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Compressible and incompressible NS systems

• Compressible Navier-Stokes equations (constant temperature):
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)−µ∆u− λ∇ div u︸ ︷︷ ︸
:=div S(u)

+∇p(ρ) = 0,

⇝ The unknowns: ρ, u.

⇝ The pressure: p = aργ .

• Incompressibe Navier-Stokes equations:{
div u = 0,

ρ∗(∂tu+ u · ∇u)− µ∆u+∇π = 0,

⇝ The unknowns: ρ, u and π.
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Fluid equations with constrained density

• Free boundary pb: free domain {ρ < ρ∗} / congested domain {ρ = ρ∗}.

• Constrained compressible / incompressible Navier-Stokes equations


∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) +∇π + div S(u) = 0,

0 ≤ ρ ≤ ρ∗, (ρ∗ − ρ)π = 0, π ≥ 0.

Unknowns: ρ – density, u – velocity, ∇π – constraining force

Outline

• Motivation: crowds, floating structures, lubrication, traffic;

• Hard congestion limit explained in 1D;

• Analysis of Aw-Rascle system in multi-D.
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Motivation: Applications



1/4 Modelling of crowd

Let Upref - preferred velocity, ρ - pedestrian population density{
∂tρ+ div(ρu) = 0

u = PCρ(Upref ),

• cone of admis. vel.: Cρ = {v ∈ L2(Ω) :
∫
Ω
v · ∇q ≤ 0 ∀q ∈ H1

ρ}

• space of pressures H1
ρ = {q ∈ H1, q ≥ 0 a.e., q = 0 a.e. in {ρ < 1}}.

Find (u, p) ∈ L2 × H1
ρ such that{

u+∇p = Upref∫
Ω
u · ∇q ≤ 0 ∀q ∈ H1

ρ.

Maury, Roudneff-Chupin, Santambrogio ’10.

3



2/4 Floating structures/flows through the channels
Congested shallow water model: on floating body
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Figure 2.1. Floating body configuration and illustration of the unknowns.

In Section 2 the formulation at the continuous level is given while Section 3 is dedicated to the
numerical strategy. In both cases, the fluid and solid dynamics are considered separately, then the
coupling is handled. At the discrete level, first a naive non-entropy satisfying approach is presented
followed by an entropy correction. We also give details on the practical 1D implementation to treat
general shapes of the floating body. Finally in Section 4 we show simulations to validate our approach.

2. Mathematical modeling

In the current section, a description of the governing equations of the floating body problem using a
vertical-integrated model is given. The physical context is illustrated in Figure 2.1.

2.1. Fluid dynamics

In [20] a shallow water type model with an additional congestion constraint modeling a ‘roof’ is
proposed. Let us briefly introduce this model which is derived from the Navier–Stokes equations.
Let us consider the one dimensional domain �x µ R where x stands for the horizontal coordinate
in the frame of the observer and t œ R+ stands for the time variable. In practice the domain �x

will be bounded but for simplicity the boundary conditions will not be detailed. A flow contained
between two surfaces (in the 1D framework, these are actually two curves) respectively called roof
and bottom is considered. The two surfaces can be parametrized by two given mono-valued functions
R(x, t), the roof, and B(x, t), the bottom, which satisfy B(x, t) Æ R(x, t). The surfaces must be regular
enough where they are reached by the fluid, i.e. everywhere for the bottom and at least at the inferior
surface of the floating body, see Hypothesis 1 below. The opening between the roof and the bottom
is defined by H(x, t) = R(x, t) ≠ B(x, t). The unknowns of the model are the water depth h(x, t), the
vertical-averaged horizontal velocity u(x, t) and the surface pressure p(x, t) which satisfy

Y
]
[

ˆth + ˆx (hu) = 0
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3
g (h+B) + p

fl

4
(2.1)
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The (inviscid) fluid is described by shallow water approximation


∂th + ∂x(hū) = 0

∂t(hū) + ∂x(hū
2) = −h∂x

(
g(h + B) + p̄

ρ

)
,

min{H̄ − h, p̄ − P} = 0.

Godlewski et al. ’20, Lannes’17.
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3/4 Lubrication model

MICRO-MACRO MODELLING 3

phase motion is described by the standard transport equation

(2) ∂tρ + ∂x(ρu) = 0.

2. Discrete Model

Consider (see Fig. 1) two rigid spheres imbedded in a viscous fluid, subject to move
horizontally. Denoting by q1 and q2 the abscisses of their centers, by u1 and u2 their

PSfrag replacements
q1 q2

d

Figure 1. Lubrication model

instantaneous velocities and by d the border-to-border distance, the leading term in the
asymptotic expansion of the interaction force is (see e.g. [6]):

(3) F1→2 = −κ
u2 − u1

d
,

where κ is a constant which depends on the viscosity of the lubricating fluid and the radii
of the spheres. We shall take κ = 1 in what follows. Consider now (see Fig. 2) an array of
N + 1 spheres, on the x-axis, with the same radius ε. We set the first and the last sphere
at positions 0 and 1, respectively. As a consequence, the number of degrees of freedom is
N − 1, whereas the number of actual spheres is N + 1.
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Figure 2. Geometry

Definition 2.1. Given a vector of positions q = (qi)1≤i≤N−1, we say that q is ε-feasible
(spheres do not overlap), if

qi − qi−1 − 2ε ≥ 0 ∀i = 1 . . . N, with q0 = 0 and qN = 1

and strictly ε-feasible if all inequalities are strict (spheres do not touch).

We denote by di = qi − qi−1 − 2ε the distance between spheres i and i − 1, by ui the
instantaneous velocity of sphere i, and by u = (ui)1≤i≤N−1 the velocity vector. Velocities
of the extremal spheres 0 and N are taken as 0 (see remark 2.4 for non-zero extremal

When number of masses goes to infinity, the flow is described by:{
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2)− ∂x

(
ε

1−ρ
∂xu

)
= ρf ,

Conjecture: when ε→ 0 we obtain the system:
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) + ∂xp = f ,

∂tγ + ∂x(γu) = −p,

γ ≤ 0, ρ ≤ 1, γ(1− ρ) = 0.

A. Lefebvre-Lepot and B. Maury ’11, Chaudhuri, Navoret, Perrin, Z. ’23.
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4/4 Link with the traffic model

From Follow the Leader to fluid-like Aw-Rascle system:{
ẋi = ui ,

u̇i = C
ui+1−ui

(xi+1−xi )
γ+1 ,

−→


∂tρ+ ∂x(ρu) = 0,

∂t(ρw) + ∂x(ρwu) = 0,

w = u + P(ρ)

where P(ρ) = ργ is the cost (offset) function.

Aw, Klar, Rascle, Materne. Derivation of continuum traffic flow models from microscopic

follow-the-leader models. SIAM J. Math. Anal., 2002. 6



4/4 ..

Problem: Maximal velocity and maximal density constraints not preserved.

Solution: Cost function with maximal

density constraint ρ∗ > 0

Pϵ(ρ) = ϵ

(
ρ

ρ∗ − ρ

)γ

.

F. Berthelin, P. Degond, M. Delitata, and M. Rascle. A Model for the Formation and

Evolution of Traffic Jams. ARMA, 2008.
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Multi-lane models

Who is the leader now?

One dimension −→ Several dimensions{
∂tρ+ ∂x(ρu) = 0,

∂t(ρw) + ∂x(ρwu) = 0,
−→

{
∂tρ+ div(ρu) = 0,

∂t(ρw) + div(ρw ⊗ u) = 0.

Problem: Dimension incompatibility: w︸︷︷︸
vector

= u︸︷︷︸
vector

+ P(ρ)︸︷︷︸
scalar

.
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Solutions to dimension incompatibility problem

Either:

w = u+ P(ρ),

where P(ρ) = [P1(ρ),P2(ρ)].

M. Herty, S. Moutari, G. Visconti. Macroscopic modeling of multilane motorways using a

two-dimensional second-order model of traffic flow. SIAM J. Appl. Math., 2018.

Or:

w = u+∇p(ρ),

where p(ρ) is a scalar function.

A.Tosin, P. Degond, E. Zatorska Students’ theses 2016-2017.
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Observations about the model

• Taking the offset function P(ρ) = ∂xp(ρ) =
λ(ρ)

ρ2
∂xρ, we get pressureless,

compressible, degenerate Navier-Stokes equations:

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2)− ∂x (λ(ρ)∂xu) = 0.

• In more dimensions this dissipative effect looks differently

∂t(ρu) + div(ρu⊗ u) = ∇x(ρQ
′(ρ) div u) + L[∇xQ(ρ),∇xu],

where Q ′(ρ) = ρp′(ρ) and

L[∇xQ(ρ),∇xu] = ∇x(∇xQ(ρ) · u)− div(∇xQ(ρ)⊗ u),

which is a lower order term

(L[∇xQ(ρ),∇xu])j =
3∑

i=1

(
∂xiQ(ρ)∂xj ui − ∂xjQ(ρ)∂xi ui

)
, j = 1, 2, 3.
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Analysis of hard congestion limit in 1D



Setup of the problem

The starting point is the following system on 1D tourus:{
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2)− ∂x (λε(ρ)∂xu) = 0,

where

λε(ρ) = ρ2p′
ε(ρ), pε(ρ) = ε

ργ

(1− ρ)β
, γ ≥ 0, β > 1.

Taking w = u + ∂xpε(ρ) we formally rewrite the momentum equation as:

∂t(ρw) + ∂x(ρuw) = 0,

or as

∂t(ρu + ∂xπε(ρ)) + ∂x(u(ρu + ∂xπε(ρ))) = 0

where ∂xπε(ρ) = ρ∂xpε(ρ).
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Approximation and existence of solutions

We consider the following approximation:
∂tρε + ∂x(ρεuε) = 0,

∂t(ρεuε) + ∂x(ρεu
2
ε)− ∂x (λε(ρε)∂xuε) = 0,

ρε|t=0 = ρ0ε, uε|t=0 = u0
ε,

with λε re-defined as

λε(ρε) = ρ2εp
′
ε(ρε) + ρ2εφ

′
ε(ρε)︸ ︷︷ ︸

approximation

where

pε(ρε) = ε
ργε

(1− ρε)β
, φε(ρε) =

ε

α− 1
ρα−1, γ ≥ 0, β > 1, α ∈

(
0,

1

2

)
.

Theorem (Chaudhuri, Navoret, Perrin, Z. ’22)
Let ε > 0 fixed, T > 0 arbitrary, ρ0ε, u

0
ε ∈ H3(T), with 0 < ρ0ε < 1.

∃! global solution (ρε, uε) s. t. 0 < ρε(t, x) < 1, and

ρε ∈ C([0,T ];H3(T)), uε ∈ C([0,T ];H3(T)) ∩ L2(0,T ;H4(T)).

Constantin, Drivas, Nguyen, Pasqualotto ’20, Mehmood ’23.
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Basic a priori estimates:

• ∥ρε∥L1x (t) = ∥ρ0ε∥L1x ,

• ∥√ρεuε∥L∞t L2x
+ ∥

√
λε(ρε)∂xuε∥L2t,x ≤ C and ∥√ρεwε∥L∞t L2x

≤ C ,

(classical energy) (BD estimate)

• ∥Hε(ρε)∥L∞t L1x
+ ∥√ρε∂x

(
pε(ρε) + φε(ρε)

)
∥2
L2t L

2
x
≤ C(T ),

(porous medium structure)

where H ′
ε(ρε) := pε(ρε) + φε(ρε).

=⇒ ρε(t, x) ≤ 1− C

(
ε

1 +
√
T

) 1
β−1

, ρε
−1 ≤ Cε−

2
1−2α

(
1 + T

) 1
1−2α .

! No estimates on uε (or wε) independent of ρε;

! ! The BD estimate not uniform w.r.t. ε;

! ! ! No uniform estimates for pε(ρε), not even L1.
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Idea: Duality solutions of Bouchut and James ’98, ’99, Boudin ’00

Definition A solution b ∈ Liploc([0,T ]× R) to

∂tb + uε∂xb = 0, b|t=T = bT (1)

is said to be reversible if there exist two solutions b1, b2 ∈ Liploc([0,T ]× R)
of (1) such that ∂xb1 ≥ 0, ∂xb2 ≥ 0 and b = b1 − b2.

Remark Bouchut and James showed that the backward problem (1) is

well-posed in the class of reversible solutions provided uε ∈ L∞([0,T ]× R),
and if uε satisfies the Oleinik entropy condition, i.e. ∂xuε ≤ 1/t.

Definition We say that µ ∈ C([0,T ],Mloc,x) is a duality solution to

∂tµ+ ∂x(µu) = 0 in ]0,T [×T

if, for any 0 < τ ≤ T , and any reversible solution b, the function

t 7→
∫
T
b(t, x)µ(t, dx)

is constant on [0, τ ]. 14



! Further estimates on uε

Idea: Duality solutions of Bouchut and James ’98, ’99, Boudin ’00.

⇝ we prove the one-sided Lipschitz condition on ∂xuε.

Proposition

Let ρε, uε be a regular solution, and set Aε := max(ess sup (λε(ρ
0
ε)∂xu

0
ε), 0).

Then

Vε = λε(ρε)∂xuε ≤ Aε.

In particular:

• If Aε → 0 as ε→ 0, then

(λε(ρε)∂xuε)+ → 0 as ε→ 0;

• If Aε ≤ λε(ρ
ε
) ≤ C̄ε

1
1−2α , for some C̄ independent of ε, then

∂xuε ≤ C̄ .
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Consequences

We have

∥∂xuε∥L∞t L1x
≤ C ⇝ ∥uε∥L∞t,x ≤ C

for a constant C independent of ε. As a consequence of it, we deduce

∥πε(ρε)∥L∞t L1x
+ ∥∂xπε(ρε)∥L∞t L2x

≤ C ,

where π′
ε(ρε) = ρεp

′
ε(ρε) + ρεφ

′
ε(ρε).

Idea: Testing the momentum equation with

ψ(t, x) =

∫ x

0

(
ρε(t, y)− < ρε >

)
dy ,

to obtain the bound ∣∣∣∣∫ t

0

∫
T
ρ2εp

′
ε(ρε)∂xuεdx dt

∣∣∣∣ ≤ C .

This is then used to bound the r.h.s. of the renormalised continuity equation

∂t(ρεpε(ρε)) + ∂x(ρεpε(ρε)uε) = −ρ2εp′
ε(ρε)∂xuε.
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The limit passage

Recall the system once more:

∂tρε + ∂x(ρεuε) = 0,

∂t (ρεuε + ∂xπε) + ∂x
(
(ρεuε + ∂xπε) uε

)
= 0.

From the a-priori estimates:

ρε ⇀ ρ, uε ⇀ u weakly-* in L∞
t,x , πε(ρε)⇀ π weakly in L2

tH
1
x ,

and also

ρεφε(ρε) → 0 strongly in L∞
t,x , (1− ρε)πε(ρε) → 0 strongly in Lq

t,x .

Using the standard compensated compactness arguments we then show:

(1− ρε)πε(ρε)⇀ (1− ρ)π, ρεuε → ρu and ρεu
2
ε → ρu2 in D′

t,x .

Hence, passing to the limit in the system, we verify that:
∂tρ+ ∂x(ρu) = 0

∂t(ρu + ∂xπ) + ∂x
(
(ρu + ∂xπ)u

)
= 0

0 ≤ ρ ≤ 1, (1− ρ)π = 0, π ≥ 0

17



Analysis of Aw-Rascle system in multi-D



The set up of the problem

Let w = u+∇p(ρ) we can either solve:{
∂tρ+ div(ρu) = 0,

∂t(ρw) + div(ρw ⊗ u) = 0,

or equivalently:{
∂tρ+ div(ρw)− div(

√
ρ∇Q) = 0,

∂t(ρw) + div(ρw ⊗ w) = div(
√
ρ∇Q ⊗√

ρw),

where Q ′(ρ) =
√
ρp′(ρ).

We consider Ω = Td with the initial data ρ(0, x) = ρ0 ≥ 0, (ρw)(0, x) = m0,

satisfying the energy bound

E0 =

∫
Ω

(
1

2

|m0|2

ρ0
+ E(ρ0)

)
dx <∞, where E(ρ) =

∫ ρ

0

p(s) ds.

18



The uniform estimates are:

∥√ρnwn∥L∞(0,T ;L2(Td )) ≤ C ,

∥E(ϱn)∥L∞(0,T ;L1(Td )) ≤ C ,

∥Q(ϱn)∥L2(0,T ;W 1,2(Td )) ≤ C ,

where E(ρ) =
∫ ρ

0
p(s) ds, Q ′(ρ) =

√
ρp′(ρ).

Remarks:

1. There is no uniform bound on wn.

2. The estimates for ρn are quite strong.

• The continuity equation

∂tρn + div(
√
ρn
√
ρnwn︸ ︷︷ ︸

L∞(Lp)

)− div(
√
ρn∇Q(ρn)︸ ︷︷ ︸

L2(Lp)

) = 0,

• The momentum equation

∂t(
√
ρn
√
ρnwn) + div(

√
ρnwn ⊗

√
ρnwn︸ ︷︷ ︸

L∞(L1)

) = div(∇Q(ρn)⊗
√
ρnwn︸ ︷︷ ︸

L2(L1)

).
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Young measures

V : Q ⊂ Rk → P(RN),

in the sense that

z ∈ Q → ⟨Vz ; g(ξ)⟩ =
∫
RN

g(ξ)dVz(ξ)

is Borel measurable ∀g ∈ C0(RN).

Any measurable function un : Q → RN generates a measure

un : z ∈ Q → δun(z) ∈ P(RN),

moreover un → V in the natural topology L∞
waek∗(Q;M(RN)), meaning that

⟨un; g(ξ)⟩ → ⟨V; g(ξ)⟩ weakly∗ in L∞(Q), ∀g ∈ C0(RN).

Definition: V is called the Young measure generated by {un}n∈N.
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Oscillations and concentrations

{un}n∈N such that

∥un∥L1(Q) ≤ C and ∥b(un)∥Lp(Q) ≤ C , p > 1

then limn→∞ b(un) can be characterised by V, i.e.∫
Q

ϕ(z)b(un(z)) dz →
∫
Q

ϕ(z)⟨Vz ; b(ξ)⟩ dz , ∀ϕ ∈ Lp′(Q).

But if ∥b(un)∥L1(Q) ≤ C only, then

b(un) → b(u) ∈ M(Q).

Remark: Only the oscillations are captured by the Young measure, the

concentrations are not!

Definition: We call

Rb = b(u)− ⟨Vz ; b(ξ)⟩

a defect measure for function b.
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Our definition of solution

{ρn,
√
ρnwn,∇Q(ρn)}n∈N, and so we consider {Vt,x}(t,x)∈(0,T )×Td , and

V ∈ L∞
weak-(*)

(
(0,T )× Td ;P(F)

)
,

on the phase space

F =
{(
ρ̃,
√̃
ϱw, D̃Q

)
| ρ̃ ∈ [0,∞),

√̃
ϱw ∈ Rd , D̃Q ∈ Rd

}
.

Our convergence results allow us to identify

ρ = ⟨Vt,x ; ϱ̃⟩ ,
√
ρ
〈
Vt,x ;

√̃
ϱw

〉
=

〈
Vt,x ;

√
ϱ̃
√̃
ϱw

〉
,

Q(ρ) = ⟨Vt,x ;Q(ρ̃)⟩ , ∇xQ(ρ) =
〈
Vt,x ; D̃Q

〉
.

In particular, we have

Vt,x = δ{ρ(t,x)} ⊗ Yt,x for a.a. (t, x) ∈ (0,T )× Td ,

where Y ∈ L∞
weak-(*)

(
(0,T )× Td ;P(Rd × Rd)

)
.
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Weak formulation

1. The continuity equation

∂tρ+ div(
√
ρ
〈
Vt,x ;

√̃
ϱw

〉
)− div(

√
ρ∇xQ) = 0

2. The momentum equation

∂t
(√

ρ
〈
Vt,x ;

√̃
ϱw

〉)
+ div

(〈
Vt,x ;

√̃
ϱw ⊗ √̃

ϱw
〉)

− div
(〈

Vt,x ;
√̃
ϱw ⊗ D̃Q

〉)
+ div(rM) = 0.

are satisfied in the sense of distributions, where

rM ∈ L∞weak-(*)(0,T ;M(Td ;Rd×d )) +M([0,T ]× Td ;Rd×d ).

3. The energy inequality∫
Td

〈
Vτ,x ;

1

2

∣∣∣√̃ϱw
∣∣∣2 + E(ϱ̃)

〉
dx +

∫ τ

0

∫
Ω

〈
Vt,x ; |D̃Q |2

〉
dxdt +D(τ)

≤
∫
Td

〈
V0,x ;

1

2

∣∣∣√̃ϱw
∣∣∣2 + E(ϱ̃)

〉
dx +

∫ τ

0

∫
Ω

〈
Vt,x ;

√̃
ϱw · D̃Q

〉
dxdt +

∫
(0,τ)×Td

dR,

where

R ∈ L∞weak-(*)(0,T ;M(Td )) +M([0,T ]× Td ).

4. The weights are compatible, i.e. D ≡ 0 =⇒ R, rM ≡ 0.
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Weak-strong uniqueness

Theorem (Gwiazda, Chaudhuri, Zatorska ’22)
Let (V,D) be a measure valued solution in (0,T )× Td of the Aw-Rascle

system. Let (ϱ̄, w̄) be a strong solution to the same system in (0,T )× Td with

initial data (ϱ̄0, w̄0) ∈ (C 2(Td),C 2(Td ;Rd)) satisfying ϱ̄0 > 0. We assume that

the strong solution belongs to the class

ϱ̄ ∈ C 1(0,T ;C 2(Td)), w̄ ∈ C 1(0,T ;C 2(Td);Rd) with ϱ̄ > 0.

If the initial states coincide, i.e.

V0,x = δ{ϱ̄0(x),w̄0(x)}, for a.e. x ∈ Td

then D = 0, and

Vτ,x = δ{ϱ̄(τ,x),√ϱ̄w̄(τ,x),∇xQ(ϱ̄)(τ,x)}, for a.e. (τ, x) ∈ (0,T )× Td .
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However...

(ρ0, u0) = (ρ(0, ·), u(0, ·)) can connect to arbitrary terminal state

(ρT , uT ) = ((ρ(T , ·), u(T , ·)) via a weak solution.

More specifically, we consider

ρ0, ρT ∈ C 2(Td), inf
Td
ρ0 > 0, inf

Td
ρT > 0,∫

Td

ρ0 dx =

∫
Td

ρT dx ,

together with

u0, uT ∈ C 3(Td ;Rd),∫
Td

ρTuT dx −
∫
Td

ρ0u0 dx =

∫
Td

ρ0P(ρ0) dx −
∫
Td

ρTP(ρT ) dx .
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Theorem (Chaudhuri, Feireisl, Zatorska ’22)
Let d = 2, 3. Suppose that

P ∈ C 2((0,∞);Rd), p ∈ C 2((0,∞)).

Let (ρ0, u0), (ρT , uT ) satisfy assumptions above.

Then, the Aw-Rascle system, endowed with the periodic boundary conditions

admits infinitely many weak solutions in the class

ρ ∈ C 2([0,T ]× Td), u ∈ L∞((0,T )× Td ;Rd)

such that

ρ(0, ·) = ρ0, ρ(T , ·) = ρT , (ρu)(0, ·) = ρ0u0, (ρu)(T , ·) = ρTuT .

C. De Lellis and L. Székelyhidi, Jr. ’10, Feireisl ’16.
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Thank you!
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