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Some preliminary Remarks

Turbulent flows are commonly encountered in industrial applications.

Turbulence is very important because it can strongly change the flow
patterns.

In particular, it influences mass and heat transfer in reacting flows
(multiphase, combustion, ...).

Accounting for turbulence can thus be mandatory for obtaining predictive
models.

Example for H2 combustion1:

Laminar flame speed of H2 in air is ≈ 1−3 m/s, this lead to deflagrations.

When the flow is turbulent near the flame front, we can get a detonation:
flame speed ≈ speed of sound, which means ≈ 1500 m/s in hot burnt gases,
and ≈ 340 m/s in fresh gases !

=⇒ An alternative way of modeling turbulence for compressible flows is
presented in this talk with a focus on the Euler system of equations with energy
(which represents the basis of a lot of the multiphase compressible models).

1Poster session: “A multi-component multi-temperature model for simulating laminar
deflagration waves in mixtures of air and hydrogen”
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Illustration of the classical RANS approach for the barotropic Euler system
∂

∂ t
(ρ) +

∂

∂x
(ρU) = 0,

∂

∂ t
(ρU) +

∂
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(
ρU2 +P(ρ)

)
= 0.

(1)

The statistical Reynolds average of any quantity φ is denoted by φ . The
Favre “average” reads: ρΨ̃ = ρΨ. The associated fluctuations are
respectively: φ ′ = φ −φ and ψ# = ψ− ψ̃.

Applying Reynolds average to system (1) leads to (note that statistical average
operators and partial derivatives commute):
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)
= 0.

(2)

If we consider that ρ and Ũ are the unknowns of system (2), the terms in blue
should be defined with respect to these unknowns through algebraic closure
laws or (more often) through additional EDP.

Remark. For a linear pressure law: P(ρ) = P(ρ), only (̃U#)2 has to be closed.

Remark. The energy equation in the Euler model leads to even more additional
(non-linear) terms to close.
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How to model turbulence for compressible flows in industrial codes ?

This is a complex task for incompressible flows (several decades of research
and publications...), this is even more complex for compressible flows, with
very few publications on rigorous derivation of models in the literature.

Not so easy to grasp because the first theory is based on statistics ... and
in common sense, turbulence often means small vortices in one particular
flow !

In a practical point of view, statistical averages used in the theory are
replaced by spatial and/or time averages.

Ergodicity principle is used for justifying this replacement, but it could only
be valid in the core of the flow (i.e. not around singularities as walls for
instance) and for almost steady flows.

This replacement can lead to possible discrepancy between the time/space
filters and time-steps/mesh-cells (in LES approach).

A standard closure method: models for incompressible turbulence are
roughly extended by considering that density varies. This is clearly not
suitable for flows that endure high and rapid compression phenomena.

One of the main challenges for modeling turbulence in compressible flows
is to define shocks with a correct jump of the turbulent quantities. A
conservative model is thus desirable (though not mandatory).

Sergey Gavrilyuk, Jean-Marc Hérard, Olivier Hurisse, A. Toufaili An approach for building simple models for compressible turbulent flows. 4



The classical three-scale RANS approach versus a “two-scale”
thermodynamical approach
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(ρ) +
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ρ Ũ

)
= 0,

∂
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+
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(
ρ Ũ2 + ρ (̃U#)2 +P(ρ)

)
= 0.

The classical RANS approach can be seen as a three-scale decomposition:

the macro-scale represented by the velocity and the kinetic energy Ũ2/2;

the meso-scale represented by the turbulent kinetic energy (̃U#)2;

the micro-scale represented by the internal energy e(ρ,s).

In the following, we propose to model both the micro-scale and
meso-scale using a common thermodynamical approach.

Benefits of this point of view are associated with the mathematical properties
inherited by the EDP models issued from thermodynamical-based modelling:

hyperbolicity of the set of equations is more easy to obtain;

conservativity is intrinsically ensured → unique shock definition;

second law of thermodynamics.
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Thermodynamical modeling of turbulence in extensive variables

The following models can be seen as a mixture models of two miscible
phases K and L sharing the same mass.

Let us consider a mass of fluid M (in kg) within a volume V (in m3),
with for φ = {K ,L}: Mφ = M and Vφ = V .

Thermodynamical internal energy is denoted by EL (in J).

Turbulent kinetic energy is denoted by EK (in J).
The energy is chosen as the thermodynamical potential, so that

EOS have to be given for Eφ (Mφ ,Vφ ,ηφ ) for φ = {K ,L},
where the thermodynamical entropy is denoted by ηL,
and the turbulent entropy by ηK (both in J/K).

A Gibbs relation is assumed for each “phase” φ = {K ,L}:

dEφ = Tφdηφ −PφdVφ + µφdMφ , with Vφ = V and Mφ = M .

Assumption : the energy of the fluid is E = EL +EK .

Hence we get the Gibbs relation for the mixture:

dE = TLdηL +TKdηK︸ ︷︷ ︸
?

− (PL +PK )︸ ︷︷ ︸
=P (i.e. Dalton law)

dV + (µL + µK )︸ ︷︷ ︸
=µ (not used)

dM .

In order to close the mixture model, we must specify how the phasic
entropies ηφ and the mixture entropy η are linked.
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Additional assumptions for the EOS

Thanks to the Gibbs relations we have:

Pφ =−
∂Eφ

∂V |M ,ηφ

and Tφ =
∂Eφ

∂ηφ |M ,V

.

Let us assume that the EOS are such that:

Eφ are convex and PH1 with respect to (Mφ ,Vφ ,ηφ ),

ηL > 0 and EL(M ,V ,ηL)≥ 0 (not always the case ! e.g. the Stiffened
Gas),

ηK ≥ 0 and EK (M ,V ,ηK )≥ 0,

lim
ηK→0

(EK (M ,V ,ηK ))→ 0,

lim
ηK→0

(PK (M ,V ,ηK ))→ 0,

lim
ηK→0

(TK (M ,V ,ηK ))→ 0,

The last four conditions allow to make the turbulence vanish and to retrieve
the “laminar model”.
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Two different closure relations for the entropies

A first model issued from 2 and closely related to the one proposed in 3,
though the two models make different mass assumptions for Mφ .

The mixture entropy reads: η = ηK + ηL (note that η > 0).

We introduce a turbulent entropy fraction βK = ηK/η (and βL = 1−βK ).

The mixture Gibbs relation:

dE = TLdηL +TKdηK︸ ︷︷ ︸
?

− (PL +PK )dV + (µL + µK )dM ,

becomes:

dE = (TK −TL)dβK︸ ︷︷ ︸
exchange term

+(βLTL + βKTK )︸ ︷︷ ︸
mixture temp. T

dη−(PL +PK )dV +(µL +µK )dM .

Mixture temperature T and pressure P can be identified and they read:

T = βLTL + βKTK and P = PL +PK .

2“Modélisation de la turbulence compressible pour l’explosion”, A. Toufaili, PhD Univ.
Aix-Marseille, 15 march 2023, https://theses.hal.science/tel-04035905v1

3“Thermodynamic analysis and numerical resolution of a turbulent-fully ionized plasma flow
model”, R. Saurel, A. Chinnayya, F. Renaud, Shock Waves, 2003.
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The volume of fluid follows a streamline defined by the velocity field U.

The variation of the volume is related to the divergence of the velocity field:

dV = V ∇x ·U dt. (3)

We assume that the mass M is constant:

dM = 0, (4)

and that first law of thermodynamics holds for the mixture pressure forces:

dE =−PdV . (5)

Thanks to relations (4)-(5), the Gibbs relation:

dE = (TK −TL)dβK +Tdη−PdV + (µL + µK )dM ,

then simplifies in:
0 = (TK −TL)dβK +Tdη . (6)

Four variables V , M , η and βK (or V , M , ηK and ηL) BUT only three
closures for their time evolution: (3), (4), (5).

→ A model has to be specified for dβK (or dη thanks to (6)).
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Convexity and the second law of thermodynamics

The convexity of energies Eφ =⇒ the convexity of the mixture energy E .

The convexity E is equivalent to the concavity of η, see a.

Hence the second law of thermodynamics reads here dη > 0.

a“Numerical approximation of hyperbolic systems of conservation laws”, E. Godlewski, P.-A.
Raviart, Springer, 1996.

The second law is then used for choosing admissible models for the
variation of βK .

Models for dβK should be such that dη > 0, which thanks to the simplified
Gibbs relation, 0 = (TK −TL)dβK +Tdη, leads to:

dη > 0 ⇐⇒ (TK −TL)dβK < 0.

Several admissible models exist. Let us choose a simple one:

dβK =− (TK −TL)

λ
dt, with λ > 0.

Remark. A BGK source terms has been used in 4.

4“Modélisation de la turbulence compressible pour l’explosion”, A. Toufaili, PhD Univ.
Aix-Marseille, 15 march 2023, https://theses.hal.science/tel-04035905v1
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This model has been studied in details in 5. Let us enumerate some drawbacks
of this first model.

1 The mixture temperature is a weighted formula with βK ∈ [0,1[:

T = (1−βK )TL + βKTK .

Since ηL > 0, βK < 1. But when βK → 1−, we have T → T−K . The energy of
the model is the turbulent one, no more thermodynamical energy.

The mixture temperature can be less than the associated thermodynamical
temperature: T < TL (typically when TK < TL).

2 The equilibrium state (long time behavior for the closed system) is:

TL = TK .

Which means that turbulent kinetic energy does not vanish when
equilibrium state is reached.

3 Dissipation of the turbulent energy/entropy, i.e. βK , is associated with
(TL−TK )dβK , which limits the possibility of dissipation models.

=⇒ The behavior of this model is not completely satisfactory.

5“Modélisation de la turbulence compressible pour l’explosion”, A. Toufaili, PhD Univ.
Aix-Marseille, 15 march 2023, https://theses.hal.science/tel-04035905v1
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A second model: let us only change the closures for the entropies.

Assumptions for the partial masses / volumes / energies are unchanged.

The thermodynamical and turbulent entropies now reads:

ηL = η , ηK = ζK η , with ζK ≥ 0.

The mixture Gibbs relation:

dE = TLdηL +TKdηK︸ ︷︷ ︸
?

− (PL +PK )dV + (µL + µK )dM ,

becomes:

dE = ηTKdζK︸ ︷︷ ︸
exchange term

+ (TL + ζKTK )︸ ︷︷ ︸
mixture temp. T

dη− (PL +PK )dV + (µL + µK )dM .

Mixture temperature T and pressure P can be identified and they now
read:

T = TL + ζKTK and P = PL +PK .

Thanks to early assumptions, turbulence dissipation in agreement with
second law are such that dζK ≤ 0, e.g. one can choose an exponential
decrease:

dζK =−ζK

ν
dt, with ν > 0.

Sergey Gavrilyuk, Jean-Marc Hérard, Olivier Hurisse, A. Toufaili An approach for building simple models for compressible turbulent flows. 12



Let us compare this second model to the first one.

1 The mixture temperature is not a weighted formula:

T = TL + ζKTK , with ζK ≥ 0.

When ζK → 0, we have T → TL. The energy of the model is the
thermodynamical one, there is no more turbulent energy.

The mixture temperature is always greater or equal to the thermodynamical
temperature: T ≥ TL.

2 The equilibrium state (long time behavior for the closed system) is:

ζK = 0⇐⇒ ηK = 0⇐⇒ EK = PK = TK = 0.

Which means that turbulent kinetic energy has entirely vanished when
equilibrium state is reached.

=⇒ The behavior of this model is in better agreement with “what could
be expected”.
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A full model based on the Euler set of equations

We already introduced the closures:

dV = V ∇x ·U dt, dM = 0, dE =−PdV ,

where P is the mixture pressure P = PK +PL. We add a closure for the
velocity field (in agreement with the first law of thermodynamics above) and
the equation for ζK :

MdU =−V ∇xP dt, dζK =−ζK

ν
dt.

We now switch from this non-conservative set of equations for extensive
quantities (along streamlines) to a set of EDP in conservative form for
intensive quantities, we get an Euler based model:



∂

∂ t
(ρζK ) +

∂

∂x
(ρUζK ) = ρζK /ν ,

∂

∂ t
(ρ) +

∂

∂x
(ρU) = 0,

∂

∂ t
(ρU) +

∂

∂x

(
ρU2 + P(ζK ,ρ,s)

)
= 0,

∂

∂ t
(ρE) +

∂

∂x
(U(ρE + P(ζK ,ρ,s))) = 0,

where E = eL(ρ,s) + eK (ρ,ζK s) +U2/2 is the specific total energy with
eφ = Eφ/M , and where the unknowns are: the density ρ = M /V , the specific
entropy s = η/M , ζK and U.
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Conclusion and perspectives

1 For the second model, what is the physical meaning of the closures for the
entropies:

ηL = η , ηK = ζK η ?

2 We end up with an Euler-based model with a complex mixture
pressure-law and an additional advected quantity ζK .

3 Concerning the overall approach:

Benefits of thermodynamical modeling: agreement with the second law,
shocks are uniquely defined, good mathematical properties.

Limited to isotropic turbulence which is not a “physical reality”, but could
be helpful on some coarse industrial settings (to be tested !).

Possible extension to anisotropic turbulence ?
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