(\rho)$.

We consider $\Omega=\mathbb{T}^{d}$ with the initial data $\rho(0, x)=\rho_{0} \geq 0,(\rho \mathbf{w})(0, x)=\mathbf{m}_{0}$, satisfying the energy bound

$$
E_{0}=\int_{\Omega}\left(\frac{1}{2} \frac{\left|\mathbf{m}_{0}\right|^{2}}{\rho_{0}}+E\left(\rho_{0}\right)\right) \mathrm{d} x<\infty, \quad \text { where } \quad E(\rho)=\int_{0}^{\rho} p(s) d s
$$

The uniform estimates are:

$$
\begin{aligned}
& \left\|\sqrt{\rho_{n}} \mathbf{w}_{n}\right\|_{L^{\infty}\left(0, T_{;} L^{2}\left(\mathbb{T}^{d}\right)\right)} \leq C \\
& \left\|E\left(\varrho_{n}\right)\right\|_{L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{d}\right)\right)} \leq C \\
& \left\|Q\left(\varrho_{n}\right)\right\|_{L^{2}\left(0, T ; W^{1,2}\left(\mathbb{T}^{d}\right)\right)} \leq C
\end{aligned}
$$

where $E(\rho)=\int_{0}^{\rho} p(s) d s, Q^{\prime}(\rho)=\sqrt{\rho} p^{\prime}(\rho)$.

Remarks:

1. There is no uniform bound on \mathbf{w}_{n}.
2. The estimates for ρ_{n} are quite strong.

- The continuity equation

$$
\partial_{t} \rho_{n}+\operatorname{div}(\underbrace{\sqrt{\rho_{n}} \sqrt{\rho_{n}} \mathbf{w}_{n}}_{L^{\infty}\left(L^{p}\right)})-\operatorname{div}(\underbrace{\sqrt{\rho_{n} \nabla Q\left(\rho_{n}\right)}}_{L^{2}\left(L^{p}\right)})=0
$$

- The momentum equation

$$
\partial_{t}\left(\sqrt{\rho_{n}} \sqrt{\rho_{n}} \mathbf{w}_{n}\right)+\operatorname{div}(\underbrace{\sqrt{\rho_{n}} \mathbf{w}_{n} \otimes \sqrt{\rho_{n}} \mathbf{w}_{n}}_{L^{\infty}\left(L^{1}\right)})=\operatorname{div}(\underbrace{\nabla Q\left(\rho_{n}\right) \otimes \sqrt{\rho_{n}} \mathbf{w}_{n}}_{L^{2}\left(L^{1}\right)}) .
$$

Young measures

$$
\mathcal{V}: Q \subset \mathbb{R}^{k} \rightarrow \mathcal{P}\left(\mathbb{R}^{N}\right)
$$

in the sense that

$$
z \in Q \rightarrow\left\langle\mathcal{V}_{z} ; g(\xi)\right\rangle=\int_{\mathbb{R}^{N}} g(\xi) d \mathcal{V}_{z}(\xi)
$$

is Borel measurable $\forall g \in C_{0}\left(\mathbb{R}^{N}\right)$.

Any measurable function $\mathbf{u}_{n}: Q \rightarrow \mathbb{R}^{N}$ generates a measure

$$
\mathbf{u}_{n}: z \in Q \rightarrow \delta_{u_{n}(z)} \in \mathcal{P}\left(\mathbb{R}^{N}\right)
$$

moreover $\mathbf{u}_{n} \rightarrow \mathcal{V}$ in the natural topology $L_{\text {waek* }}^{\infty}\left(Q ; \mathcal{M}\left(\mathbb{R}^{N}\right)\right)$, meaning that

$$
\left\langle\mathbf{u}_{n} ; g(\xi)\right\rangle \rightarrow\langle\mathcal{V} ; g(\xi)\rangle \quad \text { weakly }^{*} \quad \text { in } L^{\infty}(Q), \quad \forall g \in C_{0}\left(\mathbb{R}^{N}\right)
$$

Definition: \mathcal{V} is called the Young measure generated by $\left\{\mathbf{u}_{n}\right\}_{n \in \mathbb{N}}$.

Oscillations and concentrations

$\left\{\mathbf{u}_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
\left\|\mathbf{u}_{n}\right\|_{L^{1}(Q)} \leq C \quad \text { and } \quad\left\|b\left(\mathbf{u}_{n}\right)\right\|_{L^{p}(Q)} \leq C, \quad p>1
$$

then $\lim _{n \rightarrow \infty} b\left(\mathbf{u}_{n}\right)$ can be characterised by \mathcal{V}, i.e.

$$
\int_{Q} \phi(z) b\left(\mathbf{u}_{n}(z)\right) d z \rightarrow \int_{Q} \phi(z)\left\langle\mathcal{V}_{z} ; b(\xi)\right\rangle d z, \quad \forall \phi \in L^{p^{\prime}}(Q)
$$

But if $\left\|b\left(\mathbf{u}_{n}\right)\right\|_{L^{1}(Q)} \leq C$ only, then

$$
b\left(\mathbf{u}_{n}\right) \rightarrow \overline{b(u)} \in \mathcal{M}(Q)
$$

Remark: Only the oscillations are captured by the Young measure, the concentrations are not!

Definition: We call

$$
\mathcal{R}_{b}=\overline{b(u)}-\left\langle\mathcal{V}_{z} ; b(\xi)\right\rangle
$$

a defect measure for function b.

Our definition of solution

$\left\{\rho_{n}, \sqrt{\rho_{n}} \mathbf{w}_{n}, \nabla Q\left(\rho_{n}\right)\right\}_{n \in \mathbb{N}}$, and so we consider $\left\{\mathcal{V}_{t, x}\right\}_{(t, x) \in(0, T) \times \mathbb{T}^{d}}$, and

$$
\mathcal{V} \in L_{\text {weak-(}}{ }^{\infty}\left((0, T) \times \mathbb{T}^{d} ; \mathcal{P}(\mathcal{F})\right),
$$

on the phase space

$$
\mathcal{F}=\left\{\left(\tilde{\rho}, \widetilde{\sqrt{\varrho} \mathbf{w}}, \widetilde{D_{Q}}\right) \mid \tilde{\rho} \in[0, \infty), \widetilde{\sqrt{\varrho} \mathbf{w}} \in \mathbb{R}^{d}, \widetilde{D_{Q}} \in \mathbb{R}^{d}\right\} .
$$

Our convergence results allow us to identify

$$
\begin{aligned}
& \rho=\left\langle\mathcal{V}_{t, x} ; \tilde{\varrho}\right\rangle, \quad \sqrt{\rho}\left\langle\mathcal{V}_{t, x} ; \widetilde{\sqrt{\varrho} w}\right\rangle=\left\langle\mathcal{V}_{t, x} ; \sqrt{\tilde{\varrho}} \widetilde{\varrho} \sqrt{\varrho} \mathbf{w}\right. \\
& Q(\rho)=\left\langle\mathcal{V}_{t, x} ; Q(\tilde{\rho})\right\rangle, \quad \nabla_{\times} Q(\rho)=\left\langle\mathcal{V}_{t, x} ; \widetilde{D_{Q}}\right\rangle .
\end{aligned}
$$

In particular, we have

$$
\mathcal{V}_{t, x}=\delta_{\{\rho(t, x)\}} \otimes Y_{t, x} \quad \text { for a.a. }(t, x) \in(0, T) \times \mathbb{T}^{d},
$$

where $Y \in L_{\text {weak-(}}^{\infty}()\left((0, T) \times \mathbb{T}^{d} ; \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)\right)$.

Weak formulation

1. The continuity equation

$$
\partial_{t} \rho+\operatorname{div}\left(\sqrt{\rho}\left\langle\mathcal{V}_{t, \times} ; \widetilde{\sqrt{\varrho} \mathbf{w}}\right\rangle\right)-\operatorname{div}\left(\sqrt{\rho} \nabla_{x} Q\right)=0
$$

2. The momentum equation

$$
\begin{array}{r}
\partial_{t}\left(\sqrt{\rho}\left\langle\mathcal{V}_{t, x} ; \widetilde{\sqrt{\varrho} \mathbf{w}}\right\rangle\right)+\operatorname{div}\left(\left\langle\mathcal{V}_{t, x} ; \widetilde{\sqrt{\varrho} \mathbf{w}} \otimes \widetilde{\sqrt{\varrho} \mathbf{w}}\right\rangle\right) \\
-\operatorname{div}\left(\left\langle\mathcal{V}_{t, x} ; \widetilde{\sqrt{\varrho} \mathbf{w}} \otimes \widetilde{D_{Q}}\right\rangle\right)+\operatorname{div}\left(r^{M}\right)=0
\end{array}
$$

are satisfied in the sense of distributions, where

$$
r^{M} \in L_{\text {weak-(*) }}^{\infty}\left(0, T ; \mathcal{M}\left(\mathbb{T}^{d} ; \mathbb{R}^{d \times d}\right)\right)+\mathcal{M}\left([0, T] \times \mathbb{T}^{d} ; \mathbb{R}^{d \times d}\right)
$$

3. The energy inequality

$$
\begin{aligned}
& \left.\left.\left.\int_{\mathbb{T}^{d}}\left\langle\mathcal{V}_{\tau, x} ; \frac{1}{2}\right| \widetilde{\sqrt{\varrho} w}\right|^{2}+E(\tilde{\varrho})\right\rangle \mathrm{d} x+\left.\int_{0}^{\tau} \int_{\Omega}\left\langle\mathcal{V}_{t, x} ;\right| \widetilde{D_{Q}}\right|^{2}\right\rangle \mathrm{d} x \mathrm{~d} t+\mathcal{D}(\tau) \\
& \left.\leq\left.\int_{\mathbb{T}^{d}}\left\langle\mathcal{V}_{0, x} ; \frac{1}{2}\right| \widetilde{\sqrt{\varrho} \mathbf{w}}\right|^{2}+E(\tilde{\varrho})\right\rangle \mathrm{d} x+\int_{0}^{\tau} \int_{\Omega}\left\langle\mathcal{V}_{t, x ;} \widetilde{\sqrt{\varrho} \mathbf{w}} \cdot \widetilde{D_{Q}}\right\rangle \mathrm{d} x \mathrm{~d} t+\int_{(0, \tau) \times \mathbb{T}^{d}} \mathrm{~d} \mathcal{R}
\end{aligned}
$$

where

$$
\mathcal{R} \in L_{\text {weak-(*) }}^{\infty}\left(0, T ; \mathcal{M}\left(\mathbb{T}^{d}\right)\right)+\mathcal{M}\left([0, T] \times \mathbb{T}^{d}\right)
$$

4. The weights are compatible, i.e. $\mathcal{D} \equiv 0 \Longrightarrow \mathcal{R}, r^{M} \equiv 0$.

Weak-strong uniqueness

Theorem (Gwiazda, Chaudhuri, Zatorska '22)

Let $(\mathcal{V}, \mathcal{D})$ be a measure valued solution in $(0, T) \times \mathbb{T}^{d}$ of the $A w$-Rascle system. Let $(\bar{\varrho}, \overline{\mathbf{w}})$ be a strong solution to the same system in $(0, T) \times \mathbb{T}^{d}$ with initial data $\left(\bar{\varrho}_{0}, \overline{\mathbf{w}}_{0}\right) \in\left(C^{2}\left(\mathbb{T}^{d}\right), C^{2}\left(\mathbb{T}^{d} ; \mathbb{R}^{d}\right)\right)$ satisfying $\bar{\varrho}_{0}>0$. We assume that the strong solution belongs to the class

$$
\bar{\varrho} \in C^{1}\left(0, T ; C^{2}\left(\mathbb{T}^{d}\right)\right), \overline{\mathbf{w}} \in C^{1}\left(0, T ; C^{2}\left(\mathbb{T}^{d}\right) ; \mathbb{R}^{d}\right) \text { with } \bar{\varrho}>0 .
$$

If the initial states coincide, i.e.

$$
\mathcal{V}_{0, x}=\delta_{\left\{\bar{e}_{0}(x), \bar{w}_{0}(x)\right\}}, \text { for a.e. } x \in \mathbb{T}^{d}
$$

then $\mathcal{D}=0$, and

$$
\mathcal{V}_{\tau, x}=\delta_{\left\{\bar{\varrho}(\tau, x), \sqrt{\bar{\varrho}} \overline{\bar{w}}(\tau, x), \nabla_{\times} Q(\bar{\varrho})(\tau, x)\right\}}, \text { for a.e. }(\tau, x) \in(0, T) \times \mathbb{T}^{d}
$$

However...

$\left(\rho_{0}, \mathbf{u}_{0}\right)=(\rho(0, \cdot), \mathbf{u}(0, \cdot))$ can connect to arbitrary terminal state $\left(\rho_{T}, \mathbf{u}_{T}\right)=((\rho(T, \cdot), \mathbf{u}(T, \cdot))$ via a weak solution.

More specifically, we consider

$$
\begin{gathered}
\rho_{0}, \rho_{T} \in C^{2}\left(\mathbb{T}^{d}\right), \quad \inf _{\mathbb{T}^{d}} \rho_{0}>0, \quad \inf _{\mathbb{T}^{d}} \rho_{T}>0 \\
\int_{\mathbb{T}^{d}} \rho_{0} \mathrm{~d} x=\int_{\mathbb{T}^{d}} \rho_{T} \mathrm{~d} x
\end{gathered}
$$

together with

$$
\begin{aligned}
\mathbf{u}_{0}, \mathbf{u}_{T} & \in C^{3}\left(\mathbb{T}^{d} ; R^{d}\right), \\
\int_{\mathbb{T}^{d}} \rho_{T} \mathbf{u}_{T} \mathrm{~d} x-\int_{\mathbb{T}^{d}} \rho_{0} \mathbf{u}_{0} \mathrm{~d} x & =\int_{\mathbb{T}^{d}} \rho_{0} \mathbf{P}\left(\rho_{0}\right) \mathrm{d} x-\int_{\mathbb{T}^{d}} \rho_{T} \mathbf{P}\left(\rho_{T}\right) \mathrm{d} x .
\end{aligned}
$$

Theorem (Chaudhuri, Feireisl, Zatorska '22)
Let $d=2,3$. Suppose that

$$
\mathbf{P} \in C^{2}\left((0, \infty) ; R^{d}\right), p \in C^{2}((0, \infty))
$$

Let $\left(\rho_{0}, \mathbf{u}_{0}\right),\left(\rho_{T}, \mathbf{u}_{T}\right)$ satisfy assumptions above.
Then, the Aw-Rascle system, endowed with the periodic boundary conditions admits infinitely many weak solutions in the class

$$
\rho \in C^{2}\left([0, T] \times \mathbb{T}^{d}\right), \quad \mathbf{u} \in L^{\infty}\left((0, T) \times \mathbb{T}^{d} ; R^{d}\right)
$$

such that

$$
\rho(0, \cdot)=\rho_{0}, \rho(T, \cdot)=\rho_{T},(\rho \mathbf{u})(0, \cdot)=\rho_{0} \mathbf{u}_{0},(\rho \mathbf{u})(T, \cdot)=\rho_{T} \mathbf{u}_{T}
$$

C. De Lellis and L. Székelyhidi, Jr. '10, Feireisl '16.

Thank you!

